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Abstract— Driving anomaly detection is an important prob-

lem in advanced driver assistance systems (ADAS). The ability

to immediately detect potentially hazardous scenarios will

prevent accidents by allowing enough time to react. Toward

this goal, our previous work proposed an unsupervised driving

anomaly detection system using conditional generative ad-
versarial network (GAN), which was built with physiological

data and features extracted from the controller area network-

Bus (CAN-Bus). The approach generates predictions for the

upcoming driving recordings, constrained by the previously

observed signals. These predictions were contrasted with actual

physiological and CAN-Bus signals by subtracting the corre-

sponding activation outputs from the discriminator. Instead,

this study proposes to use a triplet-loss function to contrast the

predicted and actual signals. The triplet-loss function creates

an unsupervised framework that rewards predictions closer to

the actual signals, and penalizes predictions deviating from the

expected signals. This approach maximizes the discriminative

power of feature embeddings to detect anomalies, leading to

measurable improvements over the results observed by our

previous approach. The study is implemented and evaluated

with recordings from the driving anomaly dataset (DAD), which

includes 250 hours of naturalistic data manually annotated with

driving events. Objective and subjective metrics validate the

benefits of using the proposed triplet-loss function for driving

anomaly detection.

I. INTRODUCTION
In recent years, the automobile industry has introduced

numerous safety features, improving the driving experience.
The advanced driver-assistance systems (ADAS) use various
sensors installed inside and outside of a car to collect
environmental data. The sensors are used to identify potential
hazard scenarios as soon as possible, allocating enough
time to react. Systems such as lane keeping warning sys-

tem (LKA) and collision avoidance or pre-collision system

(CAS) can identify particular maneuver’s errors and immi-
nent objects in front of the vehicle. There is still a need
for driving anomaly detection systems to identify potential
hazard scenarios. Due to the challenge of enumerating all
possible kinds of abnormal driving conditions, unsupervised
approaches without predefined rules or event-driven detection
are appealing. They offer the flexibility to work even for
cases that are not explicitly accounted while training the
models.

In our previous work [1], we proposed an unsupervised
driving anomaly detection system using conditional gener-
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ative adversarial network (GAN). The approach was built
with the driver’s physiological information and the vehicle’s
controller area network-Bus (CAN-Bus) information. The
key idea was to predict future features, contrasting their
values with real observations. Deviations from expected
values are associated with anomalous events. The generator
made prediction on the physiological and CAN-Bus data for
the upcoming six seconds, conditioned on the observed data
from the previous six seconds. The goal of the discriminator
was to decide whether the input was real or fake. This study
defined the anomaly scores as the difference of the activation
output of the discriminator for (1) the six second segment
of real features, and (2) the predictions of the generator for
that segment. While the approach was successfully evaluated,
we noticed an important limitation in the definition of the
anomaly score. The discriminator was trained to identify
whether the input was real or fake, so two very different
samples that are classified as real can have similar scores,
leading to small anomaly values. This approach cannot
fully contrast the differences between the predicted and real
samples.

This study proposes a novel anomaly detection metric
based on the triplet-loss function [2] to better quantify the
differences between the predicted and real features. This new
metric addresses in a principled way the key limitation of
our proposed framework [1], leading to better identification
of abnormal driving events. Based on our conditional GAN
model, we extract the intermediate layer embeddings of
the discriminator as the input of the proposed triplet-loss
neural network. This network decreases the distance between
the embeddings from the predicted and actual features, and
increases the distance between the embedding of real and un-
paired predictions (i.e., predictions from a different segment).
This network is trained without any driving anomaly label,
so the entire framework is still an unsupervised approach.
The triplet-loss function increases the discrimination of the
approach to contrast the differences between predicted and
real features, leading to better predictions of driving anomaly
events.

We evaluate the proposed metric using the triplet-loss
function, relying on recordings from the driving anomaly

dataset (DAD). The experimental results reveal that record-
ings annotated with events that are likely to be anomalous,
such as avoid on-road pedestrians and traffic rule violations,
have higher anomaly scores than recordings without any
event. The results are validated with perceptual evaluations,
where human annotators are asked to assess the risk and
familiarity of the videos detected with high anomaly scores.



The results of the perceptual evaluation indicate that the
driving segments with higher anomaly scores using our
triplet-loss function are more risky and less regularly seen
on the road than driving segments selected by our previous
driving anomaly detection metric.

II. RELATED WORK

A. Driving Analysis Using Driver’s Information

Various studies have used information from the driver
to design in-vehicle safety systems [3]. While important
information can be obtained from frontal cameras facing
the driver [4]–[10], other modalities are also useful. Phys-
iological signals have been useful in the study of driving
maneuver [11], [12]. Signals such as the electrocardiography

(ECG), breath rate (BR) and electrodermal activity (EDA)
can indicate the driver’s physical and mental state [13].
Researchers have demonstrated that driver’s physiological
signals are closely related to driving behaviors [11], [14],
[15]. Another important modality is the vehicle signals from
the CAN-Bus such as acceleration, brake, and steering wheel.
CAN-Bus data can be useful to recognize and analyze
maneuvers [16]–[20], and driver distractions [21]–[23]. This
study takes a driver-centric approach using physiological and
CAN-Bus signals

B. Anomaly Detection Using GAN

Goodfellow et al. [24] proposed the generative adversarial

network (GAN), where a generator creates samples as close
as possible to a target distribution. This goal is achieved with
an adversarial training approach where a discriminator has to
determine whether the generated sample is real or fake. One
important use of GAN is in anomaly detection tasks, which
is also referred to as out-of-domain or out-of-distribution
detection. Li et al. [25] used the generator and discriminator
to detect anomaly scores in the context of cyber-attacks.
The real data is the input of the generator which creates
a fake data. The real data is also used as the input of the
discriminator. The activation output of this discriminator is
combined with the residual between the real and fake data
to detect anomalies. This is a supervised method, where
a threshold is used to determine if a sample is normal or
abnormal. Lee et al. [26] used the generator to create fake
samples representing out-of-domain samples that are close to
the manifolds of in-domain samples. A classifier is trained to
discriminate between both real and fake samples. In contrast
to these approaches, our framework is unsupervised.

C. Triplet-Loss Function

Triplet-loss model was first used for face recognition
tasks [2]. Triplet-loss function was introduced as a new
loss function in deep learning to create embeddings that
minimize the distance of similar samples, while maximizing
the distance of samples with different class. The triplet-loss
function relies on an anchor (a), positive (p), and negative

(n) sample. A positive sample belongs to the same class
as the anchor, while a negative sample belongs to different
class. During training, the goal is to minimize the distance

between the anchor and the positive samples, and maximizes
the distance between the anchor and negative samples. This
goal is achieved by minimizing the triplet-loss function

LTriplet = max(d(a, p) +margin � d(a, n), 0) (1)

where d(·, ·) is a distance metric between two samples, and
the margin is a positive number. By minimizing this loss
function, the distance between a and p (i.e., d(a, p)) is forced
to zero while the distance between a and n (i.e., d(a, n)) is
pushed to be larger than d(a, p) + margin . Schroff et al.
[2] train the FaceNet model using the triplet-loss function,
enforcing that the distance between two faces from one
person in the feature space has to be smaller than the distance
between two faces from different people. The triplet-loss
function has been successfully used in other domains [27]–
[29]. Zhang et al. [27] applied the triplet-loss function to
speaker verification tasks. Their study used a deep convo-

lutional neural networks (CNNs) model with a triplet-loss
function to identify short utterances from different speakers.
Huang et al. [28] built their categorical emotional speech
recognition systems by using a triplet-loss model. They used
the triplet-loss function to map the input samples to an
embedding space, maximizing the distance among emotional
categories. Harvill et al. [29] proposed the use of triplet-loss
function to retrieve speech samples with emotional content
similar to the emotional content of an anchor sample. They
demonstrated the retrieval performance of their triplet-loss
model was close to human performance for that task.

III. DRIVING ANOMALY DETECTION WITH
CONDITIONAL GAN

This study builds upon the unsupervised driving anomaly
detection system proposed by Qiu et al. [1]. Figure 1 shows
the system, which uses a conditional GAN trained with the
driver’s physiological signals and vehicle’s CAN-Bus signals.
The input of the generator (G) is the multimodal signals from
the previous six seconds and random noise. The objective
of G is to predict the signals for the next six seconds. As
part of the adversarial game, the discriminator (D) is trained
to recognize real signals from fake signals generated by G.
The architecture for G and D are implemented with fully-
connected neural networks.

Qiu et al. [1] defined the driver anomaly score of a
segment by using the activation output of the discriminator.
As a softmax problem, this activation output is a number
between 0 and 1, where 0 means absolutely fake and 1 means
absolutely real. D takes the real signals as input to obtain the
activation output SR, and the fake signals generated by G as
input to obtain the activation output SF . The anomaly score
manomaly was defined as:

manomaly = |SF � SR| . (2)

A higher value for manomaly implies that the actual
data in future frames is hard to forecast, deviating from
expected values. In this case, Qiu et al. [1] conclude that
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Fig. 1: Conditional GAN framework for driving anomaly
detection. The generator creates predictions conditioned on
data from previous segments. The discriminator compares
the activation outputs of the real and predicted data creating
an anomaly score (manomaly , Eq. 2).

the data is more abnormal and less common. Lower values
for manomaly indicate that the future is predictable (i.e., lack
of anomaly). The approach is fully unsupervised, since it
does not need any label to assess deviations from expected
values. The experimental results showed that the value for
manomaly for recordings annotated with risky events are
generally higher than the recordings without any annotation.
The results of perceptual evaluation indicated that videos
with higher value for manomaly were perceived as more risky
and less common than randomly selected driving scenarios.

IV. PROPOSED APPROACH

A. Motivation

While we had success in using the output of the dis-
criminator to compare the predicted and real data (Eq. 2),
the approach is limited to quantify the differences between
abnormal and normal driving scenarios. The activation output
of D (i.e., SF or SR) was trained to indicate whether the
input data are real or fake. Therefore, manomaly may not
always be able to effectively contrast the differences between
the fake and real data. For example, it can happen that a
fake data is very different from the corresponding real data,
but their values fit the target distribution very well. In this
case, the values for SF and SR will be close to 1, leading
to a relatively low anomaly score (see Eq. 2). This paper
addresses this limitation by proposing an alternative metric
that compensates for this weakness in a principled way. This
new metric compares the difference between the predicted
and real signals using the triplet-loss function.

B. Triplet-Loss Function for Anomaly Detection

Our model is designed to detect abnormal driving scenar-
ios that deviate from expected driving events. We rely on
our aforementioned conditional GAN model [1], using the
generator to create plausible predictions for the driver’s phys-
iological data and vehicle’s CAN-Bus data of the upcoming
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Fig. 2: The training procedure for our framework using the
triplet-loss function (anchor = real signal; positive = pre-
dicted signal; negative = unpaired predictions). The triplet-
loss model is trained to minimize the distance between the
anchor and positive samples, and maximize the distance
between the anchor and negative samples.

driving events, and the discriminator to assess whether the
data is real or fake. We use these networks to create the
inputs of the triplet-loss function, as described in Figures 2
and 3. The generator and the discriminator are both designed
with fully connected layers. Figure 1 shows the number of
layers and number of neurons per layer. The input of the
triplet-loss network is the fourth layer of the discriminator.
This feature embedding is highlighted in orange in Figures
2 and 3.

The proposed driving anomaly metric quantifies the differ-
ence between the fake and real features to evaluate the abnor-
mal degree of the driving segment. It utilizes the triplet-loss
function presented in Section II-C. The triplet-loss model
maps the intermediate layer embeddings of the discriminator
to another embedding space designed to contrast fake and
real data (Fig. 2). The triplet-loss embeddings are represented
by Ex. During training, we select the real data of the
upcoming six-second window as the anchor. The positive

sample corresponds to the fake data created by the generator,
conditioned on the previous six-second window. The negative

sample corresponds to fake data created by the generator,
conditioned on a randomly selected six-second window (i.e.,
unpaired prediction). The corresponding loss function is

L = max(kEa � Epk+margin� kEa � Enk , 0) (3)

where Ea, Ep, and En represent the triplet embeddings
of the anchor, positive, and negative samples, respectively.
We use the Euclidean distance to calculate the difference
between embeddings. By minimizing the loss function L,
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Fig. 3: Use of our triplet-loss model during inferences. Our
model takes the intermediate embeddings of the discrimina-
tor for the the real and fake signals as input of the triplet-
loss model. The output of the framework are the EReal and
EFake embeddings, which are used to estimate our triplet-
loss metric for driving anomaly detection.

the triplet-loss model is trained to minimize the distance
between Ea and Ep, while keeping the distance between Ea

and En larger than a preset margin. This loss function maps
the embedding of the real data closer to the corresponding
embedding of the predicted data, and further away from
the embedding of unpaired predictions. During a driving
anomaly, the differences in the predictions of the generator
and the actual data will be highlighted by the triplet-loss
function.

Figure 3 shows our approach during inference. The gen-
erator predicts the features for the next six-second window,
given the previous data. The discriminator processes the pre-
dicted and real data creating the corresponding embeddings
(highlighted in orange in Fig. 3). We feed these embeddings
to the triplet-loss model and obtain the triplet embeddings of
fake and real data (i.e. EFake and EReal , respectively). We
use the Euclidean distance between EFake and EReal as the
new triplet-loss metric. A bigger value for Danomaly implies
a more abnormal driving segment.

Dtriplet = kEFake � ERealk (4)

V. EXPERIMENTAL RESULTS

A. Driving Anomaly Dataset

This work utilizes the driving anomaly dataset (DAD),
which was collected by Honda Research Institute (HRI) in an
Asian city. This database contains 250 hours of naturalistic
driving recordings by four experienced drivers, using a
Honda Accord. The corpus includes the driver’s physiologi-
cal data, vehicle’s CAN-Bus data, and video recordings of the
road. The physiological signals from the driver include elec-

trocardiography (ECG), breath rate (BR), and electrodermal

activity (EDA) signals. The driver’s ECG (250 Hz) and BR
(25 Hz) signals are collected with a Zephyer BioHarness
3 chestband. The EDA signal was collected at 4 Hz by
an Empatica E4 wristband. We normalized the physiology
data per session by using Z-normalization. We obtain six
features from the CAN-Bus signals: speed, steering speed,
steering angle, throttle angle, brake pressure, and yaw. The
vehicle’s CAN-Bus signals were recorded at 100 Hz. The
driving videos were recorded by an in-vehicle front-facing

TABLE I: Classification of driving segments based on anno-
tations to evaluate the proposed anomaly detection models.
The segments from the candidate set are expected to be more
anomalous than segments from the other sets.

Sets Annotations
Candidate Avoid on-road pedestrian; Avoid pedestrian near ego-

lane; Avoid on-road bicyclist; Avoid bicyclist near
ego-lane; Avoid on-road motorcyclist; Avoid parked
vehicle; traffic rule violation

Maneuver Left turn; Right turn; Left lane branch; Right lane
branch; U-turn; Intersection passing

Normal No annotations during the segments

camera located at the back of the rearview mirror. The videos
are used to annotate the corpus.

The annotations about driving scenarios are manually
added to the dataset. The annotations are grouped into
four sets: goal-oriented operations (i.e., left turn, right turn,
left lane change, right lane change, U-turn), stimuli-driven
operations (i.e., stop for congestion, avoid pedestrian near
ego lane, avoid road motorcyclist, avoid on-road bicyclist),
traffic rule/manner violations, and driver’s attentions (i.e.,
crossing pedestrian; red light; cut-in; sign; on-road bicyclist;
parked vehicle; merging vehicle; yellow light; road work;
pedestrian near ego lane). The study of Qiu et al. [1] provides
more information about this corpus.

In this study, the driver’s physiological signals and vehi-
cle’s CAN-Bus signals are synchronized, keeping the sam-
pling rate at 30 Hz. We consider 121 sessions consisting
of 130 hours of well-annotated urban driving recordings. We
split these recordings into 3 sets: train (100 sessions, approx.
105 hours), validating (11 sessions, approx. 13 hours), and
test (10 sessions, approx. 12 hours) sets.

B. Analysis on the Anomaly Scores

We use the annotations of the DAD corpus to evaluate our
approach. We group the driving events into candidate, nor-

mal and maneuver sets, based on the annotations overlapping
with the driving video segments. Table I gives the details of
the annotations for this partition. The candidate set consists
of the segments where we expect driving anomaly scenarios,
including annotations suggesting or indicating hazardous
driving conditions and traffic rule violations. The maneuver

set includes segments annotated with regular driving maneu-
vers. The normal set includes driving segments that do not
overlap with any annotation. Our expectation is that segments
in the candidate set are expected to have higher anomaly
scores than the segments in the normal set.

Figures 4 shows the histogram of the anomaly scores of
the segments from the normal and candidate sets. The figure
compares the results using the proposed triplet-loss function
(Dtriplet , Eq. 4) and the baseline metric that subtracts the
activation outputs of the discriminator (manomaly , Eq. 2).
The figure shows that the segments from the candidate set
generally have higher anomaly scores than the segments
from the normal set. Compared with the baseline, differ-
ences between the scores for the normal and candidate sets



(a) Triplet-loss metric (Dtriplet , Eq. 4)

(b) Baseline method (manomaly , Eq. 2)

Fig. 4: Histogram of anomaly scores for segments from the
normal and candidate sets using (a) the triplet-loss metric
(Dtriplet , Eq. 4), and (b) the baseline method subtracting the
activations output (manomaly , Eq. 2). The dash lines are the
medians of anomaly scores for each group.

achieved by the triplet-loss metric are clearer. We quantify
the differences between the distributions of the scores for
the normal and candidate sets by using the Jenson-Shannon
Divergence [30]. The Jenson-Shannon Divergence for the
distributions associated with the baseline metric is 0.154. The
corresponding score for the distributions associated with the
proposed triplet-loss function is 0.237. These results indicate
that the distance between the distributions for emphnormal
and candidate sets increases when using the proposed triplet
loss function.

We explore further the separation between the anomaly
scores for the candidate and normal sets obtained with
Dtriplet and manomaly . Figure 5 reports the detection error

tradeoff (DET) curves, showing the false negative rate

(FNR) and false positive rate (FPR). This analysis formulates
the problem as a binary classification problem, reporting
the results by moving the hyperplane. A binary classifier
will be better if its DET curve lies closer to the axes. For
this analysis, we also consider an additional baseline with
the embeddings of the discriminator for the real and fake
data, estimating their Euclidean distance without the triplet-
loss network. We refer to this baseline as Embedding in
Figure 5. Figure 5 indicates that both the metric using the
embeddings of the discriminator and the triplet-loss metric
have better discriminative performance than the metric based
on the activation output of the discriminator (manomaly ). The
triplet-loss metric achieves the best performance.

We also compare the distribution of the samples with the
highest anomaly scores in terms of normal, candidate and
maneuver sets. We consider 100 video segments with the
highest scores using either Dtriplet (triplet-loss metric) or

Fig. 5: DET curves to compare the discriminative perfor-
mance of the metrics relying on the activation output of the
discriminator, the embeddings of the discriminators, and the
triplet-loss function.

TABLE II: Distribution of the top 100 segments in the
normal, candidate, and maneuver sets (Table I). The table
also shows the corresponding distribution of 100 randomly
selected segments.

Set Normal Candidate Maneuver
Top 100 - Triplet-loss 21 12 67
Top 100 - Activation output 31 9 60
Random 100 53 4 43

manomaly (activation output metric). We also randomly select
100 segments for comparison (Random 100). Table II shows
the distribution of these segments. Compared with manomaly ,
the triplet-loss metric decreases the proportion of normal
segments from 31% to 21%, and increases the number of
candidate segments from 9% to 12%. These results indicate
that our unsupervised approach using the new triplet-loss
metric is superior to our previous driving anomaly metric in
detecting relevant events. Notice that most of the segments
that are randomly selected from the corpus do not have any
overlap with annotations (i.e., normal set). Our approach
using conditional GAN implemented with either metric is
able to identify samples that very often overlap with other
events annotated in the corpus.

C. Perceptual Evaluation

This section uses perceptual evaluations to evaluate the
performance of the proposed approach for driving anomaly
detection. We consider 40 video segments with the highest
scores using either Dtriplet (triplet-loss metric) or manomaly

(activation output metric). We also randomly select 40 seg-
ments not included in the previous lists (Random 40). Each
recording is 12 seconds long, where the first six seconds are
the data used to condition the GAN models, and the last six
seconds is the segment that our approach assigns an anomaly
score. There are 27 videos that are included in the top 40
segments using both manomaly and Dtriplet . Therefore, we



(a) How risky is the driving maneuver in the video?

(b) How often do you see similar driving maneuver on the roads?

Fig. 6: Results of the perceptual evaluation on the degree
of risk and familiarity of the videos. The figure shows the
results for the top 40 segments with the highest anomaly
scores from each group, and 40 segments randomly selected.

only have 93 unique video segments to annotate. Three raters
participated in the evaluation process, annotating each video.
For each segment, the raters are first asked to watch the
video, and then answer two questions to assess the risk and
familiarity level: (1) how risky is the driving condition in

the video? (safe; slightly risky; risky; very risky), and (2)
how often do you see similar driving condition on the road?

(never; almost never; sometimes; quite often; regularly).
Figure 6 shows the evaluation results, reporting each score

assigned to the videos (i.e., 40 videos ⇥ 3 evaluators per
condition). Generally, the top-40 driving segments selected
by the triplet-loss metric are considered as riskier and less
familiar than the videos selected by the baseline method.
Using Dtriplet , 22 of the 120 evaluations are judged as risky

and 50 as slightly risky. Using manomaly , 20 evaluations are
considered to be risky and 46 to be slightly risky. Under the
question about familiarity in Figure 6(b), the number of votes
for regularly decreases from 51 (manomaly ) to 42 (Dtriplet )
using our new metric. Notice that randomly selected videos
are predominately labeled as safe (question 1) and regularly

(question 2).
There are 13 unique videos in the corresponding top-40

sets, which were only selected by either the triplet-loss metric

(a) How risky is the driving maneuver in the video?

(b) How often do you see similar driving maneuver on the roads?

Fig. 7: Results of the perceptual evaluation on the degree
of risk and familiarity of the videos. The figure shows the
results of the segments only selected by either the activation
output metric or the triplet-loss metric.

or the baseline metric. Figure 7 compares the result of these
segments. The use of Dtriplet as a driving anomaly metric
decreases the number of videos perceived as safe in question
1 and regularly in question 2. The figure clearly shows the
benefits of using the triplet-loss metric for driving anomaly
detection.

VI. CONCLUSIONS

This study proposed an improved metric using the triplet-
loss function for driving anomaly detection. The unsuper-
vised approach builds upon the conditional GAN framework,
which makes predictions on the driver’s physiological data
and the vehicle CAN-bus data, conditioned on the observed
data of the previous time period. The predictions are con-
trasted with actual signals, quantifying the deviations from
expected physiological and CAN-Bus values. The metric
to contrast the predictions and real signals is crucial in
this framework. The proposed triplet-loss metric uses the
intermediate embeddings of the discriminator as the input
of a triplet-loss network. The triplet-loss network is built to
reduce the distance between the embeddings of the predicted
and real signals, while increasing the distance between the
embeddings of unpaired predictions and real signals. This



study shows that the proposed triplet-loss metric is more
effective than our previous metric based on the subtraction of
activation outputs of the discriminator. Subjective evaluations
show that videos with higher anomaly scores with our new
metric are perceived as more risky and less common than
the corresponding videos selected with the baseline metric.

One of the limitations of our work is that our proposed
approach can only detect abnormal driving scenarios when
the driver reacts to the driving environment. Our features are
physiological and CAN-Bus signals. Therefore, if a driver
fails to notice an abnormal driving scenario, these signals
will not change and our driving anomaly scores will fail
to capture the event. In our future work, we will consider
visual-based detection results (e.g., objective detection and
tracking) which will complement our system. We also plan
to annotate a subset of the DAD corpus with anomaly labels.
This subset will allow us to evaluate better our system.
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