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Examples of  Dangerous Driving Condition

Avoid on-road pedestrian Avoid on-road vehicle

▪ Driving is not always safe
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▪ Advanced driver assistance systems (ADAS) 
have made important safety improvements 
▪ Forward collision warning (FCW)

▪ Intelligent speed advice (ISA)

▪ Collision avoidance system

▪ Blind spot monitor

▪ To further improve ADAS functions
▪ Need to know what kinds of anomalies exist

Motivation
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Anomaly Detection on Driving Conditions

▪ Examples include:
▪ Abrupt changes on driving maneuvers

▪ Missing tasks required to complete a driving maneuver

▪ Checking mirrors before turning

▪ Lack of awareness of objects, pedestrians, or other 
vehicles

▪ Hazard actions from other vehicles

▪ Unexpected changes on the road that leads to hazard 
scenarios

▪ Constructions on the road

Motivation

On-road 
pedestrian

On-road
bicyclists

Driving anomalies are defined as events that deviate from 
expected driver behaviors that  can lead to hazard situations
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[Real data sequence]

Generator [Plausible data 
sequence]

Discriminator

[Real 
or 

Fake]

[Noise]

▪ Generative Adversarial Network (GAN)
▪ Learn the distribution of data 

▪ Generate plausible data from random 
noise

Motivation – From our Previous Work

▪ Conditional GAN
▪ Input: Condition & Random noise

▪ Generate data constrained by condition

[Real data sequence]

Generator

[Plausible fake data sequence]

Discriminator
[Real 

or 
Fake]

[Noise]

[Condition]
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Motivation – From our Previous Work

▪ Condition (previous window)
▪ Real data from previous 6-seconds

▪ Random noise: 
▪ Random noise, totally unrelated to real data

▪ Real signals: 

▪ Real data from the next 6-seconds
predictionprediction

▪ The generator made prediction 
▪ Physiological and CAN-Bus data

▪ Conditioned on the observed data 
from the previous six seconds

▪ The discriminator made 
discrimination
▪ Real or Fake
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▪ Predict the future signals, based on previous data

▪ Contrast their values with real observations

Motivation – From our Previous Work

Histogram of manomaly

▪ Inference
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▪ Limitation in the quantifying 
the anomaly score 
▪ The discriminator was trained to 

identify whether the input was 
real or fake

▪ Two very different samples that 
are classified as real can have 
similar scores, leading to small 
anomaly values

▪ This approach cannot fully 
contrast the differences between 
the predicted and real samples 

Motivation – From our Previous Work

Previous 6-sec data

Real 6-sec data Fake 6-sec data
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▪ New metric to better quantify the difference between predicted and real 
signals

▪ Triplet Loss Function
▪ Decrease the distance between the embeddings of the predicted and real signals

▪ Increase the distance between the embeddings of unpaired predictions and real signals 

New Metric

Embedding Space
Anchor

Positive

Negative Negative

Positive

Anchor

Before Training After Training

𝐿𝑇𝑟𝑖𝑝𝑙𝑒𝑡 = max(𝑑 𝑎, 𝑝 +𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑 𝑎, 𝑛 , 0)
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Big Picture of  the Proposed Model

[Real data sequence]

Generator

[Plausible fake 
data sequence]

[Noise]

[Condition]

Triplet Loss 
Model

[Intermediate 
Embeddings]

[Intermediate 
Embeddings]

Triplet Loss 
Model

Triplet Loss Model Implementation

EFake

EReal

Dtriplet-Discriminator

Discriminator

Conditional GAN Implementation
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Proposed Triplet Model for Better Discrimination

▪ Training Process (Triplet Loss Model)

Triplet 
Loss

Predicted 
Signals

Real Signals

(Positive)

(Anchor)

Unpaired 
Prediction

(Negative)

Triplet Loss 
Model

Triplet Loss 
Model

Triplet Loss 
Model

D

D

D

After training the Conditional GAN 
models, we freeze the parameters of the G 
and D, and train the Triplet loss model.

Anchor

Positive

Negative Negative

Positive

Anchor

Before Training After Training
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Proposed Model Structure

▪ Testing Process
▪ Identify the difference between the Real and the Predicted triplet loss score

▪ A bigger value for DTriplet A more abnormal driving segment 

prediction

Fully 
Unsupervised 

Predicted 
Signals

Real 
Signals

Triplet Loss 
Model

Triplet Loss 
Model

EFake

EReal

DTriplet

D

D

-
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▪ 250 hours of naturalistic driving 
recordings 
▪ 48 hours used in this study

▪ Collected by Honda Research 
Institute in an Asian city

▪ Road scenarios

▪ Manually added annotations

▪ Driver’s physiological signals

▪ Vehicle’s CAN-Bus signals

Experimental Evaluation – Driving Anomaly Dataset (DAD)
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▪ Annotations
▪ A four-layer representation

▪ Goal-driven Operation

▪ Stimulus-driven Operation

▪ Traffic Rule/Manner Violation 

▪ Attention 

▪ Data collected
▪ Drivers’ physiological data      

▪ Heart Rate

▪ Breath Rate

▪ Skin conductance (EDA)

Experimental Evaluation – Driving Anomaly Dataset (DAD)

▪ Vehicle controller area network (CAN)-bus data
▪ Speed

▪ Yaw

▪ Steer speed

▪ Steer angle

▪ Pedal pressure

▪ Pedal angle 
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▪ Split the driving segments into 3 sets of segments according to the annotations
▪ Candidate (Expected to be more anomalous)

▪ Avoid on-road pedestrian
▪ Avoid pedestrian near ego-lane
▪ Avoid on-road bicyclist
▪ Avoid bicyclist near ego-lane
▪ Avoid parked vehicle
▪ Traffic rule violation

▪ Normal
▪ No annotations during the segment

Experimental Evaluation – Anomaly Score Distribution

▪ Histogram of anomaly scores 𝒎𝒂𝒏𝒐𝒎𝒂𝒍𝒚 for segments from the normal set and the 
candidate set
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▪ Histogram of anomaly scores 𝒎𝒂𝒏𝒐𝒎𝒂𝒍𝒚 for segments from 
the normal and the candidate set
▪ The dash lines are the medians of anomaly scores for each group 

▪ Observation:
▪ Proposed model increases separation between normal and 

candidate sets

Experimental Evaluation – Compared with Conditional GAN

Conditional GANs Activation Metric Proposed Triplet Loss Metric
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▪ Detection error tradeoff (DET) 
▪ It better visualizes the performance differences

▪ A binary classification problem, 

reporting the results by moving the hyperplane 

▪ Show false negative rate (FNR) versus 

false positive rate (FPR)

Experimental Evaluation – Compared with Conditional GAN

Activation output Embedding Triplet-loss metric

Predicted 
Signals

Real 
Signals

DEmbedding

D

D

-
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▪ Subjective Measure: Perceptual Evaluation

Experimental Evaluation – Compared with Conditional GAN

▪ The selected Top-40 segments and Random-
40 segments  

▪ 40 videos × 3 evaluators per condition 

Evaluation GUI

• How risky is the driving 
maneuver in the video?

• How often do you see similar 
driving maneuver on the road?



21

▪ Some segments (Candidate) with high anomaly score

Examples of  Events Identified as Anomalous

Avoid on-road motorcyclist Avoid on-road bicyclist



1. Motivation

2. Proposed Model

3. Experimental Evaluation

4. Conclusions



23

▪ Improved metric using the triplet-
loss function for driving anomaly 
detection 
▪ Predict physiological signals and CAN-

Bus data

▪ Condition by previous frames

▪ Quantify the deviations from expected 
values 

▪ Intermediate embeddings of the 
discriminator are the input of a triplet-
loss network 

▪ Triplet-loss metric is more effective to 
distinguish anomaly 

Conclusions
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Use of Triplet-Loss Function to Improve Driving Anomaly Detection 
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