

Jointly Predicting Arousal, Valence and Dominance with Multi-Task Learning

Srinivas Parthasarathy and Carlos Busso

Multimodal Signal Processing (MSP) Lab The University of Texas at Dallas Erik Jonsson School of Engineering and Computer Science

August 22, 2017

Motivation

- Emotions represented using emotional attributes
 - Arousal passive vs. active
 - Valence negative vs. positive
 - Dominance weak vs. strong

- Attributes are very appealing
 - Some emotions are ambiguous and are hard to label with emotional categories
 - Attributes provide finer granularity to represent emotion

Limitations

- Systems that predict emotional attributes have some limitations
 - Systems predict each emotional attribute independently ignore dependencies between attributes ^{[1], [2], [3] related work}

	Valence	Dominance
Arousal	0.2217	0.6503
Valence		0.3129

[1] P. Lewis, H.Critchley, P.Rotshtein, and R.Dolan, "Neural correlates of processing valence and arousal in affective words,"

[2] J. Russell, "Evidence of convergent validity on the dimensions of affect,"

[3] M. Nicolaou, H. Gunes, and M. Pantic, "Continuous prediction of spontaneous affect from multiple cues and modalities in valence- arousal space,"

Solution

- Appealing solution Jointly learn multiple emotional attributes
- Leverage dependencies between the attributes
- Multitask Learning (MTL) framework for learning attributes
 - Learning secondary attribute helps primary attribute
 - Regularizes learning
- Learn feature representations that benefit predicting all three attributes while optimizing for target attribute

MTL - Related Work

- Xiu and Liu^[1] proposed multi-task learning framework
 - Primary task emotional categories
 - Secondary task prediction/classification attribute scores
- Zhang et al.^[2] proposed multi-task framework with shared hidden layers
 - Jointly classify emotions with different representations (e.g., varied number of classes, quadrants in arousal-valence space)
- Chang and Scherer^[3] proposed jointly learning valence and arousal
 - Valence primary task
 - Three, five-class classification problem

[1] R.Xia and Y.Liu, "A multi-task learning framework for emotion recognition using 2D continuous space," IEEE Transactions on Affective Computing

[2] Y.Zhang, Y.Liu, F.Weninger, and B.Schuller, "Multi-taskdeep neural network with shared hidden layers: Breaking down the wall between emotion representations," (ICASSP 2017)

[3] J. Chang and S. Scherer, "Learning representations of emotional speech with deep convolutional generative adversarial networks," (

Contributions

 Use MTL where the primary task is target attribute (e.g., arousal) secondary tasks – other two attributes (e.g., valence, dominance)

- Explore attribute-dependent layers on top of shared hidden layers
- Extensive within corpus and cross corpus evaluations

MTL Framework

- Goal: predicting emotional attributes with a unified framework
 - MTL implemented with deep neural networks (DNN)
 - Loss Mean squared error

MTL Framework

0.775

0.77

0.765

0.76

0.755

0.75

0.745

Weights learned using the development set

STL

- $\alpha = 1, \beta = 0$ Arousal
- $\alpha = 0, \beta = 1$ Valence

 $\alpha = 0, \beta = 0$ Dominance

 $MSE_{ov} = \alpha \times MSE_{aro} + \beta \times MSE_{val} + (1 - \alpha - \beta) \times MSE_{dom}$

Experimental Evaluation

- Acoustic features
 - Interspeech 2013 feature-set for paralinguistic challenge – 6,373 features
- Implementation
 - 2 hidden layers, 256/ 512/ 1024 nodes with ReLU activation
 - SGD momentum 0.9, mini-batch 256, dropout 0.5
 - Evaluated on concordance correlation coefficient

Experimental Results

- Baseline : Single Task Learning (STL)
 - Individually predict value of arousal, valence, dominance

 $MSE_{ov} = \alpha \times MSE_{aro} + \beta \times MSE_{val} + (1 - \alpha - \beta) \times MSE_{dom}$

Can be formulated setting

 $\alpha = 1, \beta = 0$ for arousal

 $\alpha = 0, \beta = 1$ for valence

 $\alpha = 0, \beta = 0$ for dominance

MSP-PODCAST

- Collection of audio recordings^[1] (Podcasts)
 - Naturalness and the diversity of emotions
 - Creative Commons copyright licenses
 - Duration between 2.75s 11s
 - Perceptive evaluation of emotional content

[1] Reza Lotfian and Carlos Busso, "Building naturalistic emotionally balanced speech corpus by retrieving emotional speech from existing podcast recordings," IEEE Transactions on Affective Computing

Experimental Results

Within-corpus evaluation

Nodes / Lavers Type of tas

- Multi-task learning (MTL) always better than single task learning (STL)
- Performance increase as we increase number of nodes

		Arousal	Valence	Dominance		Hidden Layer 1
256 / 2	STL	0.7401	0.2421	0.6697	Within-Corpus Evaluation	
	MTL-1	0.7340	0.2721	0.6842		
	MTL-2	0.7496	0.2687	0.7059	Validation Set Testing	Testing Se
512 / 2	STL	0.7380	0.2702	0.6622	10 speakers 887 sent.	50 speakers 5,024 sent.
	MTL-1	0.7489	0.2877	0.6994		
	MTL-2	0.7508	0.2889	0.7097		
1024 / 2	STL	0.7200	0.2607	0.6796	Training Set	
	MTL-1	0.7430	0.2826	0.6963	Rest of corpus 6,710 sentences	
	MTL-2	0.7635	0.2894	0.7130		UTD

Concordance Correlation Coefficient

Other datasets

USC-IEMOCAP

- 12 hours of conversational recordings from 10 actors in dyadic sessions
- Sessions consists of emotional scripts as well as improvised interactions
- All speaking turns annotated for emotional attributes by two raters on a scale of 1-5

- MSP-IMPROV
 - Improvisation between actors (12 actors)
 - Contains 8,438 speaking turns
 - Annotated by novel crowdsourcing methods on a scale of 1-5 by at least 5 raters

Emotional values in all databases scaled between [-1,1]

Experimental results

- Cross-corpus evaluation
 - Performance drops with respect to within-corpus evaluations
 - Benefit of multi-task increases 0.14
 - Best performance with lower number of nodes per layer

Nodes / Layers	Type of task	Concordance Correlation Coefficient				
		Arousal	Valence	Dominance		
256 / 2	STL	0.4052	0.1519	0.3109		
	MTL-1	0.4329	0.1519	0.4408	Cross-Corpus Evaluation	
	MTL-2	0.4642	0.1674	0.4512	Validation Set	Testing Set
512 / 2	STL	0.3877	0.1308	0.3006	10 speakers	50 speakers
	MTL-1	0.3985	0.1745	0.4381	887 sent.	5,024 sent.
	MTL-2	0.4242	0.1843	0.4398		
1024 / 2	STL	0.3726	0.1426	0.3131	Iraining Set	
	MTL-1	0.3908	0.1607	0.4364	IEMOCAP MSP-IMPROV	
	MTL-2	0.4616	0.1697	0.4384		
msp.utdallas.edu			16			

Feature Representation

- Feature representation of best models illustrated with t-SNE for arousal 3500
- Values divided into three classes
- Classes better separated in MTL2

MTL2

Conclusions

- Recognizing emotional attributes is appealing
- Some dependencies exist between various emotional attributes
- Dependencies can be learnt with MTL
- MTL's with shared hidden layers and attribute dependent layers perform better than STL
- Improvement in concordance correlation coefficient for within corpus and cross corpus tests

Questions ?

This work was funded by NSF CAREER award IIS-1453781

msp.utdallas.edu

msp.utdallas.edu