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Abstract

Conventional emotion classification methods focus on pre-
defined segments such as sentences or speaking turns that are
labeled and classified at the segment level. However, the emo-
tional state dynamically fluctuates during human interactions,
so not all the segments have the same relevance. We are inter-
ested in detecting regions within the interaction where the emo-
tions are particularly salient, which we refer to as emotional
hotspots. A system with this capability can have real applica-
tions in many domains. A key step towards building such a
system is to define reliable hotspot labels, which will dictate the
performance of machine learning algorithms. Creating ground-
truth labels from scratch is both expensive and time consuming.
This paper also demonstrates that defining those emotionally
salient segments using perceptual evaluation is a hard problem
resulting in low inter-evaluator agreement. Instead, we pro-
pose to define emotionally salient regions leveraging existing
time-continuous emotional labels. The proposed approach re-
lies on the qualitative agreement (QA) method, which dynami-
cally captures increasing or decreasing trends across emotional
traces provided by multiple evaluators. The proposed method is
more reliable than just averaging traces across evaluators, pro-
viding the flexibility to define hotspots at various reliability lev-
els without having to recollect new perceptual evaluations.
Index Terms: emotion recognition, emotional hotspot detec-
tion, qualitative Agreement.

1. Introduction

Recognition of expressive behaviors using multimodal cues
plays an important role in human computer interaction. Most
of the current studies have focused on classifying discrete cat-
egories such as happiness, sadness, and anger [1, 2, 3] or pre-
dicting attribute based descriptors such as arousal (calm ver-
sus active) and valence (negative versus positive) [4, 5]. Most
of the studies have focused on short, pre-segmented clips (au-
dio,video), which are annotated at the segment level (e.g.,
IEMOCAP database [6]). However, during human interaction
the expressed behaviors are usually neutral, with few segments
conveying emotions. There is a growing interest in develop-
ing systems that are dynamic in nature, where the emotions are
tracked continuously over time detecting salient segments that
deviate from neutral behaviors [7]. Some studies have focused
on detecting points where the emotional content change during
a dialog [8]. These research directions are appealing from an
application perspective. We are interested in both defining and
detecting emotionally salient regions in longer spontaneous in-
teractions, which we refer to as emotional hotspots. A hotspot
detection system can play an important role in emotion retrieval
tasks [9, 10], providing insights to investigate the triggers and
motivations behind expressive behaviors.

One of the major barriers toward detecting affective behav-
iors is the definition of reliable emotional labels [11, 12]. There
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are clear differences on how we perceive emotions, which make
perceptual evaluations a complex process [13]. Unreliable la-
bels can greatly affect the performance of classifiers. This prob-
lem is particularly important for detecting hotspots or changes
in emotions, since current emotional annotations are not suit-
able for this task. The most convenient labels for these tasks
correspond to continuous-time evaluations using toolkits such
as FEELTRACE (e.g., SEMAINE database [14]), where emo-
tional traces are aggregated across multiple raters. Metallinou
et al.[15] showed that inter-evaluator agreement for continuous
traces is low and directly aggregating the traces leads to unre-
liable labels. Creating labels for hotspot detection from scratch
is expensive, time consuming, and, as described in this paper,
prone to low inter evaluator agreement. There is a need to de-
fine labels for emotionally salient segments that are reliable.
The goal of this paper is to define labels describing emo-
tionally salient segments from existing emotional evaluations.
We exploit the qualitative agreement (QA) method [16] to de-
fine labels for emotional hotspots in the SEMAINE database
[14]. For a given emotional attribute, the QA approach searches
for trends where the evaluators agree. We modify this pow-
erful framework to define segments with high and low levels
of arousal and valence. The results show that the emotionally
salient segments defined by the proposed QA-based approach
are more reliable than defining these segments after aggregating
the emotional traces. The framework is easily extended to other
databases relying on continuous-time annotations, providing the
infrastructure to build reliable emotional hotspot detectors.

2. Database and Emotional Hotspots

2.1. Database

The study uses the SEMAINE database, which consists of
dyadic interactions between a user and an operator. In the solid
Sensitive Artificial Listener (SAL) portion of the database, the
operator is a human who plays a particular character (Spike,
Poppy, Obadiah and Prudence) to elicit emotions from the user
(angry, happy, gloomy and reasonable) [14]. We only consider
segments from the users. The conversations are annotated us-
ing FEELTRACE [17]. As the evaluators perceive the emotion
on the video, they move a joystick over a graphical user inter-
face (GUI), where the axes represent the extremes of an emo-
tional attribute. The values are continuously collected form-
ing traces with values between -1 and 1. This study considers
arousal (calm versus active), and valence (negative versus posi-
tive). The evaluators watch a video and respond by moving the
cursor after perceiving its emotional content. This process intro-
duces a delay which has been carefully studied [18, 19, 20]. We
compensate the emotional traces with the delays suggested by
Mariooryad and Busso [19]. The traces for valence are shifted
4.68s, and the traces for arousal are shifted 3.90s. There are
40 sessions emotionally annotated by six raters. These sessions
were collected from 10 users interacting with operators playing
the role of four different characters.
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Table 1: Percentage of ground truth data under each region
(low,neutral,high), for different domains.

Dimension Percentage of Ground-truth data
Low Neutral High

Arousal 1.69 93.41 3.50
Valence 2.18 95.61 1.63

2.2. Definition and Annotation of Emotional Hotspots

This study defines an emotional hotspot as a segment having
either high or low level of a given attribute. For valence, for
example, hotspots corresponds to segments with very negative,
or very positive emotions. We attempted to define ground-truth
labels for emotional hotspots using perceptual evaluations. We
asked three evaluators to annotate a subset of 16 sessions (8
for arousal, 8 for valence) recorded by the ten speakers. These
sessions were evenly divided between the four characters to
cover different emotional content. We independently annotated
hotspots in arousal and valence. The task consisted of selecting
emotionally salient segments by marking regions that the eval-
uator perceived having high or low level of a given attribute.
The other segments by default were marked as neutral. The
evaluation was conducted with OCTAB [21]. Neutral regions
dominated the annotation, as expected. This leads to skewed
classes. Since each session was annotated by three evaluators,
we fused the annotations using simple majority vote (2 out of
3). Segments without agreement are left without labels. Table 1
shows the distribution of annotations, where around 5% of the
data was considered as hotspots.

We evaluated the reliability of the evaluations with Fleiss’
Kappa (k). This statistic provides a measure of reliability for
tasks with multiple raters and multiple nominal values (low,
neutral, and high regions, in our case). The segments where
the user spoke are split into fixed windows of 250ms. Then, we
compared the annotations from the evaluators estimating Fleiss’
Kappa per class, and overall. The overall agreement for arousal
1S Karousat = 0.1355 and for valence is Kyatence = 0.1212,
showing the difficulty of this perceptual task. Table 2 shows
that there is better consensus amongst raters in evaluating high
regions than low regions for both attributes.

3. Methodology

3.1. Qualitative Agreement Framework

It is a common practice to aggregate continuous-time annota-
tions from multiple evaluators by averaging theirs scores. How-
ever, previous studies have shown that constructing emotional
labels with this approach is challenging and unreliable [15, 22].
The absolute scores provided by raters have low inter evaluator
agreements, so adding the absolute scores leads to noisy labels,
and as a result, classifiers with poor performance [12].

Cowie and McKeown [16] proposed the qualitative agree-
ment (QA) method, which provides an appealing alternative
framework to aggregate emotional traces. The intuition be-
hind the approach is that raters tend to agree better on relative
trends rather than absolute values [22]. The QA method is a non

Table 2: Reliability of the ground truth hotspot labels using
Fleiss’ Kappa.

Dimension Region-wise K Overall K
Low Neutral High
Arousal 0.0651 0.1375 0.1938 0.1355

Valence 0.0778 0.1145 0.2256 0.1212
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Figure 1: The figure illustrates the process of creating individual
matrices under the QA method.

parametric approach that aims to capture the relative trends that
raters agree on. The first step is to create an individual matrix
(IM) for the trace provided by each evaluator (Fig. 1). A con-
tinuous trace is first discretized into bins. The average value of
the traces within the i bin is assigned to the bin, denoted b;.
The difference between the values from two bins is estimated
and compared to a threshold (Egs. 1-3).

b; — bj > tihreshold (l)
bj — bz > tihreshold (2)
|bl — b]‘ < tihreshold (3)

If 2 < 7, we assign the “decreasing” symbol when Equation
1 is satisfied, “increasing” symbol when Equation 2 is satisfied
and “equal” symbol when Equation 3 is satisfied. Accordingly,
we obtain the IM by comparing all possible pairs, as shown in
Figure 1. The IM is skew-symmetric, where the figure only
shows the elements above the diagonal.

Different individual matrices are then combined using a
simple voting scheme to form the consensus matrix (CM) (Fig.
2). A second parameter is the agreement tolerance, which de-
fines the confidence level imposed in the process. We add a
trend in the CM when X% of the raters agree on a given trend.
Otherwise, the cell is left empty. Figure 2 illustrates the forma-
tion of the CM matrix from the IMs using a 100% consensus
agreement. Entries with no consensus are crossed out.

3.2. Using QA to define Emotional Hotspots

We propose to use the QA approach to create labels for emo-
tional hotspots using existing continuous-time labels. Instead
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Figure 2: The Consensus matrix, which is formed by combining
IMs. We cross out entries without agreement.
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Figure 3: Creating individual vector for each trace by compar-
ing bins to its global median value.

of comparing different bins as done in Section 3.1, we define
hotspots by comparing each bin with a reference average value.
For a given trace, we estimate the global median across all its
bins, denoted b,,cdian. The new set of equations are:

bi - bmedian > tthreshold (4)
bmedian - b’L > tthreshold (5)
|b2 - bmedian| < Lihreshold (6)

These comparisons are used to create an individual vector
(IV), which reflects whether the bins have lower (decreasing —
Eq. 4), higher (increasing — Eq. 5), or similar (equal — Eq. 6)
value than b,,cdian. Figure 3 illustrate this process.

These IVs are then aggregated to form a consensus vector
(CV), as illustrated in Figure 4. We also use agreement toler-
ance to define the CV. In the figure, the agreement tolerance is
set to 66%. Consecutive increasing trends reflect hotspot with
high values. Consecutive decreasing trends reflect hotspot with
low values. For those segments, X% of the evaluators agree on
the trends. This is an important advantage of these QA-based
labels derived from FEELTRACE-type traces. We can control
the reliability of the labels by using different parameters.

For defining hotspots using the QA method, we use the
following parameters. The length of the bins L is fixed to
3s. To be able to capture the trends, Cowie and McKeowen
[16] suggested values for L varying between 1 and 3s. Con-
secutive bins have a shift of 250 milliseconds to build con-
tinuous hotspot labels. This approach produces an overlap of
2.75 seconds but gives us reliable, continuous traces which
can later be used for regression tasks. We study the relia-
bility of the QA method at different thresholds, tinresholda =
[0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2]. All bins sat-
isfying Eq. 4 are grouped in the high category as these bins
are greater than the median value. Bins satisfying Eq. 5 are
grouped in the low category as these bins are lower than the
median value. We use an agreement tolerance of 66%. We ne-
glect bins without consensus.

4. Results and Discussion

This section compares our QA-based labels for hotspots with
the ground truth evaluations for hotspots(Sec. 2.2). As base-
line, we use the averaging method commonly used to define
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Figure 4: Consensus vector formed by combining individual
vectors. matrices. We cross out entries without agreement.
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Figure 5: Example of hotspots for arousal for one session. The
figures show our ground truth (Sec. 2.2), the baseline method,
and the QA-based approach (tinreshold set to 0.1).
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Figure 6: Example of hotspots for valence for one session. The
figures show our ground truth (Sec. 2.2), the baseline method,
and the QA-based approach (tinreshold set to 0.1).

emotional labels. Individual traces from evaluators are averaged
across time to form one trace. The resulting trace is discretized
into bins and the average score during each bin is compared with
the median value, defining hotspots for high and low regions.
The bin size and the threshold to define hotspots are exactly the
same as the ones used for the proposed QA method. Unlike our
method, this baseline approach relies on absolute values across
traces instead of their common trends.

First, we compare the proposed hotspots labels to the
ground truth labels. Figures 5 and 6 show examples of the
hotspots labels for arousal and valence, respectively, defined by
the ground truth, the baseline method, and the QA-based ap-
proach for one session. The task of identifying hotspots is sim-
ilar to the task of voice activity detection (VAD) where systems
are trained to distinguish between regions of speech and silence.
Therefore, we leverage metrics usually used for evaluating VAD
systems [23]. In particular, we use the hit rates corresponding
to the recall rate of neutral and low-high regions, defined as:

Npred

high,l
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high,low
npred
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Table 3: Hit-rate comparison for baseline and QA-based labels.
Hy,; - Hit-rate for the high and low regions, H,e., - Hit-rate for
neutral regions, H,, - Overall unweighted hit-rate.

Hit-rate
Baseline | QA

Hh l Hpeu Hoy [ Hh,l Hpeu Hoy

tihreshold Arousal
0.025 0.65 0.35 0.50 0.89 0.18 0.54
0.050 0.61 0.53 0.57 0.71 0.45 0.58
0.075 0.42 0.65 0.54 0.62 0.64 0.63
0.100 0.36 0.75 0.56 0.25 0.82 0.54
0.125 0.34 0.81 0.57 0.16 0.87 0.52
0.150 0.31 0.84 0.58 0.14 0.92 0.53
0.175 0.19 0.88 0.54 0.14 0.95 0.55
0.200 0.17 0.92 0.55 0.14 0.97 0.56

Valence
0.025 0.81 0.28 0.54 0.75 0.11 0.43
0.050 0.76 0.49 0.63 0.63 0.50 0.56
0.075 0.65 0.63 0.64 0.64 0.74 0.69
0.100 0.48 0.76 0.62 0.48 0.84 0.66
0.125 0.47 0.84 0.66 0.31 0.91 0.61
0.150 0.38 0.90 0.64 0.30 0.94 0.62
0.175 0.22 0.93 0.57 0.17 0.96 0.56
0.200 0.16 0.95 0.56 0.07 0.97 0.52

d
where NP7¢

high,low 18 the number of correctly predicted bins as-

signed to either high or low regions, N, ,:fgf h 10w 18 the total num-

ber of bins in the ground truth labels assigned to either low or
high regions. Identifying high and low regions are as impor-
tant as identifying neutral regions (Eq.8). For example, false
detection of hotspots will affect Hy..,. A reliable definition of
hotspots should simultaneously increase the accuracies for both
tasks, which is captured with Ho,,.

Table 3 presents the hit-rates for different thresholds used in
the evaluation (Egs. 4-6). Figure 7 shows the results for overall
hit-rates (H,,). Low thresholds lead to an increased number of
hotspots for low or high regions, as the conditions in Equations
4 and 5 are easily met. For these cases, Table 3 shows that H},;
is high, but H,., is low. As we increase the threshold, we set
stricter criteria for hotspots, resulting in fewer hotspots regions.
The best overall hit-rates for arousal and valence are achieved
by the QA method for ¢ipreshota = 0.075. Figure 7 shows that
H,, for valence are better than for arousal, revealing that the
task of defining positive or negative salient segments is easier
than the task of judging hotspots for arousal.

We have evaluated the proposed QA-based hotspots with
ground-truth labels defined in Section 2.2. As we previously
discussed, defining ground-truth hotspots is quite difficult for
annotators showing low inter-evaluator agreement (Table 2).
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Figure 7: Comparison of overall hit-rates for different thresh-
olds. The figure reports results for arousal and valence for QA-
based and baseline approaches.
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Figure 8: Perceptual evaluation using a five-point Likert-like
scale to assess the appropriateness of the hotspot (1- strongly
disagree, 5- strongly agree).

The final evaluation consists of perceptual evaluations, where
we ask three raters to determine the appropriateness of the de-
tected hotspots using the best thresholds highlighted in Table 3.
We evaluate the selected hotspots using a five-point Likert-like
scale (1- strongly disagree, 5 strongly agree). Each evaluator
watched the 16 sessions using OCTAB [21], where the detected
hotspots where pre-segmented. The evaluators had to rate each
hotspot. The perceptual evaluation was conducted twice, one
for the QA-based labels and another for the baseline labels. Fig-
ures 8(a) and 8(b) show the distribution of the scores assigned to
the hotspots for arousal and valence, respectively. For the QA-
based method, the percentages of hotspots that the evaluators
disagree or strongly disagree are 15.7% for arousal, and 1.2%
for valence. These values are lowers than the ones received
for the baseline method (21.2% for arousal, 15.1% for valence).
For arousal, evaluators agree or strongly agree with the hotspots
chosen by the QA-based method 43.9% of the cases, whereas
it is only 35.5% for the baseline method. The difference be-
tween methods is even higher for valence, where annotators
agree or strongly agree in 30.7% of the cases for the QA-based
method, but only 11.5% cases for the baseline method. The
QA method is better at capturing trends across traces, leading
to better hotspots. By setting an agreement tolerance of 66%,
we control the reliability of the hotspots, neglecting regions that
are ambiguous. This is not possible with the baseline method.

5. Conclusions and Future Work

This paper described a method to define regions of emotion-
ally salient activity (hotspots) using the qualitative agreement
method. The flexibility of the QA framework allowed us to
define hotspot labels from existing continuous-time emotional
traces, controlling their reliability. By extensively studying the
performance at various thresholds, we showed that our defini-
tions of hotspots are more reliable than a baseline method con-
sisting of setting thresholds over the averaged traces. The QA
framework provides the flexibility to define hotspots labels and
changes in emotion. With these labels, we plan to train machine
learning algorithms to automatically detect hotspots. Our future
work will focus on conducing a comprehensive study on classi-
fication and regression tasks which effectively use the proposed
QA-based hotspot labels.
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