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Abstract— As a driver prepares to complete a maneuver,

his/her internal cognitive state triggers physiological responses

that are manifested, for example, in changes in heart rate (HR),

breath rate (BR), and electrodermal activity (EDA). This process

opens opportunities to understand driving events by observing

the physiological data of the driver. In particular, this work

studies the relation between driver maneuvers and physiologi-

cal signals during naturalistic driving recordings. It presents

both feature and discriminant analysis to investigate how

physiological data can signal driver’s responses for planning,

preparation, and execution of driving maneuvers. We study

recordings with extreme values in the physiological data (high

and low values in HR, BR, and EDA). The analysis indicates

that most of these events are associated with driving events.

We evaluate the values obtained from physiological signals as

the driver complete specific maneuvers. We observe deviations

from typical physiological responses during normal driving

recordings that are statistically significant. These results are

validated with binary classification problems, where the task is

to recognize between a driving maneuver and a normal driving

condition (e.g., left turn versus normal). The average F1-score

of these classifiers is 72.8%, demonstrating the discriminative

power of features extracted from physiological signals.

I. INTRODUCTION
In recent years, advanced driver-assistance systems

(ADAS) have been introduced in the market to improve the
safety on the roads. Earlier generations of ADAS mainly
focused on vehicle maneuvers such as adaptive cruise control

(ACC), lane keep system (LKS), automated emergency brake

(AEB), and lane departure warning (LDW). Recent efforts
for modeling and understanding the behaviors of the drivers
are getting increasingly important. While many studies on
driver’s behavior have used direct measurements from the
road scene [1]–[4], the vehicle [5], [6], or the head and body
movements of the driver [7]–[9], the study of physiological
signals can provide useful information about the driver’s in-
tentions (e.g., planning, preparation, and execution of driving
maneuvers). Studies have shown that physiological signals
are important indicators of stress and mental states [10]–
[12]. Therefore, we expect that physiological signals of the
drivers can provide valuable information when we study their
behaviors, especially, with new commercial wearable devices
with physiological sensors (e.g., Apple watch, Fitbit).

The main contribution of this paper is to explore the re-
lationship between driver’s physiological signals and vehicle
maneuvers. While planning and completing a maneuver, the
drivers experience physiological reactions due to stress and
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increased cognitive load (e.g., increasing heart rate, holding
breath, increasing skin conductance). Are distinctive physio-
logical patterns observed in the presence of driving maneu-
vers? Is it feasible to create machine learning algorithms for
maneuver detection using physiological signals? This paper
investigates these questions, building upon previous studies
that have demonstrated a connection between physiological
data and driver maneuvers [13]–[15]. While these previous
studies considered smaller corpora, this paper analyzes a
set of 76 hours of naturalistic recordings from the Honda

Research Institute driving dataset (HDD), which includes
highways and rural roads.

First, the analysis considers extreme changes on the
driver’s physiological data. We identify segments with high
or low values for heart rate (HR), breath rate (BR), and
electrodermal activity (EDA). During these segments, we
evaluate the presence of driving maneuvers and specific
objects on the road, which were manually annotated. The
analysis reveals that about 80% of these segments with
extreme values of physiological data cooccur with events
annotated in the corpus. Second, the analysis compares
the values of physiological data while completing specific
driver maneuvers. The analysis reveals that the values for
physiological data are statistically different during specific
driver maneuvers, demonstrating the important relationship
between these variables. Finally, these results are validated
with discriminant analysis, where we conduct binary classi-
fication tasks for maneuver detection (e.g., normal versus a
given maneuver), using only physiological features. These
classification tasks are implemented with support vector

machine (SVM), and random forest (RF) classifiers. We con-
sider right turn (RT), left turn (LT), U-turn (UT), intersection

passing (IP), left lane change (LLC), and right lane change

(RLC). The analysis reveals stronger differences in the BR
and EDA signals during driver maneuvers. When the features
from HR, BR and EDA are combined, the average F1-score
of the classifiers across maneuvers is 72.8%.

II. RELATED WORK
Many studies have shown that human’s physiological sig-

nals are closely related to the human’s autonomous nervous
system [10], [16], [17]. Changes in the physical, mental and
cognitive state of a person are reflected in his/her physiologi-
cal signals. Rompelman et al. [10] showed that physiological
signals are closely related to the individual’s stress level and
demonstrated that people experiencing anxiety can exhibit
sustained periods with high HR and low variability. Tael-
man et al. [17] used the ratio between low frequency (LF)
components and high frequency (HF) components of the HR
power spectrum to estimate the stress level of an individual,
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showing that an increase in this ratio was associated with
an increase in his/her mental stress level. Similar to HR, BR
is also an important indicator of the cognitive state of an
individual. For example, Begum et al. [16] showed that the
respiration rate changes when the participants’ mental states
change from relaxed to stressed.

Studies have used physiological sensors in the vehicle
given their role as indicators for cognitive and mental states.
For example, previous studies analyzing the stress level and
cognitive workload of a driver have relied on physiological
signals. Driving a vehicle can increase the driver’s stress level
[18], [19], which increases the HR, BR and EDA signals.
Other studies have correlated an increase in the drowsiness
level of a driver with a decrease of HR and BR [20].

Before conducting a maneuver, a driver needs to carefully
plan the action, evaluating the risks, and deciding for the
best timing. This process increases the cognitive load which
is reflected in physiological signals. These observations have
motivated previous studies to analyze the relation between
the driver’s physiological signals and driving maneuvers
[13]–[15]. Li et al. [14] extracted features from the HR and
BR signals to cluster the physiological data into three classes:
“normal”, “event”, and “noise”. The class “event” included
different maneuvers (lane change, turns, starts and stops).
This study showed the important relationship between phys-
iological data and driving maneuvers. Likewise, Murphey et
al. [13] used features extracted from physiological data to
predict lane change actions. A similar study was conducted
by Li et al. [15], which demonstrated that physiological
signals are useful for driving maneuver classification when
combined with features extracted from the controller area

network (CAN) bus data. In their study, they compared the
classification performance of two SVM classifiers, trained
using either only CAN-bus data, or CAN-bus data with
physiological data. The classifiers had a better performance
when trained with features extracted from both modalities.

While these studies have showed the benefits of phys-
iological data in the study of understanding the driver’
intentions, it is still not clear how driver’s physiological
signals change according to different driving maneuvers.
Follow this direction, this study focuses exclusively on
HR, BR and EDA signals, studying their relationship with
specific driving maneuvers. We investigate whether different
driving maneuvers trigger specific changes on the driver’s
physiological signals, which can lead to machine learning
solutions to understand better the drivers’ intentions.

III. HONDA RESEARCH INSTITUTE DRIVING DATASET
The analysis in this study relies on the Honda Research In-

stitute driving dataset (HDD) [21], [22], which was collected
by the Honda Research Institute, USA between February
2017 and February 2018 in the San Francisco Bay Area.
The recordings include both urban areas and highways. The
corpus has 159 driving sessions corresponding to around 180
hours. We used the latest 46 sessions of the data collection,
which considered physiological data (76 hours of naturalistic
driving recordings). Three drivers wore a compact physiolog-
ical monitoring module (Zephyr BioHarness 3 chestband)

TABLE I: Annotations of the HDD corpus, which includes
a four-layer representation with several relevant annotations
to characterize driver distractions. Further details are given
in Misu and Chen [21].

Annotations
Goal-driven
Action

Intersection passing; Left turn; Right turn; Left lance
change; Right lance change; Crosswalk passing; U-
turn; Left lane branch; Right lane branch; Merge

Stimulus-
driven Action

Stop; Deviate

Cause Sign; Congestion; Traffic light; Pedestrian; Parked
car

Attention Crossing vehicle; Crossing pedestrian; Red light;
Cut-in; Sign; On-road bicyclist; Parked vehicle;
Merging vehicle; Yellow light; Road work; Pedes-
trian near ego lane

Fig. 1: Annotation interface. The open source software
ELAN is used to annotate different driving maneuvers. The
interface also provides visualization of physiological data.

and a wristband sensor (Empatica E4). The physiological
signals include electrocardiogram (ECG), respiration wave
and skin conductivity, which are collected at 250 Hz, 25
Hz, and 4 Hz, respectively. They are synchronized at 30Hz.
From these signals, we obtain the heart rate (HR), breath

rate (BR), and electrodermal activity (EDA) of the driver.
This corpus has been manually annotated with driv-

ing events using the software ELAN. The annotations are
grouped into a four-layer representation used to describe
driver behaviors: goal-oriented actions, stimulus-driven ac-
tions, causes and attentions. Table I provides the specific
annotations within each layer. Misu and Chen provides
further details about this corpus [21].

IV. EXTREME VALUES OF PHYSIOLOGICAL SIGNALS
We analyze extreme values of physiological data (i.e.,

BR, HR, and EDA). The objective is to understand some
of the underlying factors that make physiological data to
increase or decrease, especially as they related to driving
maneuvers. We are interested in meaningful local extremes,
since the goal is to relate sudden changes in the values of the
physiological data to driving events. This is important since
the recordings include urban routes and highways, which we
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Fig. 2: Selection of regions with extreme values for HR,
which are identified by selecting data in the 5% and 95%
quantiles during 10-minute windows. We only select extreme
segments that are outside the range defined by the global
thresholds (green dashed lines).

expect to affect the baseline values for the physiological data.
Therefore, we split the sessions into 10-minute windows,
finding the local extremes within each segment. We define
the local extremes as the segments included in the 5%
quantile (low values) and 95% quantile (high values) of
the physiological data within the 10-minute intervals. We
observed that the range of values of the physiological data
for certain 10-minute intervals were low, and the selected
extremes were very close to average values across the entire
session. To obtain meaningful extreme segments, we define
global thresholds that need to be satisfied for a segment to
be considered as a extreme. These thresholds are obtained by
estimating the mean (µ) and standard deviation (�) across
the entire session. The lower and upper thresholds are defined
as tLower = µ� � and tUpper = µ+ �, respectively. Figure
2 illustrates this process for HR during one session, where
the solid lines correspond to its mean value (black line)
and the thresholds (green dashed lines). For each detected
extreme, we extend the segments to account for delays in
physiological state responses, starting eight seconds before
and four seconds after the detected extreme. The analysis
considers the manual annotations overlapping with these
segments of interest. We label the segments as normal when
we do not observe any driving event during these segments.
Notice that a segment may include more than one event.

Table II shows the number of selected segments identified
for each case. The table lists the segments with or without
driving events during the duration of the segments. As a
reference, we randomly select 1200 12-second segments to
evaluate how likely is to have an annotation by chances in
these windows (chances is about 43%). The table shows
that driving events often cooccur with extreme values of
physiological data. 89.4% of the selected segments for HR
have at least one driving event. This percentage is similar
for EDA (91.2%). For BR, the percentage is lower, but
still important (49.1%). These results suggest that extreme
changes of physiological data often cooccur with events
related to driving maneuvers.

Figure 3 shows the results with the events annotated during
the selected segments. The figure provides the results for
low (5% quantile) and high (95% quantile) values for HR,

TABLE II: Number of the selected segments with extreme
values in the physiological data. Number of segments with
and without driving events overlapping with the selected
recordings.

HR BR EDA Random
5% 95% 5% 95% 5% 95%

With Events 638 709 287 444 2456 465 516
Without Events 86 74 395 364 74 207 684
Total 724 783 682 808 2530 672 1200

BR, and EDA. Altogether, the most common events are
congestion (1106), left turn (902), intersection passing (898),
red light (758), right turn (431), stop for sign (367), and stop

for congestion (335). Intersection passing, congestion, and
red light are the three most frequent events for segments
with extreme values in HR. For recordings with extreme
values in BR, left turn and right turn are prominent events.
For low extremes (5% quantile) of BR, we observe several
instances with right turns (Fig. 3(c)). For high extremes
(95% quantile) of BR, we observe several left turns (Fig.
3(d)). Most segments with low values (5% quantile) for EDA
have an event. The top three events are left turn, intersection

passing, and congestion (Fig. 3(e)). Another prominent event
is U-turn. Notice that there are very few instances of U-turn

in the database (Table IV), so it is interesting that many of
these cases trigged the driver to decrease its EDA signal.

We also notice that congestions and red light account
for many of the events, which suggests that traffic on the
roads and waiting during red lights are associated with
extreme values of physiological signals. We hypothesize
that the driver’s anxiety during these events triggers these
physiological responses.

While some selected segments overlap with annotations
of driving events, there are others without any event. This
result indicates that within those segments, physiological data
present extreme values for reasons that are likely not related
to driving events (e.g., restlessness, moving around, changing
position, mind wandering or suddenly remember something).
This result is important to keep in mind, as it signals that
changes in physiological signal are not always related to
driving events.

V. PHYSIOLOGICAL SIGNALS AND MANEUVERS

From the driving events discussed in Section IV (see Table
I), we are particularly interested on six driving maneuvers
from the goal-oriented actions: right turn (RT), left turn

(LT), U-turn (UT), intersection passing (IP), left lane change

(LLC), and right lane change (RLC). The rest of the study
will focus on the relationship between these driving maneu-
vers and the driver’s physiological signals. While the analysis
in Section IV considers only the recordings with extreme
values of the physiological signals, the analysis in this section
evaluates all the recordings annotated with these six driving
maneuvers on the database.

Since the recordings of the HDD corpus are collected
over different sessions by multiple drivers, it is important to
normalize the physiological signals before we can directly
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(a) heart rate (HR) – 5% quantile (b) heart rate (HR) – 95% quantile

(c) breath rate (BR) – 5% quantile (d) breath rate (BR) – 95% quantile

(e) electrodermal activity (EDA) – 5% quantile (f) electrodermal activity (EDA) – 95% quantile
Fig. 3: Histogram with the driving events observed during the segments with extreme values in the physiological signal.
The results are presented for low extremes (5% quantile) and high extremes (95% quantile) for HR, BR, and EDA.

compare their values across sessions. This is important since
previous studies have shown differences in physiological sig-
nals across individuals [18], [19]. We use the Z-normalization
in this study (z = x�µ

� ), where µ and � are the mean and
standard deviation estimated from the entire session.

The analysis evaluates the BR, HR, and EDA signals as
a function of the driving maneuvers. For this analysis, we
also use a 12-second window around the annotated driving
maneuvers, with four seconds before and eight seconds after
the beginning of the maneuver. The selection of the analysis
window for this evaluation is different from the one used
in Section IV. In Section IV, our reference point was the
values of the physiological signal, so it was important to
extend the window before the detected extreme segments.
In this section, and in Section VI, the reference point is
the annotation, so we extend longer the analysis window
after the beginning of the maneuver to account for delays

in the physiological responses. The selection of the analysis
window is also justified by the duration of the events in the
database, which is often between four to nine seconds [21].

Figure 4 shows bars with the 25%, 50%, and 75%
quantiles of the normalized values for BR, HR, and EDA
as a function of driver maneuvers. We evaluate whether
the differences in the physiological signals are statistically
significant using a one-way analysis of variance (ANOVA).
The ANOVA test is conducted over the mean value of the
physiological signals during the 12-second analysis windows,
reducing the degree of freedom in the test. The evaluations
indicate that the physiological signals change depending on
the given maneuver: F(6,10176) = 2.719, p = 0.012] for HR;
F(6,10176) = 15.484, p = 0.0019] for BR; and F(6,10176)
= 12.124, p = 0.0013] for EDA. Asserting significance at p-
value = 0.05, all these differences are statistically significant.
The differences are more clear with BR and EDA signals.
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(a) HR Quantiles

(b) BR Quantiles

(c) EDA Quantiles

Fig. 4: Distribution of the physiological data as a function of
driving maneuvers. Each bar provides the 25% quantile, 50%
quantile (e.g., median) and 75% quantile. The information is
separately presented for HR, BR, and EDA.

We use the Tukey’s honestly significant difference (HSD)
test to identify the maneuvers for which the physiological
signals deviate from typical responses during normal driving
conditions. For HR, the only driving maneuver with signif-
icant differences is right turn (Fig. 4(a)). In contrast, the
physiological data for EDA present significant differences
for four maneuvers: left turn, U-turn, intersection passing

and left lance change (Fig. 4(c)). The analysis indicates that
features extracted from EDA may be more discriminative
in the detection of driving maneuvers. For BR, we observe
statistical differences in the physiological data for right turn,
U-turn and left lance change (Fig. 4(b)). BR also provides
discriminative information for driving maneuvers.
VI. DISCRIMINANT ANALYSIS OF PHYSIOLOGICAL DATA

To validate the discriminative power of physiological sig-
nals, we conduct classification experiments to detect driver
maneuvers from normal conditions using features extracted
from HR, BR, and EDA. We extract time and frequency
domain features from physiological signals during the same
12-second analysis windows used in Section V. The time-
domain features consists of four statistics calculated over
the windows: mean, standard deviation, maximum, and mini-
mum. The frequency domain features consist of the energy in
the following five frequency bands: [0-0.04 Hz], [0.04-0.15
Hz], [0.15-0.5 Hz], [0.5-4 Hz], and [4-20 Hz]. The selection

TABLE III: Discriminant analysis of physiological signal to
recognize driving maneuvers ( F1-score) [RT= right turn; LT
= left turn; UT = U-turn; IP = intersection passing; LLC =
left lane change; RLC = right lane change].

Support Vector Machine
HR [%] BR [%] EDA [%] Combined [%]

Normal vs. RT 62.0 69.8 65.5 70.1
Normal vs. LT 41.8 53.4 65.7 66.9
Normal vs. UT 50.6 71.5 71.8 76.1
Normal vs. IP 61.4 74.3 66.5 74.8
Normal vs. LLC 46.3 60.5 53.7 65.0
Normal vs. RLC 39.2 62.6 47.0 64.1
Average 50.2 65.3 61.7 69.5

Random Forest
HR [%] BR [%] EDA [%] Combined [%]

Normal vs. RT 59.9 70.9 65.8 75.5
Normal vs. LT 53.4 65.1 67.6 74.2
Normal vs. UT 57.5 72.7 69.1 75.5
Normal vs. IP 53.3 71.9 60.6 73.8
Normal vs. LLC 53.8 63.4 56.9 70.5
Normal vs. RLC 47.9 62.6 54.8 67.4
Average 54.3 67.7 62.5 72.8

of these bands is inspired by the work of Li et al. [15].
Altogether, we extract nine features per analysis window
for each physiological signal. The evaluation also considers
fusing these signals, creating a 27 dimensional feature vector.

This study uses two classifiers: Support Vector Machine

(SVM) with linear kernel, and random forest (RF). The
tasks are binary classification problem between each driving
maneuver and normal conditions. Table IV shows that the
maneuvers are not balanced. The majority class is always
normal. We deal with unbalanced classes using random
undersampling, where we randomly select samples from the
majority class until matching the number of samples in the
minority class. We repeat this process 10 times selecting
different samples in each iteration. The evaluation relies on
a 5-fold cross-validation approach to maximize the use of
the dataset. We estimate the performance using the F1-score,
reporting the performance across all the folds.

Table III gives the results for the classifiers trained with
HR, BR, or EDA features. It also estimates the results
when we combined all the features. The results indicate
that physiological data provide valuable information about
the driving maneuvers. We observe that RF classifiers of-
ten give better performance than SVMs. On average, the
maneuvers can be detected with 72.8% using RF, trained
with all the features (HR, BR and EDA). The fusion of
the features across physiological sensors is useful, providing
complimentary information with classification performances
that are always better than the results obtained with classifiers
trained with only one type of data. We are able to obtain these
classification performance using only physiological features,
without any CAN-BUS information (e.g., steering wheel
angle). This result suggests that physiological signals can be
useful in understanding the driver intentions during (hands-
off) level 2 of driving automation.

The discriminant analysis confirms the findings in Section
V, indicating that BR and EDA signals are more informa-
tive about driver maneuvers than HR signals. In fact, the
performance are close to chances using features extracted
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TABLE IV: Number of annotations for each of the driving
maneuver included in this study.

Number of
Normal 1245
Right Turn 1342
Left Turn 1155
U-Turn 131
Intersection Passing 5440
Left Lane Change 502
Right Lance Change 377

from HR signals. The average performances of classifiers
trained with BR features are better than the ones obtained
with classifiers trained with other physiological signals. The
best performance is obtained with the classifier for U-Turn.
U-Turn is a stressful maneuver that requires patience and
good timing. BR and EDA features are useful for this task.

VII. CONCLUSIONS

This study investigated the relationship between physio-
logical signals (HR, BR, and EDA) and driving maneuvers.
The analysis considered 76 hours of naturalistic recordings
of the HDD corpus, where physiological signals of the
drivers were collected. The analysis leveraged the rich set of
manual annotations of driving events in the corpus. The study
evaluated recordings with extreme values of physiological
data. The study demonstrated that most of the segments
with extreme values in the physiological data overlap with
driving events. We considered six specific driving maneuvers:
right turn, left turn, U-turn, intersection passing, left lane

change, and right lane change. The study showed that these
driving maneuvers affects the physiological responses of the
drivers. This result was validated with discriminant analysis,
showing that driving maneuvers can be recognized from
normal recordings with an average classification F1-score of
72.8% (chances performance is 50%).

This study opens several research directions. An important
question is to study the complementary information provided
by physiological data over other modalities commonly used
to detect driving maneuvers. Li et al. [15] provides indica-
tions about the benefits of fusing physiological data with
CAN-Bus signals. We are also interested in analyzing other
driving events such as stop for sign, stop for congestion and
merge. Similar events were often observed during extreme
values of physiological signals (e.g., congestion and red

light), indicating that driving states such as anxiety may be
possible to estimate using these physiological sensors.
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[2] T. Hülnhagen, I. Dengler, A. Tamke, T. Dang, and G. Breuel, “Ma-
neuver recognition using probabilistic finite-state machines and fuzzy
logic,” in IEEE Intelligent Vehicles Symposium, San Diego, CA, USA,
June 2010, pp. 65–70.

[3] K. Takeda, J. Hansen, P. Boyraz, L. Malta, C. Miyajima, and H. Abut,
“International large-scale vehicle corpora for research on driver be-
havior on the road,” IEEE Transactions on Intelligent Transportation

Systems, vol. 12, no. 4, pp. 1609–1623, December 2011.
[4] Y. Zheng, A. Sathyanarayana, and J. H. L. Hansen, “Threshold based

decision-tree for automatic driving maneuver recognition using CAN-
Bus signal,” in IEEE Conference on Intelligent Transportation Systems

(ITSC 2014), Qingdao, China, October 2014, pp. 2834–2839.

[5] J. Jain and C. Busso, “Analysis of driver behaviors during common
tasks using frontal video camera and CAN-Bus information,” in IEEE

International Conference on Multimedia and Expo (ICME 2011),
Barcelona, Spain, July 2011.

[6] A. Sathyanarayana, P. Boyraz, Z. Purohit, R. Lubag, and J. Hansen,
“Driver adaptive and context aware active safety systems using CAN-
bus signals,” in IEEE Intelligent Vehicles Symposium (IV 2010), San
Diego, CA, USA, June 2010.

[7] S. Jha and C. Busso, “Analyzing the relationship between head pose
and gaze to model driver visual attention,” in IEEE International

Conference on Intelligent Transportation Systems (ITSC 2016), Rio
de Janeiro, Brazil, November 2016, pp. 2157–2162.

[8] ——, “Probabilistic estimation of the gaze region of the driver using
dense classification,” in IEEE International Conference on Intelligent

Transportation (ITSC 2018), Maui, HI, USA, November 2018, pp.
697–702.

[9] ——, “Probabilistic estimation of the driver’s gaze from head orien-
tation and position,” in IEEE International Conference on Intelligent

Transportation (ITSC), Yokohama, Japan, October 2017, pp. 1630–
1635.

[10] O. Rompelman, A. Coenen, and R. Kitney, “Measurement of heart rate
variability: Part i - comparative study of heart rate variability analy-
sis methods,” Medical and Biological Engineering and Computing,
vol. 15, pp. 223–239, May 1977.

[11] A. C. Timmons, T. Chaspari, S. C. Han, L. Perrone, S. S. Narayanan,
and G. Margolin, “Using multimodal wearable technology to detect
conflict among couples,” Computer, vol. 50, no. 3, pp. 50–59, March
2017.

[12] G. Corner, D. Saxbe, T. Chaspari, H. F. Rasmussen, L. Perrone,
C. Pettit, M. Friendly, A. C. Timmons, and G. Margolin, “Compassion
in a heartbeat: Physiology during couples’ loss discussions,” Journal

of Social and Personal Relationships, vol. 36, no. 6, pp. 1671–1694,
June 2019.

[13] Y. Murphey, D. S. Kochhar, P. Watta, X. Wang, and T. Wang,
“Driver lane change prediction using physiological measures,” SAE

International Journal of Transportation Safety, vol. 3, no. 2, pp. 118–
125, July 2015.

[14] N. Li, T. Misu, and A. Miranda, “Driver behavior event detection for
manual annotation by clustering of the driver physiological signals,” in
IEEE International Conference on Intelligent Transportation Systems

(ITSC 2016), Rio de Janeiro, Brazil, November 2016, pp. 2583–2588.
[15] N. Li, T. Misu, A. Tawari, A. Miranda, C. Suga, and K. Fujimura,

“Driving maneuver prediction using car sensor and driver physio-
logical signals,” in ACM International Conference on Multimodal

Interaction (ICMI 2016), Tokyo, Japan, October 2016, pp. 108–112.
[16] S. Begum, S. Barua, and M. Ahmed, “Physiological sensor signals

classification for healthcare using sensor data fusion and case-based
reasoning,” Sensors, vol. 14, no. 7, pp. 11 770–11 785, July 2014.

[17] J. Taelman, S. Vandeput, A. Spaepen, and S. Van Huffel, “Influence
of mental stress on heart rate and heart rate variability,” in Euro-

pean Conference of the International Federation for Medical and

Biological Engineering (IFMBE 2008), ser. Lecture Notes in Computer
Science, J. Van der Sloten, P. Verdonck, M. Nyssen, and J. Haueisen,
Eds. Antwerp, Belgium: Springer Berlin Heidelberg, November 2009,
vol. 22, pp. 1366–1369.

[18] M. Nishigaki, R. Mose, O. Takahata, H. Imafuku, and H. Aoygai,
“Quantitative evaluation on mental workload reduction for hands free
driving,” in International Conference on Intelligent Transportation

Systems (ITSC 2018), Maui, HI, USA, November 2018, pp. 230–235.
[19] J. Healey and R. Picard, “Detecting stress during real-world driving

tasks using physiological sensors,” IEEE Transactions on intelligent

transportation systems, vol. 6, no. 2, pp. 156–166, June 2005.
[20] B. Lee, S. Jung, and W. Chung, “Real-time physiological and vision

monitoring of vehicle driver for non-intrusive drowsiness detection,”
IET Communications, vol. 5, no. 17, pp. 2461–2469, November 2011.

[21] T. Misu and Y. Chen, “Toward reasoning of driving behavior,” in
International Conference on Intelligent Transportation Systems (ITSC

2018), Maui, HI, USA, November 2018, pp. 204–209.
[22] V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko, “Toward driving

scene understanding: A dataset for learning driver behavior and causal
reasoning,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR 2018), Salt Lake City, UT, USA, June 2018, pp.
7699–7707.

3235


