Multimodal Signal Processing (MSP) lab

The University of Texas at Dallas

Erik Jonsson School of Engineering and Computer Science

Use of Triplet-Loss Function to Improve Driving Anomaly Detection Using Conditional Generative Adversarial Network

Yuning Qiu Teruhisa Misu Carlos Busso

III THE UNIVERSITY OF TEXAS AT DALLAS

Examples of Dangerous Driving Condition

Driving is not always safe

Avoid on-road pedestrian

Avoid on-road vehicle

msp.utdallas.edu

THE UNIVERSITY OF TEXAS AT DALLAS

Motivation

- Advanced driver assistance systems (ADAS) have made important safety improvements
 - Forward collision warning (FCW)
 - Intelligent speed advice (ISA)
 - Collision avoidance system
 - Blind spot monitor

To further improve ADAS functions

Need to know what kinds of anomalies exist

Motivation

Anomaly Detection on Driving Conditions

Driving anomalies are defined as events that deviate from expected driver behaviors that can lead to hazard situations

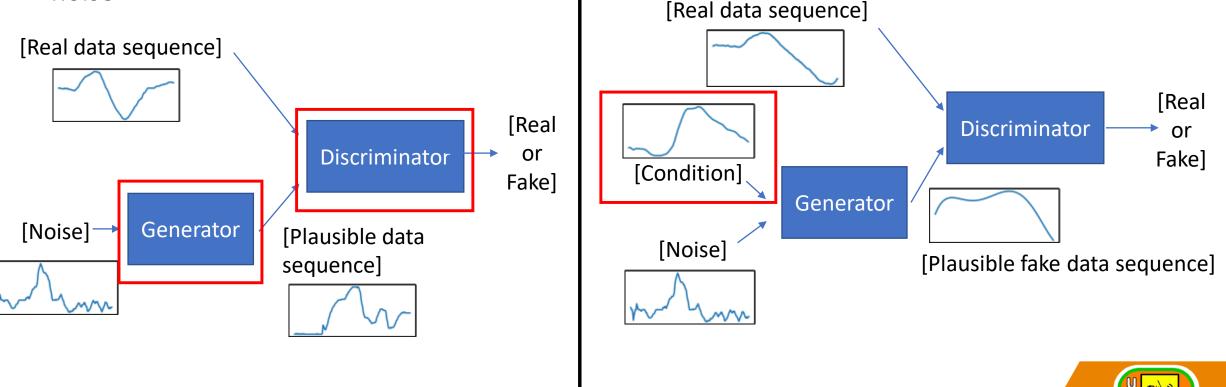
Examples include:

- Abrupt changes on driving maneuvers
- Missing tasks required to complete a driving maneuver
 - Checking mirrors before turning
- Lack of awareness of objects, pedestrians, or other vehicles
- Hazard actions from other vehicles
- Unexpected changes on the road that leads to hazard scenarios
 - Constructions on the road

On-road pedestrian

On-road bicyclists

Motivation — From our Previous Work

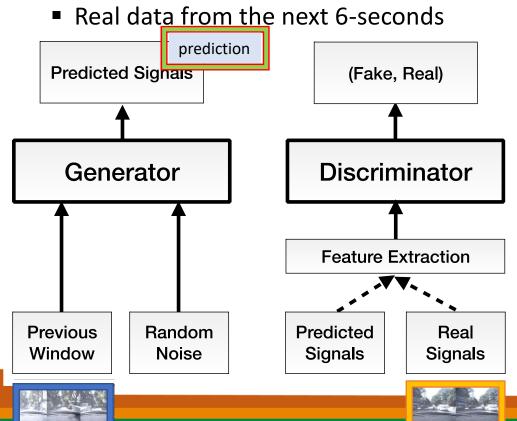


Generative Adversarial Network (GAN)

- Learn the distribution of data
- Generate plausible data from random noise

Conditional GAN

- Input: Condition & Random noise
- Generate data constrained by condition



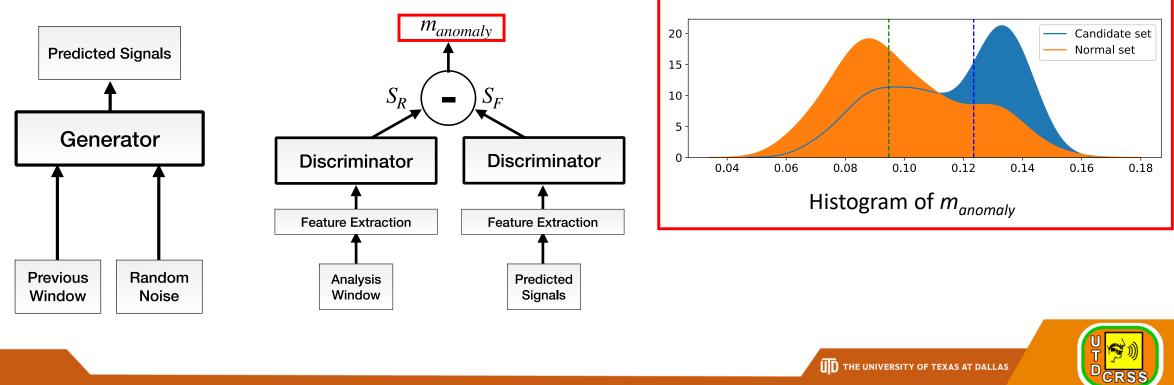
Motivation — From our Previous Work

- Condition (previous window)
 - Real data from previous 6-seconds
- Random noise:
 - Random noise, totally unrelated to real data
- Real signals:

6

The generator made prediction

- Physiological and CAN-Bus data
- Conditioned on the observed data from the previous six seconds
- The discriminator made discrimination
 - Real or Fake

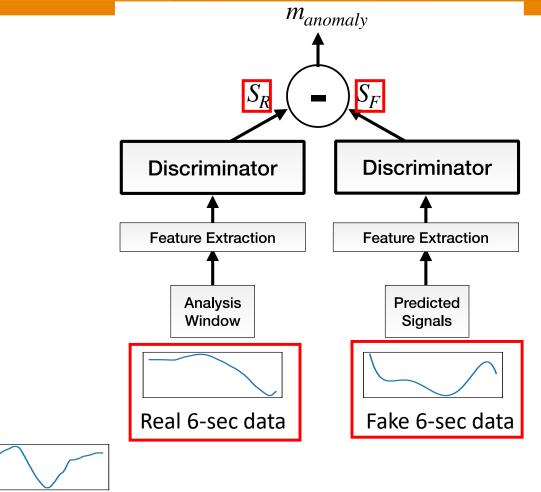


7

Motivation — From our Previous Work

Inference

- Predict the future signals, based on previous data
- Contrast their values with real observations



Motivation — From our Previous Work

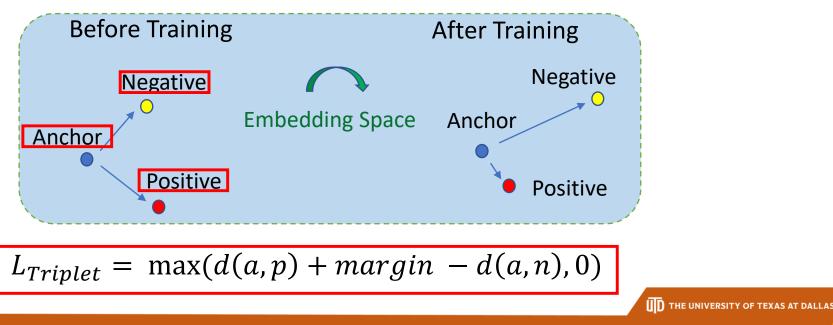
Limitation in the quantifying the anomaly score The discriminator was trained to

- The discriminator was trained to identify whether the input was real or fake
- Two very different samples that are classified as real can have similar scores, leading to small anomaly values
- This approach cannot fully contrast the differences between the predicted and real samples

IID THE UNIVERSITY OF TEXAS AT DALLAS

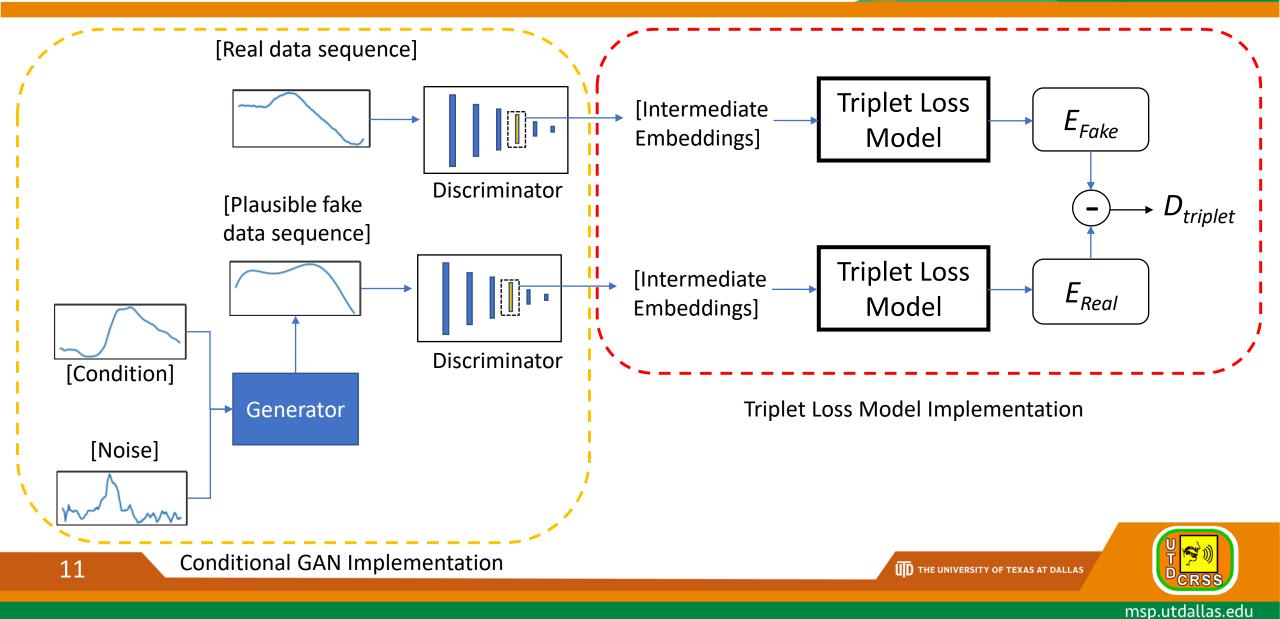
Previous 6-sec data

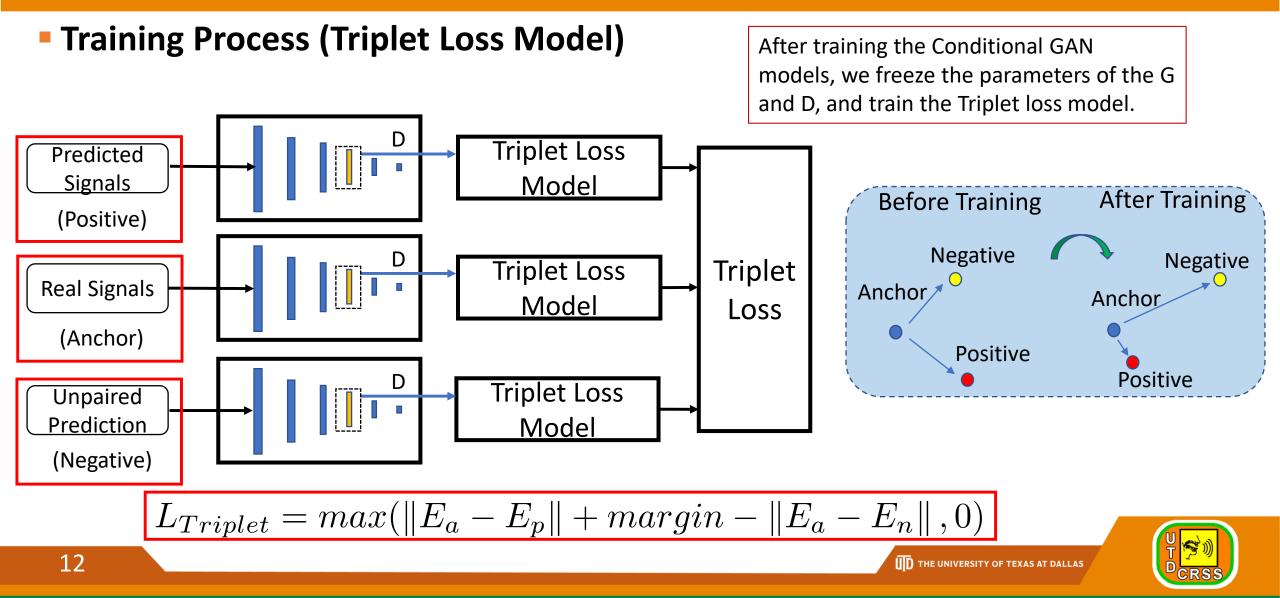
- **1.** Motivation
- **2.** Proposed Model
- **3.** Experimental Evaluation
- 4. Conclusions



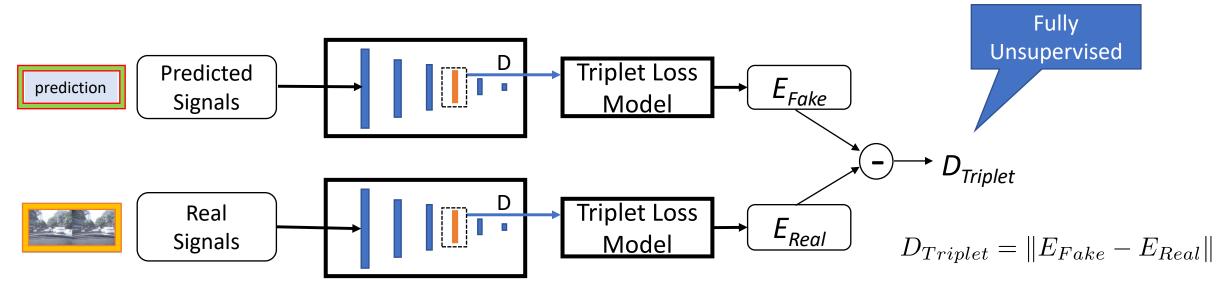
New metric to better quantify the difference between predicted and real signals

Triplet Loss Function


- Decrease the distance between the embeddings of the predicted and real signals
- Increase the distance between the embeddings of unpaired predictions and real signals


Big Picture of the Proposed Model

Proposed Triplet Model for Better Discrimination



Proposed Model Structure

UT Dallas UT Dallas NASP Multimodal Signal Processing Laboratory

Testing Process

Identify the difference between the <u>Real</u> and the <u>Predicted</u> triplet loss score

• A bigger value for $D_{Triplet} \longrightarrow$ A more abnormal driving segment

- **1.** Motivation
- 2. Proposed Model
- **3. Experimental Evaluation**
- **4.** Conclusions

Experimental Evaluation — Driving Anomaly Dataset (DAD)

- 250 hours of naturalistic driving recordings
 - 48 hours used in this study
- Collected by Honda Research Institute in an Asian city
- Road scenarios
- Manually added annotations
- Driver's physiological signals
- Vehicle's CAN-Bus signals

X				Operation_Stimuli-driven Nr Annotation 7 stop 4 light 8 stop 4 congestion 9 stop 4 congestion 10 Avoid pedestrian near ego lane 11 stop 4 congestion 12 stop 4 congestion 13 stop 4 congestion 13 stop 4 congestion 13 stop 4 congestion 15 stop 4 congestion 14 stop 4 congestion 15 stop 4 light 16 stop 4 light 16 stop 4 congestion 17 Avoid pedestrian near ego lane 18 Avoid non-coad bicyclist 20 Avoid non-coad bicyclist 21 Avoid pedestrian near ego lane 21 Avoid pedestrian near ego lane 23 stop 4 congestion		Begin Time Begin Spectra 00:06:59:615 00:07:19:231 00:08:19:023 00:01:10:24:06 00:01:10:24:06 00:01:13:022 00:01:13:022 00:01:14:04:06 00:14:50:011 00:01:60:26:39 00:18:02:639 00:01:80:26:39 00:02:02:40:22 00:20:24:022 00:20:24:022 00:20:24:022 00:22:54:011 00:22:54:011 00:22:54:011 00:28:40:41	00:07:04.639 00:07:26.022 00:08:42.638 00:09:21.406 00:11:37.010 00:11:37.010 00:11:59.615 00:12:54.417 00:15:27.022 00:17:01.429 00:19:35.627 00:20:05.418 00:20:25.220 00:20:30.627 00:25:26.604	00:00:06.791 00:00:23.615 00:00:01.197 00:00:08.605 00:00:03.986 00:00:03.986 00:00:03.986 00:00:01.209 00:00:41.779 00:00:08.14 00:00:00.814 00:00:00.814 00:00:053 00:00:01.198 00:00:01.209 00:00:01.293
	00:20:	24.030	Selection: $00:00:00.000 \cdot 00:$	0:00.000 0	e 🖚			
36.376953					e 📢			
w] 53.93]				↓ ↑ Selection Mode Loop Mode	e 🕼			
w 53.93				↓ ↑ Selection Mode Loop Mode	e 📢			
w 53.93 locity 520.0 ser_speed 360.0				Selection Mode Loop Mode Loop Mode	e 4)			
v 53.93 locity 520.0				Selection Mode Loop Mode Loop Mode 1.220703 7.23 29.0	e 40			
v ocity 53.93 er_speed er_angle 146.83 100.0				Selection Mode Loop Mode	e 4)			
w 53.93 ocity 520.0 er_speed 360.0 146.83 spedal 2.19715				Selection Mode Loop Mode Loop Mode	e 4)			
w 53.93 octy 520.0 er_speed 360.0 146.83 spedal 100.0				Image: Control of the selection Mode Loop Mode -1.220703 -1.220703 7.23 -1.3.5 87.76572 0.0	e 4)			

Experimental Evaluation — Driving Anomaly Dataset (DAD)

Speed

Steer speed

Yaw

Annotations

- A four-layer representation
 - Goal-driven Operation
 - Stimulus-driven Operation
 - Traffic Rule/Manner Violation
 - Attention

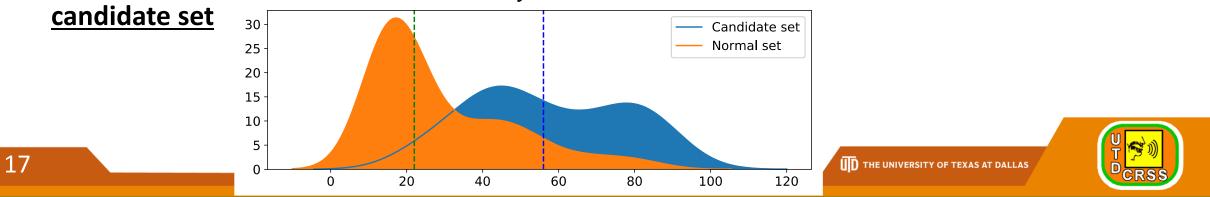
Data collected

- Drivers' physiological data
 - Heart Rate
 - Breath Rate
 - Skin conductance (EDA)

Goal- Left turn; Right turn; Intersect	ion passing; Cross-
oriented walk passing; Left lance change; I	Right lance change;
Operation U-turn	
Stimulus- Stop for congestion; Avoid pedes	trian near ego lane;
driven Avoid road motorcyclist; Avoid o	on-road bicyclist
Operation	
Traffic Traffic rule violation	
rule/manner	
violation	
Attention Crossing vehicle; Crossing pede	estrian; Red light;
Cut-in; Sign; On-road bicyclis	t; Parked vehicle;
Merging vehicle; Yellow light; Roa	ad work; Pedestrian
near ego lane	
Vehicle controller area network	(CAN) bus data

Annotations

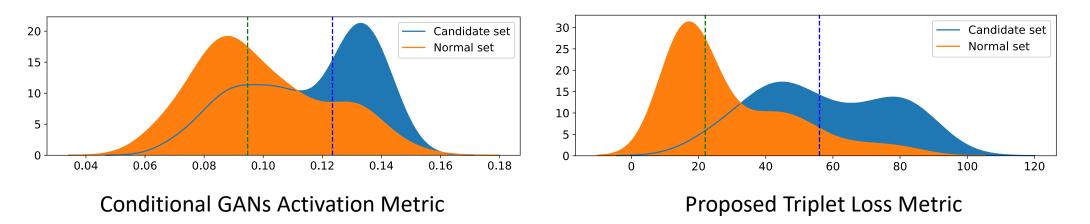
- Steer angle
- Pedal pressure
- Pedal angle


Experimental Evaluation – Anomaly Score Distribution

msp.utdallas.edu

Split the driving segments into 3 sets of segments according to the annotations

- Candidate (Expected to be more anomalous)
 - Avoid on-road pedestrian
 - Avoid pedestrian near ego-lane
 - Avoid on-road bicyclist
 - Avoid bicyclist near ego-lane
 - Avoid parked vehicle
 - Traffic rule violation
- Normal
 - No annotations during the segment
- Histogram of anomaly scores m_{anomaly} for segments from the <u>normal set</u> and the



Experimental Evaluation – Compared with Conditional GAN

Histogram of anomaly scores $m_{anomaly}$ for segments from the <u>normal</u> and the <u>candidate</u> set

The dash lines are the medians of anomaly scores for each group

Observation:

Proposed model increases separation between normal and candidate sets

Experimental Evaluation – Compared with Conditional GAN

Predicted

Signals

Real

Signals

Friplet Loss

riplet Loss

Model

Triplet-loss metric

E_{Fake}

Detection error tradeoff (DET)

Predicted

Signals

Real

Signals

- It better visualizes the performance differences
- A binary classification problem, reporting the results by moving the hyperplane
- Show false negative rate (FNR) versus false positive rate (FPR)

Embedding

 $(-) \rightarrow D_{Embedding}$

THE UNIVERSITY OF TEXAS AT DALLAS

msp.utdallas.edu

Discriminator

Feature Extraction

Analysis

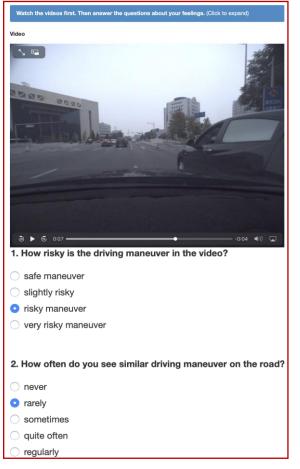
Window

manomaly

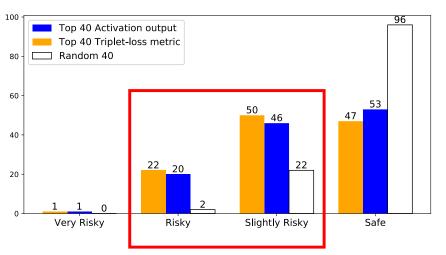
Activation output

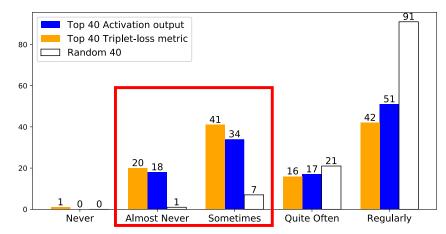
Discriminator

Feature Extraction


Predicted

Signals


Experimental Evaluation – Compared with Conditional GAN


Subjective Measure: Perceptual Evaluation

• How risky is the driving maneuver in the video?

- The selected Top-40 segments and Random-40 segments
- 40 videos × 3 evaluators per condition
 - How often do you see similar driving maneuver on the road?

Examples of Events Identified as Anomalous

Some segments (Candidate) with high anomaly score

Avoid on-road bicyclist

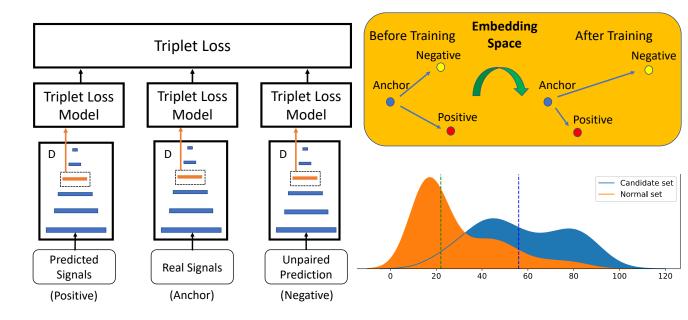
Avoid on-road motorcyclist

msp.utdallas.edu

Dallas

The UNIVERSITY OF TEXAS AT DALLAS

- **1.** Motivation
- 2. Proposed Model
- **3.** Experimental Evaluation
- 4. Conclusions



Conclusions

Improved metric using the tripletloss function for driving anomaly detection

- Predict physiological signals and CAN-Bus data
- Condition by previous frames
- Quantify the deviations from expected values
- Intermediate embeddings of the discriminator are the input of a tripletloss network
- Triplet-loss metric is more effective to distinguish anomaly

Honda Research Institute US

Many thanks!

Yuning Qiu

yxq180000@utdallas.edu

