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Abstract—Anomaly driving detection is an important problem
in advanced driver assistance systems (ADAS). It is important to
identify potential hazard scenarios as early as possible to avoid
potential accidents. This study proposes an unsupervised method
to quantify driving anomalies using a conditional generative
adversarial network (GAN). The approach predicts upcoming
driving scenarios by conditioning the models on the previously
observed signals. The system uses the difference of the output
from the discriminator between the predicted and actual signals
as a metric to quantify the anomaly degree of a driving segment.
We take a driver-centric approach, considering physiological
signals from the driver and controller area network-Bus (CAN-
Bus) signals from the vehicle. The approach is implemented with
convolutional neural networks (CNNs) to extract discriminative
feature representations, and with long short-term memory (LSTM)
cells to capture temporal information. The study is implemented
and evaluated with the driving anomaly dataset (DAD), which
includes 250 hours of naturalistic recordings manually anno-
tated with driving events. The experimental results reveal that
recordings annotated with events that are likely to be anomalous,
such as avoiding on-road pedestrians and traffic rule violations,
have higher anomaly scores than recordings without any event
annotation. The results are validated with perceptual evaluations,
where annotators are asked to assess the risk and familiarity of
the videos detected with high anomaly scores. The results indicate
that the driving segments with higher anomaly scores are more
risky and less regularly seen on the road than other driving
segments, validating the proposed unsupervised approach.

Index Terms—Driving anomaly detection, conditional genera-
tive adversarial networks, convolutional neural networks, long
short-term memory cell.

I. INTRODUCTION

W ITH the development of the smart automobile indus-
try in recent years, more and more functions have

been added to advanced driver assistance systems (ADAS),
avoiding human errors and increasing road safety. Examples
include lane departure warning (LDW), forward collision
warning (FCW), and intelligent speed advice (ISA). These
techniques share the common basic principle of detecting
hazard scenarios, warning drivers of potential risks, and taking
control of the vehicle in extreme situations. All these solu-
tions require detection of driving anomalies that deviate from
normal driving patterns, and increase chances of accidents.
Current approaches for detecting abnormal driving behaviors
or conditions often rely on either threshold-based or rule-
based systems [1]–[5]. However, these methods are often
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triggered only when a driver makes a mistake, which is too
late in many cases. Furthermore, it is highly unlikely that rule-
based systems can exhaustively cover all potential anomaly
scenarios. It is important to develop algorithms that can detect
general abnormal driving behaviors as early as possible so
that potential road accidents can be avoided. For these cases,
unsupervised approaches are expected to be more effective,
without rigid predefined rules or definitions of anomalies.

This work proposes an unsupervised approach based on the
conditional generative adversarial network (GAN) framework
to detect driving anomalies. Our approach is based on the
premise that driving anomalies are often unexpected events
that we cannot predict with the available contextual infor-
mation. Motivated by this premise, we use the data from
previous frames as a condition to generate prediction of signals
of the near future from random noise. Then, we use the
discriminator model to compare the differences between the
generated prediction and real data of the upcoming frames,
creating a powerful metric to indicate the abnormal degree of
the near future. This idea was previously validated in our pre-
liminary work [6], where we implemented our approach with
fully connected deep neural networks (DNNs). In contrast,
our proposed framework uses the latest advances in machine
learning to leverage discriminative information directly from
the data using convolutional neural networks (CNNs). CNNs
can extract both linear and non-linear relationships in and
between sequences [7], which we expect to be useful in
detecting driving anomalies. Our formulation also leverages
temporal information, relying on recurrent neural networks
(RNNs) implemented with long short-term memory (LSTM)
layers. LSTMs are designed to capture temporal relationship
among sequential data from previous frames, providing a
powerful framework for temporal sequence forecasting [8].

We build our approach with features extracted from the
controller area network-bus (CAN-Bus) and physiological
signals, although this approach is flexible and can be imple-
mented with different sensing modalities. CAN-Bus signals
provide powerful information for estimating driving maneu-
vers and driver behaviors, including acceleration, breaks and
steering wheel movements [9]–[11]. Therefore, we expect
that predicting future CAN-Bus signals with our formulation
will lead to robust driving anomaly detection. In addition to
CAN-Bus data, we also rely on the driver’s physiological
signals. In particular, we consider Electrocardiography (ECG),
breath rate (BR), and Electrodermal activity (EDA) signals.
The motivation for considering physiological signals is that
under certain complex driving conditions, a driver might get
nervous or frightened by abnormal driving events, which will
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be reflected in her/his biosignals. Even if the driver does not
react with a driving maneuver, the physiological signals will
indicate the presence of the anomaly. In fact, our preliminary
study showed that adding features extracted from the driver’s
physiological data increased the model’s discriminative power
[6]. Physiological signals are also closely related to driving
behaviors [12]–[15]. Consequently, our model considers the
vehicle’s CAN-Bus signals and driver’s physiological signals.

We evaluate the proposed approach with the driving
anomaly dataset (DAD). This corpus has rich manual anno-
tations of maneuvers and events. We group events that are
likely to trigger driving anomalies, such as traffic violations,
pedestrian on the road, and crossing vehicles. The anomaly
scores of the driving segments overlapping with these anno-
tations are generally higher than the anomaly scores of the
driving segments without any annotations. We also investigate
the contributions of the blocks in our formulation. For this
purpose, we build our model with fully connected DNN, with
only LSTMs, or with only CNNs. The result shows that the
LSTM-based model performs better at discriminating abnor-
mal from normal driving scenarios than the CNN-based model.
The discriminative performance of our proposed approach is
improved when we combine both structures (i.e., CNN and
LSTM). These results are also confirmed with perceptual
evaluations, where annotators were asked to assess the risk
level and familiarity of video segments identified with high
anomalous scores by the alternative models. The proposed
CNN+LSTM based model is able to identify video segments
that are perceived as more risky and less familiar by the
annotators. In summary, the contributions of our study are:
• We proposed an unsupervised formulation to predict driv-
ing anomalies based on conditional GAN, which contrasts
predicted and observed physiological and CAN-Bus features.
• The proposed approach derives discriminative representa-
tions directly from data using CNNs, and leverages temporal
information across consecutive frames using LSTMs.
• We validated the proposed approach with objective and
perceptual evaluations using a naturalistic driving database,
which demonstrates the strengths of our proposed formula-
tion.

The paper is organized as follows. Section II presents
related studies, discussing effort to detect driving anomalies.
It also discusses how conditional GANs have been used for
anomaly/outlier detection in other fields. Section III introduces
the dataset used in this study for evaluating our proposed
models. Section IV presents the motivation of our framework,
discussing the details of our formulation. Section V evaluates
the discriminative power of our unsupervised driving anomaly
detection framework using objective and subjective evalua-
tions. Finally, Section VI summarizes the contributions of this
work, discussing potential ideas to extend and improve our
unsupervised driving anomaly detection system.

II. RELATED WORK

This section reviews the most relevant studies to our work.
We start with Section II-A, which presents studies aiming
to detect driving anomalies. Section II-B presents a broader

overview on anomaly detection methods using GAN across
different areas. Section II-C highlights the differences between
our work and other methods.

A. Driving Anomaly Detection

Pattern-based methods detect anomaly driving events by
modeling driving maneuver patterns. Some of them identify
cases where the driving behaviors depart from expected normal
driving patterns, labeling them as abnormal events [5], [16]–
[21]. Other studies have focused on detecting several specific
types of abnormal driving maneuver patterns [3], [4], [22]–
[29]. Zhang et al. [5] proposed a driving anomaly detection
model by representing normal driving patterns in a state
graph. They use this state graph as the criterion to distinguish
abnormal driving behaviors that deviate from the expected
state transitions. Another representative approach is the work
of Chen et al. [3]. They considered six types of abnormal
driving behaviors such as fast U-turn and sudden braking.
They obtained the vehicle acceleration data from smartphone
sensors, which were used to recognize these events using a
support vector machine (SVM). Dai et al. [4] detected driving
under the influence of alcohol using a pattern-matching model,
which compares the differences in the vehicle’s acceleration
between normal and drunk driving conditions.

The threshold based methods [1], [2], [30]–[36] set bounds
on the values of features or parameters describing the driving
scenario. Abnormal driving conditions are set when their
values are outside the predefined safe ranges. Hong et al. [1]
detected when the vehicle’s acceleration was higher than a
predefined threshold, using this event as a proxy to measure
aggressive driving behaviors. Similarly, Chakravarty et al. [2]
proposed a system that evaluates multiple thresholds on the
vehicle’s acceleration to detect risky driving events. They
considered the vehicle’s acceleration on different directions to
detect four maneuver types (i.e., hard bump, hard cornering,
harsh brake, and sharp acceleration). Even though these meth-
ods are simple and computationally effective, the threshold-
based methods using predefined values often lack flexibility,
requiring, in many cases, domain knowledge (e.g., speed limit
on current roads).

The clustering based method is another approach used to
identify abnormal scenarios [37]–[41]. This approach builds
on the hypothesis that most people drive in a proper and
safe way under most naturalistic driving conditions. Therefore,
abnormal driving behaviors or risky driving conditions are
infrequent events. Under this assumption, we should expect
that anomaly events will be clustered as outliers. Hansen et
al. [39] discriminated the driver’s maneuvers by mapping the
features extracted from the vehicle’s dynamic signals to a
feature space. The outlier driving events of the clusters were
regarded as driving anomalies. The work of Zheng and Hansen
[38] used a one-class SVM and the topology anomaly detection
(TAD), clustering model to grade each driving event from
“good” to “bad”. The study established a four-class labeling
framework, according to the clusters (from the innermost
cluster to the outermost cluster).
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B. Anomaly Detection Using Conditional GANs

Multiple methods have been proposed for time series
anomaly detection [42]. An interesting formulation is the
generative adversarial network (GAN) [43], which has opened
new directions for this problem. A GAN-based model consists
of a generative model (G) and a discriminative model (D),
which are trained with an adversary strategy. G is trained to
generate disruptive fake data from random noises, learning
the distribution of the data that needs to be generated. As
an adversarial game, D is trained to identify the differences
between the generated fake data and real data. As the quality
of G improves, the differences between the generated and
real signals decrease, reducing the performance of D. GAN
has been widely used as a state-of-the-art generative model.
This model has also been used for detection of anomalies
or outliers. This section describe some examples of GAN-
based anomaly detection models used in different domains.
The reader are referred to Di Mattia et al. [44], which presents
a survey on this area.

Schlegl et al. [45] presented the AnoGAN framework,
which was applied to identify anomalies in retina tomog-
raphy images. AnoGAN learns a manifold to represent the
distribution of the data using a GAN. It maps the image
into a latent space where it is feasible to quantify deviations
from normal distributions, detecting anomalous cases. Zhou
et al. [46] proposed BeatGAN, an unsupervised GANs-based
system to identify unusual human motions (e.g., jumping and
running) from normal motions (i.e., walking). This approach
built a generator with an encoder-decoder structure, using
the reconstructed signals as the fake signals to confuse the
discriminator. For the evaluation, they used the reconstruction
error between the real signal and the generated fake signal as
the anomaly metric to detect abnormal motions. Xue et al. [47]
proposed a supervised approach based on GAN, called SegAN,
for brain tumor segmentation. The generator creates segmen-
tation masks for the input brain image. The discriminator
identifies between generated segmentations and ground truth
labels. The formulation regards the tumor area as the abnormal
part of a given image. Li et al. [48] proposed a GAN-based
model to detect attacks on cyber-physical systems (CPSs).
The approach compares the predictions of the generator with
actual multivariate time-series data. The residual between these
signals is used to detect anomaly activities in the CPS. Studies
have also used GAN for out-of-domain (OOD) detection in
natural language understanding (NLU). For example, Zheng
et al. [49] trained an autoencoder to map the input utterance
into the latent embedding created by the generator of a GAN
model. Then, they used the decoder of the autoencoder to
generate utterance from the embedding as OOD samples.

Rather than generating data merely from random noise,
Mirza et al. [50] modified the original GAN formulation
by adding extra information as condition to the model. The
additional input conditions the data generation process, cre-
ating behaviors that are properly constrained. Hyland et al.
[51] adopted the conditional GAN framework implemented
with LSTMs to generate fake patients’ heart rate (HR) and
respiratory rate (RR) data, conditioning on blood pressure

values. They used this method to detect patients’ abnormal
physical conditions. Akcay et al. [52] proposed the GANomaly
framework, which is another conditional adversary network
for anomaly detection. The approach combines GAN with an
autoencoder to jointly model a latent and image space. The
encoder processes the input data creating a latent space. The
decoder processes the latent space to create a reconstructed
version of the data. The discriminator aims to classify the
original image as real and the reconstructed image as fake.
Then, the encoder is used again to map the reconstructed
image back into the latent space. The distance in the latent
space between the input data and reconstructed latent vector
is used as the anomaly score. The model is trained with
neutral data. Anomalous examples that do not fit the normal
distribution are expected to have larger distance. A similar
approach was used by Zenati et al. [53] in their efficient GAN
based anomaly detection (EGBAD) framework, without using
the encoder on the reconstructed image.

C. Relation to Prior Work

Our proposed approach builds upon our preliminary work in
Qiu et al. [6]. This study extracted statistic features from the
data to capture the key aspects of the signals as the input of
the model. The approach has two problems that are addressed
in this study. First, the model used hand crafted features
from the modalities. Our proposed architecture addresses this
problem by using the CNN block, which extracts discrim-
inative representations directly from the data. The second
limitation is that the model only considers static windows of
six seconds to constraint the model. This approach ignores
temporal information within these previous six second, since
statistics are derived from the entire segment. It also ignores
longer dependencies that may be important in the prediction
of the signals in the upcoming frames. The proposed approach
addresses this limitation by integrating the LSTM module.
With the combination of both additions, we extract discrimi-
native temporal representations directly from the raw data. We
believe that this feature representation can reveal more detailed
information than statistic features using predefined functional
module. Qiu et al. [54] used an architecture that was similar to
the work proposed in Qiu et al. [6], but with an anomaly score
relying on the triplet loss function. We do not explore this
direction in this paper. We provide an exhaustive evaluation
of our proposed architecture, comparing the benefits of adding
the CNN and LSTM blocks. We also compares the proposed
approach with several alternative methods.

While other studies have proposed GAN-based approaches
for anomaly detection, the particular formulation presented in
this study is novel, and has important benefits with respect
to other alternative models. Our model learns from real data
and make forecasts of the upcoming signals based on the
observed data. We use the discriminator to determine segments
with signals that deviate from the observed patterns. Our
approach is fully unsupervised, where we only need to collect
data without the need for labels. Most of the other GAN-
based methods are supervised (e.g., SegAN [47]). GAN-
based anomaly detection methods, such as AnoGAN [45] and
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TABLE I
ANNOTATIONS INCLUDED IN THE DAD DATABASE.

Annotations
Goal-oriented
Operation

Left turn; Right turn; Intersection passing; Crosswalk
passing; Left lane change; Right lane change; U-turn

Stimulus-
driven
Operation

Stop for congestion; Avoid pedestrian near ego lane;
Avoid road motorcyclist; Avoid on-road bicyclist

Traffic
rule/manner
violation

Traffic rule violation

Attention Crossing vehicle; Crossing pedestrian; Red light;
Cut-in; Sign; On-road bicyclist; Parked vehicle;
Merging vehicle; Yellow light; Road work; Pedes-
trian near ego lane

GANomaly [52] are trained merely with normal data, and
tested with normal/abnormal data. They detect anomalies by
discriminating the samples that are different from the normal
ones, calling these samples as abnormal. Our approach is
fundamentally different from these formulations, where we
train the model with all the data using a predictive formulation.
It is also important to notice that all these studies using GAN-
based approaches for anomaly detection were designed for
other problems in other fields. With the exception of our
preliminary study [6], [54], this is the first time that conditional
GAN has been used for driving anomaly detection.

III. DRIVING ANOMALY DATASET (DAD)

This work uses the driving anomaly dataset (DAD). The
corpus includes 250 hours of naturalistic driving recordings
in an Asian city collected by the Honda Research Institute in
collaboration with a local company. One experienced driver
participated in the data collection process driving a Honda
Accord. This dataset includes the driver’s physiological data,
which is a key modality in this study. The driver’s electrocar-
diography (ECG) and breath rate (BR) signals are recorded
with a Zephyer BioHarness 3 chestband. The ECG signal is
recorded at 250 Hz, and the BR signal is recorded at 25 Hz.
The data collection also included the Electrodermal activity
(EDA) signals from the driver obtained with a Empatica E4
wristband collected at 4 Hz. To compensate for the differences
across sessions, we normalize the physiology data per session
by using the Z-normalization. The corpus also provides the
vehicle’s CAN-Bus data. We obtain six vehicle signals: speed,
steering speed, steering angle, throttle angle, brake pressure,
and yaw. These signals are recorded at 100 Hz. All the
vehicle’s CAN-Bus data and driver’s physiological data are
synchronized at 30 Hz.

The data collection also includes data from other sensors
not used in this study. The setup includes three FLIR Blackfly
S cameras facing the road [(i.e., right, center and left)]. The
data collection also included Tobii Pro 2 eye-tracking glasses.

One of the strengths of the DAD corpus is the rich set of an-
notations, which follows the approach used in the collection of
the Honda Research Institute driving dataset (HDD) [55], [56].
The annotations are grouped into four layers: goal-oriented op-
eration, stimuli-driven operation, traffic rule/manner violation,
and driver’s attention. Table I shows the specific annotations

TABLE II
SETS OF ANNOTATIONS CONSIDERED TO EVALUATE THE PROPOSED

ANOMALY DETECTION MODELS. THE CANDIDATE SET IS EXPECTED TO
HAVE DRIVING SCENARIOS THAT CAN BE CONSIDERED AS ANOMALOUS.

Sets Annotations
Candidate Avoid on-road pedestrian; Avoid pedestrian near ego-

lane; Avoid on-road bicyclist; Avoid bicyclist near
ego-lane; Avoid on-road motorcyclist; Avoid parked
vehicle; traffic rule violation

Maneuver Left turn; Right turn; Left lane branch; Right lane
branch; U-turn; Intersection passing

Normal No annotations during the segments

within each layer (see study of Ramanishka et al. [56] for
details on this annotation process). The annotations of the
driver’s driving maneuvers are manually added to the dataset.
The annotations and the sensing modalities are aligned, includ-
ing the drivers’ physiological signals and the vehicles’ CAN-
Bus data. For clearer visualization, all the data sequences,
annotations, and videos are combined and synchronized using
the open source software ELAN. Figure 1 shows the user
interface (UI) of ELAN, where the driving events correspond
to the stimulus-driven operation layer.

While the corpus includes 250 hours of data, not all the
recordings have been annotated. We only use 121 sessions,
which include about 130 hours of well-annotated urban driving
recordings. We split these recordings into train (100 sessions,
∼105 hours), development (11 sessions, ∼13 hours), and test
(10 sessions, ∼12 hours) sets. The DAD corpus does not
have annotations for anomaly scores. Instead, we evaluate
our model using the existing annotations overlapping with the
driving videos used to test our framework. For this purpose,
we group the driving events in the test set into three groups.
The first group is the candidate set, which consists of traffic
rule violations and hazard driving conditions such as avoid-
ing on-road pedestrians or parked vehicles. We expect that
these events will include segments with high driving anomaly
scores. The second group is the maneuver set, which includes
segments annotated with regular driving maneuvers such as
right turns, intersection passing, and U-turns. In general, we
expect moderate anomaly scores for these events. The third
group is the normal set, which includes segments without any
annotation. We expect low anomaly scores for these segments.
Table II lists the events associated with each group. Notice
that our approach is fully unsupervised, so the annotations are
exclusively used to evaluate our approach.

IV. PROPOSED CONDITIONAL GAN MODEL

The goal of this study is to implement an unsupervised
framework to detect driving anomalies. A driving anomaly
is something unexpected that deviates from normal patterns.
We are not just interested on detecting dangerous conditions.
Instead, this work focuses on unexpected driving events. An
ADAS should be able to leverage knowledge of unexpected
events, even if they do not represent dangerous scenarios.
Dangerous events are special cases, since, in daily life, some
dangerous driving scenarios are usually caused by unexpected
maneuvers or reactions from traffic participants (e.g., drivers
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Fig. 1. The software ELAN showing some of the annotations included in the DAD database. The annotations, physiological data, and CAN-Bus data are
synchronized with the road videos.

of other vehicles or the ego-vehicle, pedestrians, bicyclists and
motorcycle). Therefore, we expect that risky and hazardous
scenarios will be considered by our system as driving anoma-
lies. While the framework is general and can be implemented
with different features, we detect abnormal driving behaviors
using the vehicle CAN-Bus data and the driver’s physiological
data. The CAN-Bus data consists of the vehicle’s speed, yaw,
pedal angle, brake pressure, steer angle, and steering speed.
The physiological data includes HR, BR, and EDA signals.
Our motivation for using physiological signals is that HR, BR,
and EDA respond to mental and cognitive states, indicating
stress [57], and anxiety [58] levels. Previous studies on driver
behaviors have used physiological data [59], [60], showing
correlation with driving maneuvers [12]–[15]. These findings
show that physiological signals can be natural complements to
CAN-Bus signals, providing information even when a driver
fails to maneuver the car in the presence of unexpected events.

The premise of our method is that anomaly scenarios are
often associated with unexpected events. Therefore, we predict
the features from upcoming driving events, conditioned on the
previous values of the target features. Then, we quantify the
difference between the predicted driving data and the actual
data. We implement these ideas with conditional GAN, which
is one of the most powerful generative models.

Figure 2 shows the procedure of our implementation. The
generator creates plausible data sequences conditioned on the
previous values of the features. The discriminator recognizes
whether the input data is real or fake (i.e., created by the

Generator Discriminator

[Noise]

Condition
[Contextual Window]

[Predicted sequence]

[Real sequence]

Discriminator SR

SF

_
Manomaly

Fig. 2. Abstract illustration of our GAN-based model for driving anomaly
detection. Conditioned by a contextual window with previous frames, the
generator predicts the features in the near future. The discriminator takes the
predictions and the real data as inputs comparing the value of the discrim-
inator’s score. Unexpected events are then identified with this unsupervised
model.

generator). The scores from the discriminator are used to
determine our anomaly scores. This section describes our
proposed approach in detail. First, we present the intuition
of our formulation (Sec. IV-A). Then, we present a basic
implementation with fully connected layers (Sec. IV-B), where
we explain the main features of our formulation. Sections IV-C
and IV-D introduce the use of CNN to extract discriminative
features directly from data, and LSTM to capture temporal
information. Finally, Section IV-E presents our full model,
which combines the architectures of the LSTM and CNN
based models.
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A. Anomaly Detection with Conditional GAN

Multiple studies have revealed the impressive capability
of GANs to learn the distribution of target data, generating
similar samples from random noise. This learning procedure
is accomplished through an adversarial game between the
discriminator and generator, as shown in Equations 1 and 2.

max
D
V (D) =Ex∼pdata(x) [logD(x)]

+ Ez∼pz(z) [log(1−D(G(z)))]
(1)

min
D
V (D) = Ez∼pz(z) [log(1−D(G(z)))] (2)

The discriminator outputs a value D(x) which indicates
whether the input x, with probability distribution pdata, is
a real sample. The objective of D(x) is to maximize the
chance to identify the real sample as real, and the generated
fake samples as fake. The discriminative score is a sigmoid
output which ranges from 0 to 1, where 1 means absolutely
real and 0 means absolutely fake. The objective function of
the generator aims to create the prediction G(z) as close
as possible to real samples to fool the discriminator. The
variable z ∼ pz is a noise vector used as the input. Following
Equations 1 and 2, the GAN model should be trained to
converge to a good estimator of pdata. While the input of a
regular GAN is the random noise vector z, a conditional GAN
uses extra information (y) as additional input to constrain the
model to generate more targeted predictions. In our study, the
condition of the generative model is the data from previous
frames. Figure 2 describes the training process of the proposed
conditional GANs, showing that the input of G is random noise
and the data sequence from previous frames as condition. The
output is the generated data sequence of the upcoming analysis
window, G(z|y).

Figure 2 shows the inference process of the proposed model.
Given the analysis window, the generator creates a fake data
sequence. Then, D takes either the real data from the upcoming
analysis window or the fake data generated by G. For each of
these inputs, D creates a score (SR for real signal; SF for
fake/generated signal). The difference between the scores is
regarded as the anomaly score, manomaly (Eq. 3). This metric
represents the uncertainty of the upcoming driving events,
which we hypothesize to be an informative driving anomalous
metric. For a well-trained generative model, G generates real-
istic data from noise in order to confuse D. Therefore, when
the real data from the analysis window follows the distribution
of the regular data, the generated signal will be similar to the
real data and SF will be closer to SR. This case will produce
a small value for manomaly, indicating that the input of G
is normal and predictable. However, if the upcoming driving
data in the analysis window has a distribution that differs
from the expected behaviors, the data will be unpredictable,
creating a gap between SF and SG. This scenario will have
a larger manomaly value. A key advantage of our approach
is that it only requires unlabeled data, providing an appealing
unsupervised formulation.

manomaly = |SR − SF | (3)

Feature maps Feature maps

CNN Output

Convolutions
Convolutions

ConvolutionsConvolutions

Contextual Window

Random Noise

Input

Feature maps

. . .

(a) Generator of the CNN-based model

Feature maps Feature maps

Convolutions
Convolutions

ConvolutionsConvolutions

Contextual Window

Real or Predicted Data

Input

Feature maps

. . .

Flatten Fully connected

Output

(b) Discriminator of the CNN-based model

Fig. 3. Implementation of proposed CNN-based GAN model. The generator
and discriminator have similar architectures with four CNNs, extracting
discriminative representations directly from physiological and CAN-Bus data.

B. Conditional GAN with Fully Connected Layers

In Qiu et al. [6], we presented a preliminary implemen-
tation of our unsupervised driving anomaly detection, where
the discriminator and generator were implemented with fully
connected (FC) layers. The approach uses a fixed window with
previous values of physiological and CAN-Bus data to predict
future values of the data. The discriminator takes the statistical
features of either the real or generated signals as input. The
feature set includes four time domain features from each of the
CAN-Bus data and physiological data (i.e., maximum, mini-
mum, mean, and standard deviation). From each physiological
data, we additionally extracted five frequency domain features,
calculating the energy in the frequency domain covering the
following five bands: [0-0.04 Hz], [0.04-0.15 Hz], [0.15-0.5
Hz], [0.5-4 Hz], and [4-20 Hz]. The generator is implemented
with five layers, each of them implemented with 180 neurons.
Similarly, the discriminator is implemented with five layers,
each of them with 51 neurons.

C. CNN-based Conditional GAN

The first improvement for our model is replacing the feature
extraction module. Instead of using predefined functionals over
the previous frames, we learn directly discriminative patterns
from the data using CNNs. Models designed based on CNNs
have been successful for end-to-end classification tasks [61].
The study of Borovykh et al. [7] showed that CNNs are able
to extract temporal features from time series data that were
discriminative to predict upcoming data values. Inspired by
these studies, we implement our conditional GAN models with
CNNs to learn more discriminative features directly from data.

Figure 3 shows the implementation of our CNN-based
GAN model. The generator and the discriminator consist of
four convolutional layers, implemented with 18, 18, 9, and 1
channels, respectively. The kernel size for each layer is 9, 3,
3, and 3, respectively. We add a fully connected layer after
the convolutional layers. During the training process, D and
G are trained for 20 epochs and the Adam learning rate is
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Random Noise
Contextual Window

LSTM Cell LSTM Cell…

LSTM Cell LSTM Cell…

Output (Fake Data)
Fully connected

(a) LSTM-based Generator

Real Data or Predicted Data

LSTM Cell LSTM Cell…

LSTM Cell LSTM Cell…

Output 

Contextual Window

LSTM output

Flatten

Fully connected

Fully connected

(b) LSTM-based Discriminator

Fig. 4. Implementation of the LSTM-based GAN model. The model relies
on longer contextual window to leverage short and longer dependencies in
the data to detect driving anomalies.

set to 0.001. From our previous work [15], we conclude that
features extracted from CAN-Bus and driver’s physiological
data with an analysis window of 12 seconds can be used
to classify driving maneuvers. We aim to reduce the size of
the window to reduce the latency in the model. However,
the analysis window cannot be reduced too much to capture
changes on physiological signal. As a compromise, we set
the analysis window size to six seconds for our CNN-based
GAN model. The model takes as input the previous six-
second data and random noise, and generates predictions for
the upcoming six-second data describing the upcoming CAN-
Bus and physiological signals.

D. LSTM-based Conditional GAN

A limitation of the CNN-based GAN model is that the
contextual information is limited to fixed size windows (i.e.,
six seconds). We hypothesize that modeling longer temporal
relationships in the data can lead to better results. We explore
this direction by using RNNs, which can extract temporal
relationships in the data. We implement the RNNs with
long short-term memory (LSTM) cells, leveraging the longer
history information from previous time series data. Sequence
to sequence tasks can be effectively implemented with RNN-
based model, as demonstrated in language translation [62].
Additionally, models based on conditional RNNs have been
successfully applied on tasks that mimic a particular writer’s
handwriting style [63]. Borovykh et al. [7] demonstrated the
reliable capability of LSTM to make short-term prediction on
trends in the stock market. Motivated by these studies, we
design our approach with LSTM cells, expecting to improve
the temporal modeling of our framework while avoiding rigid
contextual feature vectors.

Figure 4 shows the structure of our LSTM-based GAN
model. The model consists of two layers of LSTM cells,
each of them implemented with 27 nodes. The generator
of the LSTM-based GAN model takes a longer contextual
window than the window analysis in the CNN-based GAN
model, relying on the last 60 seconds of data. The generator
predicts the next six seconds of physiological and CAN-Bus
signals. The extended contextual window allows the LSTM
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(a) Generator of the CNN+LSTM-based model
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(b) Discriminator of the CNN+LSTM-based model

Fig. 5. Implementation of the proposed CNN+LSTM-based GAN model.
The unsupervised approach combines the strengths in using CNNs and
LSTMs, extracting discriminative representations directly from the data while
leveraging temporal information.

cells to more effectively leverage short and long temporal
relationships to make the predictions. The structure of the
discriminator is similar to the generator, as shown in Figure
4(b). The discriminator takes six-second data, which can be
real signals or data predicted by the generator, conditioned on
the contextual window with the previous 60-second sequence.
We extract the last output of the LSTM cells, flattening the
feature representation as a vector. We add a fully connected
layer creating a one-dimensional output, which predicts if the
data is real or predicted by the generator. We use this score
to estimate the anomaly score in Equation 3.

E. CNN+LSTM-Based Approach using Conditional GAN

The CNN-based and LSTM-based GAN models offer com-
plementary benefits for our task. Therefore, our final model
combines their structures leveraging better feature represen-
tations and temporal modeling. Figure 5 shows the imple-
mentation of the proposed CNN+LSTM-based conditional
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GAN model, where we use the same structures presented
for the CNN-based GAN model (Sec. IV-C) and the LSTM-
based GAN model (Sec. IV-D) as blocks to build this model.
First, the CNN block of the generator extracts discriminative
information from the random noise and contextual window
with the previous sixty-second used to condition the models.
We implement the CNN block by splitting the contextual
window into 10 six-second segments, without overlap. Then,
we concatenate the CNN output of each of the six-second
segments, creating a conditional embedding, which is used as
the input of the LSTM block. The output of the LSTM is
the prediction of the physiological and CAN-Bus data for the
next 6-second window. For the discriminator, we implement
the model using the same structure used for the generator. The
only difference is the output layer, which is a one-dimensional
score to predict whether the data is real or fake.

During the training process, we first import the pre-trained
parameters of the CNN-based and LSTM-based GAN models.
Then, we train the LSTM parameters (including both the
generator and the discriminator) for 10 epochs while freezing
the CNN parameters. Then, we jointly train the entire model
together for another 10 epochs to get the final model.

V. EXPERIMENTAL RESULTS

This section describes the experimental results obtained
with our proposed conditional GAN models. Figure 6(a)
shows the losses of the generator and discriminator in the
training set. Training a GAN is not always easy, since it
is a minmax optimization process. It is a problem if the
loss of the discriminator drops fast compared to the gen-
erator’s loss. A strong discriminator means that it is easy
to distinguish between fake and real samples. Without an
appropriate feedback from the discriminator, it is hard to
train the generator. When properly trained, the overall loss
of the GAN is often constantly fluctuating, as both losses go
down. This is the exact pattern observed in Figure 6(a). For a
properly trained GAN, the discriminator should have problems
recognizing between real and fake samples. The classification
performance should be 50% if the number of real or generated
samples are equal. Figure 6(b) shows the probability of the
output of the discriminator for real and generated samples on
the development set (1 is real, 0 is fake). The performance
oscillates around 50% for both type of samples, as expected.
These figures shows that the GAN is properly trained.

We evaluate the performance by comparing the scores
obtained from videos in the candidate, maneuver, and nor-
mal sets. We also evaluate the performance with perceptual
evaluations.

A. Distribution of Anomaly Scores

As stated in Section III, driving events in the candidate set
are more hazardous and rarely seen than the events in the
normal set. Therefore, the anomaly scores (manomaly) of the
driving events in the candidate set are expected to be larger
than the corresponding scores on the normal set. The analysis
in this study compares the distribution of anomaly scores of
the driving events from these two sets. For each segment, we
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Fig. 6. Loss of the GAN network during training. The training losses of D
and G are often constantly fluctuating, as both losses go down. The outputs
of the discriminator for the fake and real signals oscillate around 50%.

Fig. 7. Histogram of the predictions of the FC-based models for segments
in the test set from the normal and candidate sets. The vertical dashed lines
indicate the medians of the anomaly scores for the sets.

provide the previous data as condition using six seconds for the
FC-based and CNN-based models, and 60 seconds for models
implemented with LSTMs. All models generate predictions for
the upcoming six seconds.

Figure 7 shows the histograms of the anomaly scores for
normal and candidate sets for the FC-based GAN model. The
figure shows that the segments from the candidate set have
higher anomaly scores than the segments from the normal
set. The figure shows clear modes in the histograms showing
good separation. Similar results are observed when using the
CNN-based GAN model (Fig. 8(c)), LSTM-based GAN model
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(a) CNN – Physiological Signal (b) CNN – CAN-Bus Signal (c) CNN – All combined

(d) LSTM – Physiological Signal (e) LSTM – CAN-Bus Signal (f) LSTM – All combined

(g) CNN+LSTM – Physiological Signal (h) CNN+LSTM – CAN-Bus Signal (i) CNN+LSTM – All combined

Fig. 8. Histogram of the predictions of the CNN-based, LSTM-based and CNN+LSTM-based models for segments in the test set from the normal and
candidate sets obtained from the DAD corpus. The vertical dashed lines indicate the medians of the anomaly scores for the sets. The results are presented
when the models are trained with (1) physiological data, (2) CAN-Bus data, (3), and physiological and CAN-Bus data.

(Fig. 8(f)), and CNN+LSTM-based GAN model (Fig. 8(i)). In
particular, the results for the CNN+LSTM-based GAN model
show clear separations, showing the strengths in combining the
CNN-based and LSTM-based GAN models, leading to better
discriminative performance. We will directly compare all these
methods in Section V-B.

As described in Section IV, our models are trained with
physiological and CAN-Bus signals. We evaluate the contri-
butions of each of these modalities by retraining the models
with either physiological or CAN-Bus features. Figure 8 shows
the histograms for these models. When we only use either
physiological or CAN-Bus signals, the differences in the
distribution of manomaly between the normal and candidate
sets is clearly reduced, indicating that both modalities provide
complementary information. Figures 8(b) and 8(d) are two
examples where the overlaps between these distributions are
quite clear. Adding both modalities leads to more separation
between the distributions, especially for the LSTM-based (Fig.
8(f)) and the CNN+LSTM-based (Fig. 8(i)) GAN models.
We measure the medians of the distributions to quantify
the differences, which are included as vertical dashed lines

in the distributions in Figure 8. When the CNN+LSTM-
based GAN model is trained with only the physiological
signals, the difference between the distributions’ medians is
∆Phy = 0.419 − 0.328 = 0.091 (Fig. 8(g)). Similarly,
when using only CAN-Bus data, the difference between the
medians is ∆CAN = 0.805 − 0.41 = 0.395 (Fig. 8(h)).
In contrast, the difference between the medians increases to
∆Both = 0.815− 0.298 = 0.517 when using both modalities
(Fig. 8(i)).

Figure 9 shows some of the abnormal driving scenarios
which are discriminated with higher anomaly scores. Most of
the anomalies are caused by sudden appearance of pedestrians
or improper maneuvers from other vehicles.

B. Direct Comparison of Proposed Models Using DET Curve

We directly compare the models by formulating the eval-
uation as a binary classification problem (i.e., normal versus
candidate sets), where we estimate the detection error tradeoff
(DET) curves by changing the threshold on the anomaly score.
Samples with a score higher than the threshold are classified as
abnormal (i.e., part of the candidate set), and those with a score



10

(a) Example 1 (b) Example 2 (c) Example 3

Fig. 9. Example of frames from segments with high anomaly scores by the unsupervised CNN+LSTM-based model. (a) A motorcycle suddenly cuts in front
of the ego-vehicle, (b) the ego-vehicle is trying to avoid a vehicle parked on the roadside, while a bicyclist is coming in the opposite direction, and (c) a
pedestrian suddenly crosses the road, and the driver has to press the brakes to avoid hitting him.
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Fig. 10. The DET curves for the models by formulating the problem as
a binary classification task (candidate versus normal sets). The DET curve
shows the false positive rate as a function of the false negative rate. The
diagonal dashed line indicates the equal error rate (EER) when both error
rates are the same. Generally, the LSTM-based model has better discriminative
performance than the CNN-based model and the FC-based model. The best
performance is achieved with the CNN+LSTM-based GAN model.

below the threshold are classified as normal. The threshold
is not fixed. Instead, we increase its value creating different
operation points. The DET curves show the false negative
rate (FNR) in the y-axis and the false positive rate (FPR) in
the x-axis as the threshold that determines the two classes is
moved. The performance of a binary classifier is better when
the DET curve lies closer to the axes. The diagonal line in the
DET curves indicates equal error rate (EER), where the FNR
and FPR have the same value. In addition to the DET curves,
we also report the EER and the area under the curve (AUC)
to quantify the results. The AUC is estimated over the DET
curves so lower values indicate better performance.

Figures 10 compares the DET curves of the FC-based,
CNN-based, LSTM-based, and CNN+LSTM based GAN
models. Table III shows the corresponding EER and AUC
values. We observe gains in performance over the FC based
model by extracting the features directly from the data using
CNNs (CNN-based approach), and by modeling temporal
information (LSTM-based approach). The performance of the
LSTM-based model outperforms the performance of the CNN-
based model. This observation is clearly observed in Table
III. The proposed CNN+LSTM based GAN model achieves

TABLE III
AUC AND EER RATES FOR THE BASELINE MODELS AND THE PROPOSED

CNN+LSTM-BASED MODEL WHEN THEY ARE TRAINED WITH
PHYSIOLOGICAL AND CAN-BUS SIGNALS.

Approach Physiol. CAN-Bus Both
AUC EER AUC EER AUC EER

CNN-based model 0.329 37.6% 0.330 34.1% 0.235 29.1%
LSTM-based model 0.492 52.5% 0.314 32.0% 0.167 20.5%
CNN+LSTM-based model 0.237 33.4% 0.176 20.8% 0.106 13.4%

the best performance, leveraging the strengths of using CNNs
and LSTMs. The CNN+LSTM based GAN model achieves
the lowest AUC and EER rates.

The DET figures can also be used to compare the results
when the models are only trained with either physiological,
or CAN-Bus features. Figure 11 shows the DET curves for
the CNN-based, LSTM-based, and CNN+LSTM based GAN
models trained with partial modalities. When we use only
physiological data to train the models, we consistently observe
lower performance than models only trained with CAN-Bus
features. The differences are clearly seen in Table III for the
AUC and EER rates. However, when we combine physiologi-
cal and CAN-Bus data, the discriminative performance of the
models is improved. These results reveal the significant role
of the drivers’ physiological data in the performance of our
models. This result is also confirmed by observations on the
videos with high anomaly scores detected by all the GAN
models, when trained with both feature sets. Figure 13 shows
a case to illustrate this point, where the driver is slowing
down as the vehicle approaches a T-road. All of the sudden,
a motorcycle rider rushes into the lane in front of the vehicle.
While the driver does not react with any driving maneuver, the
driver’s breath rate immediately drops, followed by increases
in heart rate and skin conductivity. These changes result in a
high anomaly score for this driving segment.

C. Comparison with Other Baselines

We evaluate our approach with four representative baselines
inspired by approaches used by previous driving anomaly
detection methods. The first baseline corresponds to the fixed-
threshold method, which is inspired by the work of Li et al.
[34]. They detected abnormal driving behaviors by setting
thresholds on the vehicle’s speed (V S), yaw angle (Y A),
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(a) CNN-based GAN model
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(b) LSTM-based GAN model
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(c) CNN+LSTM-based GAN model

Fig. 11. The DET curves when the models are trained with (1) physiological
data, (2) CAN-Bus data, (3), and physiological and CAN-Bus data. The figure
shows that both modalities are important for driving anomaly detection.

acceleration (AC) and steering speed (SS) data. They defined
abnormal speeding and dangerous steering behavior events as:

Abnormal speeding = |AC| > 0.8m/s2 & SS < 0.1rad/s

Steering =V S > 30km/h &SS > 0.4rad/s &Y A > 0.7rad

An abnormal driving behavior is defined when either of
these two conditions are satisfied. We need to vary the
thresholds to compare the performance in DET curves. Our
implementation starts with the same threshold as Li et al. [34]
for each variable. We consistently move the thresholds across
variables by adding or subtracting a fix percentage of their
respective range. (i.e., t̂i = ti + αri, where ti is the original
threshold for variable i, ri is the range of variable i, and α is an

adjustable parameter to find different tradeoffs between FNR
and FPR). The second baseline is the PCA-threshold method,
which is inspired on the framework proposed by Sadjadi and
Hansen [64] for speech activity detection (SAD). The idea
of this unsupervised SAD approach is to combine multiple
indicators into a single metric over which we can apply a
threshold. This metric corresponds to the first principal compo-
nent obtained using principal component analysis (PCA). PCA
determines the eigenvectors of the covariance matrix of the
multidimensional data, which provides the principal directions
where the data is spread. The high dimensional feature vectors
are linearly mapped into a low dimensional feature space
represented by the eigenvector with the highest eigenvalues.
We follow the approach presented by Sadjadi and Hansen
[64] that maps the entire multidimensional data into a single
principal dimension. For each 12-second window, we extract
the 51-dimensional feature vector from the CAN-Bus and
physiological signals discussed in Section IV-B. The vector
is mapped into a 1 dimensional metric using this PCA-based
approach. We estimate the DET curve by moving the threshold
on the resulting 1-dimensional signal, where the segments
with value above the threshold are considered abnormal. We
estimate the FPR and FNR rates for different operating points.
The third baseline corresponds to the GMM-threshold method,
which aims to represent the distribution of the data, defining
outliers as anomalous events. The Gaussian mixture model
(GMM) is a common algorithm to fit the distribution of the
multidimensional data. A segment can be considered as an
outlier if the estimated distribution does not represent well
a segment in the test set. Similar to the second baseline, we
extracted the 51-dimensional feature vector for each 12-second
window, estimating the parameters of a Gaussian mixture
model (GMM). The number of clusters is set to eight by
minimizing the value of the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC). We use the same
partitions introduced in Section III to train and test the GMM.
We calculate the posterior probability of the feature vectors x
from the test set according to p(x) =

∑8
i=1 ωiN (x|µi, σi)),

where ωi (weights), µi (mean vector), and Σi (covariance
matrix) are the parameters of the GMM. Segments with
posterior probability lower than a threshold are considered
as outliers (i.e., anomalous events). The forth baseline is the
BeatGAN framework, introduced in Section II-B. We build
the BeatGAN model following the description in Zhou et al.
[46], setting up the generator in an encoder-decoder structure,
using a multilayer perceptron (MLP) structure. The numbers
of nodes per layer for the generator are 1620-256-128-32-
10-10-32-128-256-1620. The numbers of nodes per layer for
the discriminator are 1620-256-128-32-1. We calculate the
reconstruction error between the real and reconstructed signals
as the anomaly score.

Figure 12 shows the DET curves comparing the baseline
methods with our CNN+LSTM based model. Table IV shows
the corresponding EER and AUC results. The figure shows
that our proposed model leads to clear improvements over
the baseline models. The results show that the BeatGAN
framework is the best baseline model. However, our proposed
approach clearly outperforms this method.
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TABLE IV
AUC AND EER RATES FOR GAN-BASED MODELS WHEN THEY ARE

EITHER TRAINED WITH PHYSIOLOGICAL SIGNALS, CAN-BUS SIGNALS OR
PHYSIOLOGICAL AND CAN-BUS SIGNALS.

Approach Physiological & CAN-Bus
AUC EER

Fixed threshold 0.433 45.1%
GMM threshold 0.341 38.6%
PCA-threshold 0.312 39.4%
BeatGAN threshold 0.252 31.1%
CNN+LSTM-based model 0.106 13.4%
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Fig. 12. The DET curves comparing the proposed models with the four
baseline models. The figure shows that the proposed model outperforms the
baseline methods.

D. Overlap Between Selected Segments and DAD Annotations

This section discusses the results by evaluating the annota-
tions in the DAD corpus overlapping with the driving segments
with the highest anomaly scores in the test set. Successful
anomaly detection models should identify video segments
belonging to the candidate set. If this is not the case, we expect
to observe driving maneuvers which may also correlate with
anomaly scenarios. For each model, we identify the top 100
segments with the highest anomaly scores. Then, we count
the number of annotations overlapping with these segments,
grouping the annotations into normal, candidate or maneuver
(Table II). As a baseline of this evaluation, we randomly select
100 six-second videos from the test set. We compare the
FC-based, CNN-based, LSTM-based, and CNN+LSTM based
GAN models implemented with physiological and CAN-Bus
data.

Table V shows the results. Most of the videos in the
random set are from the normal set (i.e., 54%). Only 4%
of the videos are included in the candidate set. In contrast,
the proportion of normal segments identified by the proposed
models significantly drops (11%-31%). Most of the selected
segments are either from the candidate set, or are associated
with driving maneuvers. The table shows that the number
of segments from the candidate set increases up to 21%.
The LSTM-based model also identifies more videos from
the candidate and maneuver sets than the CNN-based model.
The discriminative performance of the CNN+LSTM-based
model is better than the LSTM-based and CNN-based models,
confirming the observation made from the histograms (Fig.

TABLE V
OVERLAP BETWEEN THE TOP 100 SEGMENTS SELECTED BY THE

PROPOSED MODELS AND THE DAD ANNOTATIONS. THE TABLE ALSO
INCLUDES 100 SEGMENTS RANDOMLY SELECTED. WE CONSIDER THE

NORMAL, CANDIDATE, AND MANEUVER SETS (TABLE II).

Model Normal Candidate Maneuver
Random 54 4 42
FC-based model 31 9 60
CNN-based model 27 10 63
LSTM-based model 19 16 65
CNN+LSTM-based model 11 21 68

8) and DET curves (Fig. 10). These results indicate that
our unsupervised approach is effective in identifying driving
segments of interest.

E. Perceptual Evaluation

In previous sections, we evaluated the models with the
annotations of the DAD corpus. However, these annotations do
not directly indicate the anomalous level of the segment. This
section evaluates the discriminative results using perceptual
evaluations, directly assessing the level of anomaly in the
selected segments. We select 100 driving segments with the
highest anomaly scores for the CNN-based, LSTM-based, and
CNN+LSTM based GAN models. We also randomly select
100 videos from the test set. To provide enough context, the
duration of each segment is 12 seconds, containing the six-
second segment used as condition and the six-second segment
of the data predicted by the models. We only have 285
unique segments to evaluate due to the overlap of the driving
segments selected by the different models. Figure 13 shows the
graphical user interface (GUI) for the evaluation. Nine raters
participated in the evaluation process, where each of them
assessed 95 different videos. The evaluators are university
students, where seven are male and two are female. Their
average age at the time of the evaluation was 24.7 years
old. As a result, each video is evaluated three times by three
different raters. After watching each video, the raters are asked
to answer two questions: (1) how risky is the driving condition
in the video? (safe; slightly risky; risky; very risky), and (2)
how often do you see similar driving condition on the road?
(never; almost never; sometimes; quite often; regularly). These
two questions aim to assess the degree of risk and familiarity
of the driving conditions shown in the videos. We estimate the
inter-rater reliability among the nine raters who participated in
the perceptual evaluation. The annotators were grouped into
three groups, so that each of the driving segments is evaluated
by three raters. Since the two questions in the evaluations are
Likert-like scales, we use the Krippendroff’s alpha coefficient
to assess the inter-evaluator agreement. Table VI shows the
results. We observe a substantial agreement for question 1
(i.e., risky level) and moderate agreement for question 2 (i.e.,
familiarity level). The agreement levels are consistent across
the three groups.

Figure 14 shows the evaluation results. Each model in-
dependently selects 100 segments with the highest scores.
Since the methods are different, the selected videos differ
across methods, where some of the videos overlap across
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TABLE VI
KRIPPENDROFF’S ALPHA COEFFICIENTS AMONG DIFFERENT GROUPS OF

RATERS. EACH GROUP HAS THREE RATERS WHO ASSESSED THE SAME
VIDEOS. THE QUESTIONS CORRESPOND TO THE QUESTIONNAIRE

PRESENTED IN FIGURE 13.

Group 1 Group 2 Group 3 Over All
Question 1 0.745 0.711 0.706 0.736
Question 2 0.512 0.532 0.653 0.573

Fig. 13. Graphical user interface for the perceptual evaluation of driving
anomaly. After watching each video, the raters are asked to assess the level
of risk and familiarity in the segment.

methods. The differences in the selected sets are reflected in
the differences observed in Figure 14. A video is annotated
by three raters. Therefore, for each model, we have 300
annotations assigned by the raters. Then, we determine the
proportion of the annotations assigned to each of the options
listed in the GUI (Figure 13), providing the results in Figure
14. For example, the number of annotations assigned to each of
the options for the question “How risky is the driving condition
in the video?” for the CNN+LSTM model are: very risky 16
(5.3%), risky 83 (27.7%), slightly risky 92 (30.7%), and safe
109 (36.3%). Figure 14 shows that the videos selected by
the CNN+LSTM based GAN model contain more segments
annotated with higher risk and lower familiarity. The figure
shows that 33% of these videos are considered as risky
or very risky, and 29.3% of them are considered to occur
never or almost never. The corresponding percentages for
the CNN-based and LSTM-based models are lower. These
comparisons illustrate that the CNN+LSTM-based model can
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(a) How risky is the driving condition in the video?
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(b) How often do you see similar driving condition on the roads?

Fig. 14. Results of the perceptual evaluation to assess the degree of risk and
familiarity of the selected videos. The figures show the results for the top 100
segments with the highest anomaly scores selected by three different models.
The figure also shows the results for 100 segments randomly selected.

identify more hazardous and more abnormal driving conditions
than the CNN-based model and the LSTM-based model.
These numbers are significant, since 75% of the randomly
selected segments are considered safe, and 69.3% of them are
considered to occur regularly, showing that most of the driving
conditions in the DAD corpus are regular scenarios without
driving anomalies. Our best unsupervised conditional GAN
model is able to identify segments which are often perceived
with a level of risk (64.7%), which do not occur so often on
the road. The figure also shows the superior performance of
the LSTM-based model compared to the CNN-based models,
validating the results observed in previous sections with the
DAD annotations.

VI. CONCLUSIONS

This study proposed an unsupervised driving anomaly de-
tection system based on a conditional GAN. The proposed
approach makes predictions of the driver’s physiological data
and the vehicle CAN-Bus data, conditioning the model on
previous observed signals. The predictions are contrasted with
actual data, creating an anomaly score that increases its value
when unexpected data is observed. The approach obtains
discriminative features from the physiological and CAN-Bus
signals directly from the data using CNNs. The model also
leverages temporal information by using LSTM networks.
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This study shows that the driving events with more hazardous
driving conditions usually receive higher anomaly scores by
the proposed model. This result is validated with objective
evaluations, relying on the annotations of the DAD corpus,
and perceptual evaluations conducted on the videos selected
by our models with the highest anomaly scores. Our proposed
approach is able to effectively detect anomaly driving condi-
tions that deviate from the predictions of the upcoming driving
behaviors, creating an appealing unsupervised solution that
does not depend on either predefined thresholds or supervised
rules.

One limitation of this study is that our detection algorithm
depends on actions or reactions from the driver. Anomalies can
be detected only when the driver notices events and reacts to
them. Therefore, if the driver is unaware of a driving anomaly,
a model trained with physiological and CAN-Bus signals will
not provide discriminative information to detect it. A potential
solution is adding other features that can objectively capture
the driver’s environment regardless of her/his awareness (e.g.,
pedestrian detection, car detection). We plan to augment
our proposed model with further information, such as the
results from vision-based object detection systems. Another
limitation of our approach is the use of wearable devices
to capture physiological signals. Future research directions
include developing remote approaches to measure the driver’s
physiological signals [65], [66]. While today this is a challeng-
ing problem, there are technological advances to create non-
contact measurement systems to monitor physiological data
that suggest that this could be reasonable in the future. Sensors
can be installed on the driver’s seat to record the driver’s
BR and HR signals. Physiological signals can be alternatively
obtained from wearable sensors that the drivers may be already
using (e.g., smartwatch). Development in this area will make
our approach more suitable for deployment in real-driving
conditions.
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