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ABSTRACT

Self-supervised learning (SSL) from unlabelled speech data has rev-
olutionized speech representation learning. Among them, wavLM,
wav2vec2, HuBERT, and Data2vec have produced benchmark per-
formances on automatic speech recognition. However, few studies
have explored the generalization of SSL-based representations to
different tasks based on paralinguistic information in speech such
as emotion recognition. This paper explores the generalization of
all four popular SSL models for speech emotion recognition (SER)
when trained and tested in different domains. We aim to understand
how adaptable these SSL representations are when using simple do-
main adaptation techniques. The evaluation considers emotional
speech databases that deviate in language, recording conditions, and
emotional distribution, providing very different target domains. The
results reveal the necessity to fine-tune the representations for the
SER downstream. As the differences between the source and target
domain increase, we observe that the unsupervised domain adapta-
tion techniques are more effective. The analysis in this study pro-
vides useful insights to understand the advantages of different repre-
sentations for domain adaptation in SER.

Index Terms— Speech emotion recognition, self-supervised
learning, unsupervised domain adaptation

1. INTRODUCTION

A significant breakthrough in the field of speech processing is the
use of self-supervised learning (SSL) as an appealing strategy for
harnessing insights from extensive unlabeled datasets. SSL-based
solutions have demonstrated their effectiveness in enhancing down-
stream tasks such as automatic speech recognition (ASR) [1–7].
These models have been successfully used in other speech tasks,
including speech emotion recognition (SER) [8–10]. Recognizing
emotions from speech plays a major role in natural human-computer
interaction [11, 12], so it is important to improve SER solutions be-
fore they are deployed in practical applications. Even though recent
studies in SER showed significant gains by using SSL-based models
for an SER task, very few studies have explored their performance
in domain conditions that differ from the ones used for training
the models. One of the major barriers to obtaining a deployable
SER system is its generalization across different domain conditions.
Hence, it is necessary to assess the SSL-based model’s performance
across different domain conditions.

Various SSL-based representations have been proposed for
speech-related tasks [2,5,6,13]. Limited emphasis has been given to
understanding the best representation for the SER tasks, particularly,
the one which generalizes across different domain conditions. While
most of the recent works in SER use pre-trained SSL models as a
feature extractor, there are few attempts to fine-tune the SSL-based
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model to SER task using a downstream head, consisting of a simple
deep neural network (DNN) [14]. Such a fine-tuning process has
shown to help achieve better performance, when tested in similar
domain conditions [8]. However, it is important to understand the
generalization of the fine-tuned SSL representation across different
domains, particularly when tested in significantly different condi-
tions compared to the training data used for fine-tuning. A popular
way to generalize any SER model to perform best on a target do-
main is to perform a domain adaptation [15–19]. Studies show that
a significant performance gain in SER can be achieved by using un-
supervised domain adaptation strategies, which do not require any
labeled data from the target domain [16, 18]. Most of these studies
were conducted with hand-crafted features. It is important to under-
stand how adaptable are SSL-based representations when adapted to
a particular target domain using simple adaptation schemes.

This paper addresses these important questions by considering
the generalization of four popular SSL models that have resulted
in state-of-the-art performance for ASR and various other speech-
related tasks: wavLM [2], wav2vec2 [13], HuBERT [5], Data2vec
[6]. To understand the effect of change in language, emotional dis-
tribution, and recording conditions, we consider cross-corpus evalu-
ations with five popular datasets used for emotion recognition tasks
that present different mismatches. The SSL models are either used
as they are provided, or fine-tuned to SER tasks. We formulate
the SER problem as a regression task to predict the emotional at-
tributes of arousal (calm to active), valence (negative to positive),
and dominance (weak to strong). Our experiments reveal that over-
all wavLM-based feature representation performs best in most of the
cross-domain testing conditions. We also observed that fine-tuning
the SSL-based models for SER tasks can significantly improve the
performance of any attribute-specific SER task. We also observed
unsupervised domain adaptation strategies are more effective if the
target domain is significantly different from that of the source do-
main, leading to average relative improvements as high as 37.34%.

2. RELATED WORK

Several SSL models have been proposed for speech inspired by the
performance gains obtained by the text-based model bidirectional
encoder representations from transformers (BERT) [20] in natural
language processing (NLP) tasks. Most of the SSL models proposed
for speech follow the wav2vec2 [4] architecture, where the raw au-
dio inputs are directly inputted into a convolutional neural network
(CNN). Then, several transformer layers are utilized to encode the
CNN outputs into frame-level contextualized representations. The
encoder model produces context representations, which are used to
predict future audio frames. Then, the model is optimized using con-
trastive loss to maximize the agreement between predicted and actual
future frames. When the SSL representation is applied to a particu-
lar speech problem, the common approach is to fine-tune the model.
For example, studies on ASR use the connectionist temporal classi-
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Fig. 1: Block diagram indicating different steps considered to obtain
the SER models. UDA: Unsupervised domain adaptation.

fication (CTC) loss function [21] to obtain the best performance.
A few popular SSL representations were proposed following

similar pre-training as in wa2vec2 [4, 13], with few differences such
as using offline clustering and masked predictions to obtain Hu-
BERT [5], and masked predictions of contextualized labels to obtain
Data2vec [6]. Unlike these representations, wavLM [2] adds denois-
ing objectives resulting in higher amounts of unlabelled data.

While the ASR task requires a frame-level prediction, SER task
formulation involves an average time pooling to generate utterance-
level predictions. Wang et al. [22] showed that fine-tuning the SSL
representations for an SER task improves performance instead of
using the frozen SSL model as a feature extractor. Hsu et al. [13] ex-
plore fine-tuning wav2vec2 representation to make it robust to var-
ious domains. However, to the best of our knowledge, this paper
is the first attempt to understand various SSL representations in the
context of unsupervised domain adaptation in SER.

3. SPEECH EMOTION RECOGNITION FRAMEWORK

We aim to study the performance and generalization of SSL in SER
tasks. We are particularly interested in cross-corpus evaluations un-
der different mismatches. Our analysis considers the four most pop-
ular existing SSL representations: wav2vec2 [13], wavLM [2], Hu-
BERT [5], Data2vec [6].

Figure 1 shows the three steps we considered for obtaining var-
ious SSL-bases SER frameworks. In the first step, we consider all
four pre-trained SSL representations with large models from the hug-
gingface library [23]. In the second step, we consider a simple DNN
block as a downstream head for fine-tuning the SSL representations
for the SER task. We considered the concordance correlation co-
efficient (CCC) for arousal, valence, and dominance prediction as
the loss function to train the SER downstream head along with fine-
tuning the SSL representation. For the last step, we consider two
cases. For the first case (case-1), we froze the parameters of the fine-
tuned SSL block and then used it as a feature extractor for training
the SER block to obtain the best performance on an individual emo-
tional attribute (i.e., arousal, valence, or dominance). For the second
case (case-2), we consider the fine-tuned SSL representations as fea-
ture extractors, like case-1. Instead of using a simple DNN for the
SER task using only the CCC loss, we consider two popular un-
supervised domain adaptation (UDA) strategies used in SER (Sec.
3.2). Case-2 explores the effectiveness of common UDA strategies
on SSL-based models in different conditions for the source (train)
and target (test) domains.

3.1. SSL representations
wav2vec2: This study considers the wav2vec2-large-robust model
proposed by Hsu et al. [13], which considered a similar architec-
ture as the wav2vec2-large model [4]. During the pre-training of
the wav2vec2-large model, a portion of the frames within the la-
tent speech representations generated by the CNN-based encoder
undergo masking and are then inputted into the transformer encoder.
The model’s training objective is to minimize the contrastive loss,

which maximizes the agreement between predicted and actual fu-
ture frames within the latent speech representations. The result-
ing wav2vec2-large model is further trained using diverse domain
datasets to produce the wav2vec2-large-robust model.
Data2vec: We also considered Data2vec [6], which generates con-
textualized targets. The training process for Data2vec involves
forwarding the unmasked speech signal to a teacher model, which
maintains an exponential moving average of the student model’s
weights. The student model is then tasked with predicting the ac-
tivations of the teacher model from the masked speech signal, to
minimize a regression loss.
HuBERT: The HuBERT model [5] follows a similar architecture to
that of the wav2vec2. Unlike wav2vec2, HuBERT optimizes the
model using a cross-entropy loss for masked time steps during the
pre-training. The targets are not updated simultaneously with the
model. Like the BERT model [20], a section of the mel-spectrogram
input features is masked, and the model is trained to predict the
masked frames using the last layer of the transformer and the L1
loss. However, HuBERT utilizes an offline clustering step to pro-
vide aligned target labels for a BERT-like prediction loss.
wavLM: wavLM [2] adopts a similar approach as HuBERT, with
the addition of a speech-denoising task involving the generation of
mixtures comprising speech and noise. In this pretext task, the goal
is to predict the targets produced from the unmasked clean speech
within the context of noisy masked speech.

3.2. Unsupervised Domain Adaptation Strategies
We consider 2 alternative methods to adapt the SSL representations:
Domain Adaptation using Ladder Network (DAL) The first UDA
strategy considered in this study is the ladder network approach [24],
which was used by Parthasarathy and Busso [16] for SER tasks. An
encoder-decoder architecture is employed along with horizontal lat-
eral connections at each layer. Gaussian noise is introduced in the
encoder, and the objective is to reconstruct a clean version of the
corresponding encoder’s input. Each decoder layer aims to recover
an uncorrupted version of the input that was fed into the correspond-
ing encoder layer. The cost function consists of two components
with different weights: one for the task classifier, positioned at the
end of the encoder, and another for the reconstruction losses. While
both losses are utilized for the labeled source domain, only the
reconstruction losses are employed for the unlabeled target domain.
Adversarial Domain Adaptation (ADA) The second UDA strategy is
adversarial domain adaptation (ADA) [25], following the method
detailed by Abdelwahab and Busso [18]. This method involves em-
ploying task classifier, and domain classifier branches on top of a
feature representation. In ADA, a gradient reversal layer (GRL) is
introduced between the domain classifier and the feature represen-
tation network. The GRL compels the domain classifier to max-
imize classification error when distinguishing between the source
and target domains. As a result, the feature representation network
is trained to produce similar responses for data from both domains,
reducing the domain mismatch. During training with the labeled
source domain data, both task and domain classifier losses are con-
sidered. However, when training with unlabeled target domain data,
only the domain classifier loss is considered. By using alternate
batches of source and target domain data, this approach ensures op-
timal task classification accuracy while making samples from both
domains indistinguishable.

3.3. Strategies Explored in the Analysis
We consider four different implementations for the experiments. In
the first implementation (L), we obtain the SSL representations to



Table 1: CCC coefficient for all four SSL representations for the Large (L), Large-Robust (LR), Adversarial Domain Adaptation (ADA), and
Domain Adaptation using Ladder Network (DAL) for arousal, valence, and dominance. The table also lists the within-corpus performance
in the MSP-Podcast corpus. We compared the results across 4 SSL models (e.g., columns in the table). A result with ∗† is statistically
significantly better than a result with ∗. A result with any symbol is statistically significantly better than a result with no symbol.

MSP-Podcast MSP-IMPROV IEMOCAP VAM Nixon’s Tapes

L LR L LR ADA DAL L LR ADA DAL L LR ADA DAL L LR ADA DAL
Arousal

wavLM .625∗† .679∗ .571∗ .612∗† .588 .598∗ .622∗ .683∗ .681∗† .674∗ .294∗ .301∗ .377∗† .368∗ .301∗ .312 .421∗ .428∗†

wav2vec2 .617∗ .663∗ .553 .601∗ .599∗ .590∗ .628∗ .671∗ .662∗ .669∗ .281∗ .291∗ .352∗ .337 .291∗ .318 .432∗ .430∗†

HuBERT .624∗† .657∗ .551 .602∗ .602∗ .597∗ .619∗ .667∗ .681∗† .679∗ .297∗ .302∗ .379∗† .370∗ .282∗ .299 .401 .392∗

Data2vec .606 .639 .544 .589 .583 .579 .594 .631 .628 .622 .244 .261 .316 .322 .257 .291 .387 .368
Valence

wavLM .531∗ .655∗ .413∗ .468 .493∗ .488∗ .413∗ .463∗ .482∗ .483∗ .237∗ .267∗ .333∗ .331∗ .427∗ .440 .492∗ .473
wav2vec2 .557∗† .657∗ .424∗ .488∗ .499∗ .491∗ .409∗ .459∗ .472∗ .481∗ .242∗ .283∗† .353∗† .349∗ .434∗ .450 .502∗ .497∗

HuBERT .568∗† .646∗ .407∗ .461 .480∗ .478∗ .411∗ .451∗ .488∗ .490∗ .233∗ .259∗ .347∗† .339∗ .408 .436 .497∗ .484
Data2vec .512 .628 .392 .451 .461 .461 .392 .432 .441 .447 .211 .231 .297 .302 .401 .427 .459 .461

Dominance
wavLM .552∗ .628∗ .403∗ .438∗ .477∗† .478∗ .414∗† .457∗† .469∗ .469∗ .267∗ .281∗ .332∗ .332∗ .332∗† .379∗ .391∗ .398∗

wav2vec2 .537 .607 .394∗ .423∗ .445∗ .441 .402∗ .451∗† .469∗ .471∗ .254∗ .274∗ .328∗ .318 .317∗ .341 .383∗ .405∗

HuBERT .528 .604 .386∗ .408 .441∗ .438 .394∗ .439∗ .459∗ .461∗ .250∗ .276∗ .339∗ .338∗ .313∗ .331 .377∗ .390∗

Data2vec .520 .598 .371 .403 .428 .430 .377 .418 .429 .432 .237 .253 .294 .301 .297 .322 .351 .354

be used as feature extractors. Then, we train the SER block for the
downstream task (Step-1 + Step-3 (case-1)). This setting does not
adapt the parameters of the SSL for the SER task (i.e., Step 2). In
the second implementation (LR), we obtain the Large-Robust SSL
representations by fine-tuning the large models using a downstream
head with the SER task (Step-1 + Step-2 + Step-3 (case-1)). In
the third (ADA) and fourth (DAL) implementations, we use the LR
model as a starting point, using the two UDA strategies mentioned
in Section 3.2 (Step-1 + Step-2 + Step-3 (case-2).

4. EXPERIMENTAL SETTING

4.1. Emotional Databases

An important aspect of the analysis is the cross-corpus evaluation to
explore diverse mismatches between the source and target domains.
Our evaluation consider the MSP-podcast corpus as the source do-
mains, and four other emotional databases as the target domains.
MSP-Podcast corpus: We consider the MSP-Podcast corpus [26] for
the source domain. We use release 1.11 consisting of 151,654 En-
glish speaking turns from different audio recordings with Creative
Commons licenses. The training set includes 84,030 speaking turns.
All the speaking turns are obtained after removing background mu-
sic, noise, and speech overlaps with a minimum duration of 2.7 sec-
onds. Each turn is annotated by at least five annotators for emotional
attributes and primary and secondary emotional categories. This
study uses emotional attributes for arousal, valence, and dominance.
MSP-IMPROV: We consider the MSP-IMPROV dataset [27] as one
of the target domains. The MSP-IMPROV corpus consists of dyadic
interactions between 12 actors consisting of a total of 8,438 speaking
turns. The MSP-IMPROV database also provides annotations for
the emotional attributes of arousal, valence, and dominance. Each
speech file is annotated by at least five annotators. Unlike the MSP-
Podcast corpus, the audio was recorded in a closed environment,
making it perfect for testing the domain mismatch. Data from the six
actors from the first three sessions are used as the test set. We have
reserved the remaining sessions for the training of UDA models as
one of the unlabeled target datasets. The corpus is in English.
IEMOCAP corpus: The USC-IEMOCAP corpus [28] comprises in-
teractions between actor pairs engaged in improvisational scenarios.
This database encompasses 10,527 speaking turns involving ten ac-
tors across five dyadic sessions, with approximately 12 hours of au-
diovisual content. The annotations are provided at the turn level and

encompass categorical labels (e.g., happiness, sadness, anger) along
with three attributes (activation, valence, dominance) rated on a dis-
crete scale from 1 to 5. This corpus is a common benchmark for
emotion recognition tasks.
VAM Dataset: The VAM dataset [29] comprises 12 hours of audio-
visual recordings captured during a German TV talk show, where
families expressed their relational problems. Within this corpus,
there are 947 utterances that capture spontaneous emotions ex-
pressed by 47 guests participating in unscripted, genuine conversa-
tions. Given the nature of the TV program, there is also an emotional
distribution mismatch where the conversations are predominantly
negatives. Therefore, the VAM dataset is ideal to understand the
performance of SSL representations in the presence of language and
emotional distribution mismatches. The labels include rating for
arousal, valence and dominance. We have used 947 utterances in a
two-fold cross-validation strategy. One set is used for testing and
the other set is used as the unlabeled data to train the UDA models.
Nixon’s Tapes Dataset: The Nixon’s Tapes dataset [30] is part of the
declassified President Nixon’s Oval Office recorded conversations
from 1972. The recordings are divided into smaller segments us-
ing a similar strategy than the one used for the MSP-Podcast cor-
pus [26] to obtain 293,741 segments of speech between 3 seconds
to 11 seconds. We have used a 5dB SNR filter along with a ran-
dom sampling to obtain 80,000 speech segments, which are used as
the unlabeled set to train the UDA models. A subset consisting of
1,427 speech segments has been annotated by at least five annota-
tors recruited by our laboratory for emotional attributes and primary
and secondary emotional categories following the protocol used for
the MSP-Podcast corpus. We use the emotional attribute labels, us-
ing this set of 1,427 speech segments as the test set. This corpus is
ideal to evaluate recoding mismatches, given the conditions used to
record these tapes (e.g., distant speech, noisy recording). This is the
first time that this corpus is used for SER tasks.

4.2. Implementation
We obtain four models for each SSL representation, as explained
in Section 3: large (L), large-robust (LR), adversarial domain adap-
tation (ADA), and domain adaptation using ladder network (DAL).
An exception is the wav2vec2 feature representation, where a large-
robust representation is obtained by pruning the top 12 transformer
layers from the model during the fine-tuning stage (Step-2), which
is shown to preserve the recognition performance with fewer param-
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eters [8]. The SER block considered for Step-2 and Step-3 contains
two fully connected layers of 1,024 nodes with layer normalization,
and the rectified linear unit (ReLU) as the activation function. For
the fine-tuning in Step-2, we use a combination of CCC obtained
from all three attributes (arousal, valence, and dominance) as a loss
function. In Step-3, we consider a weighted combination of CCC
loss obtained from predicting three attributes as a loss function to
train each attribute-specific downstream SER task. For the ADA
strategy, we consider the same SER block as before, using it as our
feature representation. We add a hidden layer of 128 nodes for task
and domain classifier layers with ReLU activation. For the DAL
strategy, we use two hidden layers with 256 nodes, with a ReLU acti-
vation and a linear activation for the task classifier layer. For the fine-
tuning process in Step-2, we have used an EC2 g5.4xlarge instance
tailored with an NVIDIA A10G GPU, with Adam optimizer [31] us-
ing a learning rate of 10e-5. For all other experiments, we used an
NVIDIA GeForce RTX 3090 GPU.

5. EXPERIMENTAL RESULTS
We report the performance in CCC for all the experiments. We
evaluate if the results are statistically significant by randomly split-
ting the test set into 20 subsets of similar size for the MSP-Podcast,
MSP-IMPROV, and IEMOCAP databases, and into 5 subsets for the
Nixon’s Tapes and VAM databases due to their limited size. We
assert statistical significance at a p-value less than 0.05, using a two-
tailed t-test. Table 1 shows the CCC coefficient for the within and
cross-domain performances using the four SSL representations for
arousal, valence, and dominance. For the first experiment, we want
to understand the importance of fine-tuning SSL-based models for
the SER task. The results obtained on the MSP-Podcast test set
(within-corpus) are reported in the first two columns of the table.
We can observe that in all cases the LR model performs significantly
better than the L model. Particularly, for the valence and dominance
case we observed an average relative gain of ∼16% in CCC. This
result indicates the importance of fine-tuning SSL-based models for
the SER task. For the within-corpus assessment, the wavLM-based
models achieve the best result among the 4 SSL representations.

Similar to the within-corpus performance, we observe signif-
icant performance improvements for the LR models over the L
models across-corpus evaluations, demonstrating the importance
of fine-tuning the SER models. Overall, the wavLM, wav2vec2,
and HuBERT-based models perform better than the Data2vec fea-
ture representation across all datasets. The VAM dataset produces
the lowest performance among all other datasets. In addition to
language and label mismatches, this result can also be explained
by the average duration of its sentences, which is smaller than the
average duration of the sentences in the other databases. Across the
datasets without domain adaptation, the wavLM-based representa-

tions perform the best for the arousal task, and wavLM, wav2vec2,
and HuBERT resulted in a similar performance for the valence and
dominance tasks. The lower performance of Data2vec could be
due to the differences in pre-training, which predicts contextualized
latent representations instead of modality-specific data. Overall LR
models perform significantly better than L models across datasets.
However, the performance gain for the LR model is much higher
for the MSP-IMPROV, and IEMOCAP corpora, which are closer to
the training domain (MSP-Podcast), than for the VAM, and Nixon’s
Tapes datasets. Both unsupervised domain adaptation strategies
are very effective in achieving the best performance for the target
domains, particularly in the case of VAM, and the Nixon’s Tapes
dataset, whose domain conditions are significantly different from
the conditions in the MSP-Podcast corpus.

To understand the relative performance gain using fine-tuning
and UDA strategies, we computed the performance improvement for
the LR, ADA, and DAL models over their corresponding L model.
This analysis is conducted across all the databases, averaging the re-
sults across emotional attributes (arousal, valence, and dominance).
Figure 2 shows the performance gain in percentage, where the three
color bars represent the LR, ADA, and DAL models for all four
representations for each dataset. The figure shows significant gains
using both domain adaptation strategies for the VAM, and Nixon’s
Tapes databases. The relative improvements of these UDA strate-
gies in the other two databases are positive but more limited. This
result suggests that UDA strategies are more effective if the target
domain is significantly different from the source domain. Among
the four SSL-based models, Hubert resulted in higher gain from the
LR model to the UDA-based models across all databases (i.e., the
difference between the blue bars and red bars in the figure).

6. CONCLUSIONS
This study provided important insights about the use of SSL rep-
resentations on SER tasks. We evaluated four common SSL feature
representations in cross-corpus evaluations, using different target do-
mains to assess their generalization across different source-target
mismatches. We also explored how adaptable these models are using
common unsupervised domain adaptation strategies. The analysis
showed that fine-tuning the SSL models is crucial to achieve good
performance in cross-corpus evaluations. We observed that wavLM-
based models produced better results than the other SSL models in
most experiments. The results on the VAM and Nixon’s Tape record-
ings showed that when the mismatch between the source and target
domain increases, the UDA are more successful leading to relative
improvements as high as 37.34% over using the original SSL rep-
resentations. These findings offer important guidance for utilizing
SSL-based feature extractors in SER tasks, emphasizing the impor-
tance of adaptability and generalization across various domains.
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