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Motivation

• Emotions represented 

using emotional attributes

• Arousal – passive vs. active

• Valence – negative vs. 

positive

• Dominance – weak vs. 

strong
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• Attributes are very appealing

• Some emotions are ambiguous and are hard to label with 

emotional categories

• Attributes provide finer granularity to represent emotion
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Limitations

• Systems that predict emotional attributes have some 

limitations

• Systems predict each emotional attribute independently – ignore 

dependencies between attributes [1], [2], [3] related work
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Dominance

Valence Dominance

Arousal 0.2217 0.6503

Valence 0.3129

Correlation between attributes 

MSP-IMPROV

[1] P. Lewis, H.Critchley, P.Rotshtein, and R.Dolan, “Neural correlates of processing valence and arousal in affective words,” 

[2] J. Russell, “Evidence of convergent validity on the dimensions of affect,” 

[3] M. Nicolaou, H. Gunes, and M. Pantic, “Continuous prediction of spontaneous affect from multiple cues and modalities in valence- arousal space,” 



msp.utdallas.edu

Solution

• Appealing solution – Jointly learn multiple 
emotional attributes 

• Leverage dependencies between the attributes

• Multitask Learning (MTL) framework for learning 
attributes

• Learning secondary attribute helps primary attribute

• Regularizes learning

• Learn feature representations that benefit 
predicting all three attributes while optimizing for 
target attribute

4



msp.utdallas.edu

MTL - Related Work

• Xiu and Liu[1] proposed multi-task learning framework 

• Primary task – emotional categories

• Secondary task – prediction/classification attribute scores 

• Zhang et al.[2]  proposed multi-task framework with shared hidden 
layers

• Jointly classify emotions with different representations (e.g., varied number 
of classes, quadrants in arousal-valence space)

• Chang and Scherer[3]  proposed jointly learning valence and arousal

• Valence primary task

• Three, five-class classification problem
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[1] R.Xia and Y.Liu,“A multi-task learning framework for emotion recognition using 2D continuous space,” IEEE Transactions on Affective Computing

[2] Y.Zhang,  Y.Liu, F.Weninger, and B.Schuller,“Multi-taskdeep neural network with shared hidden layers: Breaking down the wall between emotion 

representations,” (ICASSP 2017)

[3] J. Chang and S. Scherer, “Learning representations of emotional speech with deep convolutional generative adversarial networks,” (ICASSP 2017)
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Contributions

• Use MTL where the 

primary task is target 

attribute (e.g., arousal) 

secondary tasks – other 

two attributes (e.g., 

valence, dominance)
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• Explore attribute-dependent layers on top of shared 

hidden layers

• Extensive within corpus and cross corpus 

evaluations
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MTL Framework

• Goal: predicting emotional attributes with a 
unified framework 

• MTL implemented with deep neural networks (DNN)

• Loss – Mean squared error 
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MTL-1 MTL-2

𝛼 + 𝛽 ≤ 1
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MTL Framework

8

• Weights learned using the development set

STL

𝛼 = 1, 𝛽 = 0 Arousal

𝛼 = 0, 𝛽 = 1 Valence

𝛼 = 0, 𝛽 = 0
Dominance
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Experimental Evaluation

• Acoustic features

• Interspeech 2013 feature-set for paralinguistic 
challenge – 6,373 features

• Implementation

• 2 hidden layers, 256/ 512/ 1024 nodes with ReLU
activation

• SGD – momentum 0.9, mini-batch 256, dropout 0.5

• Evaluated on concordance correlation coefficient

𝜌𝑐 =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2 + 𝜎𝑦

2 + (𝜇𝑥− 𝜇𝑦)
2
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Experimental Results

• Baseline : Single Task Learning (STL)

• Individually predict value of arousal, valence, 

dominance

• Can be formulated setting

𝛼 = 1, 𝛽 = 0 for arousal

𝛼 = 0, 𝛽 = 1 for valence

𝛼 = 0, 𝛽 = 0 for dominance
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MSP-PODCAST
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Podcast 
Audio

Audio sharing website

16kHz, 16b PCM, 
Mono

Diarization 2.75s<…<11s

Duration 
filter

High quality 
audio

Speech only 
audio

SNR filter

Music 
detectionEmotion 

retrieval
Manual 
screening

Remove 
telephone 
quality

Perceptual 
Evaluation

• Collection of audio recordings[1] (Podcasts)

• Naturalness and the diversity of emotions

• Creative Commons copyright licenses

• Duration between 2.75s – 11s

• Perceptive evaluation of emotional content

[1] Reza Lotfian and Carlos Busso, "Building naturalistic emotionally balanced speech corpus by retrieving emotional speech from 

existing podcast recordings," IEEE Transactions on Affective Computing
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Status of the MSP-PODCAST: 

Ongoing work 
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Segmented turns
190,872 sentences from 952 podcasts

With emotion labels: 
19,670 sentences 
(29h, 37m)

✓

✓

✓ ✓

Arousal Valence

✓

Dominance
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Status of the MSP-PODCAST: Ongoing 

Work 
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✓ Natural recordings

✓ The largest database

✓Multiple speakers 

✓ Rich emotional content
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Experimental Results
• Within-corpus evaluation

• Multi-task learning (MTL) always better than single task learning 
(STL)

• Performance increase as we increase number of nodes
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Nodes / Layers Type of task
Concordance Correlation Coefficient

Arousal Valence Dominance

256 / 2

STL 0.7401 0.2421 0.6697

MTL-1 0.7340 0.2721 0.6842

MTL-2 0.7496 0.2687 0.7059

512 / 2

STL 0.7380 0.2702 0.6622

MTL-1 0.7489 0.2877 0.6994

MTL-2 0.7508 0.2889 0.7097

1024 / 2

STL 0.7200 0.2607 0.6796

MTL-1 0.7430 0.2826 0.6963

MTL-2 0.7635 0.2894 0.7130

Within-Corpus Evaluation 

50 speakers
5,024 sent.

Validation Set

10 speakers
887 sent. 

Testing Set

Rest of corpus
6,710 sentences

Training Set

MTL-1

MTL-2
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Other datasets
• USC-IEMOCAP

• 12 hours of conversational 
recordings from 10 actors in 
dyadic sessions

• Sessions consists of 
emotional scripts as well as 
improvised interactions

• All speaking turns annotated 
for emotional attributes by two 
raters on a scale of 1-5
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• Emotional values in all databases scaled between [-1,1]

• MSP-IMPROV

• Improvisation between 
actors (12 actors)

• Contains 8,438 
speaking turns 

• Annotated by novel 
crowdsourcing 
methods on a scale of 
1-5 by at least 5 raters
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Nodes / Layers Type of task
Concordance Correlation Coefficient

Arousal Valence Dominance

256 / 2

STL 0.4052 0.1519 0.3109

MTL-1 0.4329 0.1519 0.4408

MTL-2 0.4642 0.1674 0.4512

512 / 2

STL 0.3877 0.1308 0.3006

MTL-1 0.3985 0.1745 0.4381

MTL-2 0.4242 0.1843 0.4398

1024 / 2

STL 0.3726 0.1426 0.3131

MTL-1 0.3908 0.1607 0.4364

MTL-2 0.4616 0.1697 0.4384

Experimental results

• Cross-corpus evaluation

• Performance drops with respect to within-corpus evaluations

• Benefit of multi-task increases – 0.14

• Best performance with lower number of nodes per layer
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Cross-Corpus Evaluation 

50 speakers
5,024 sent.

Validation Set

10 speakers
887 sent. 

Testing Set

Training Set

IEMOCAP MSP-IMPROV 
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Feature Representation

• Feature representation of best models 
illustrated with t-SNE for arousal

• Values divided into three classes

• Classes better separated in MTL2
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STL MTL2
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Conclusions

• Recognizing emotional attributes is appealing

• Some dependencies exist between various 

emotional attributes

• Dependencies can be learnt with MTL

• MTL’s with shared hidden layers and attribute 

dependent layers perform better than STL 

• Improvement in concordance correlation 

coefficient for within corpus and cross corpus tests

18



msp.utdallas.edu

Questions ?
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