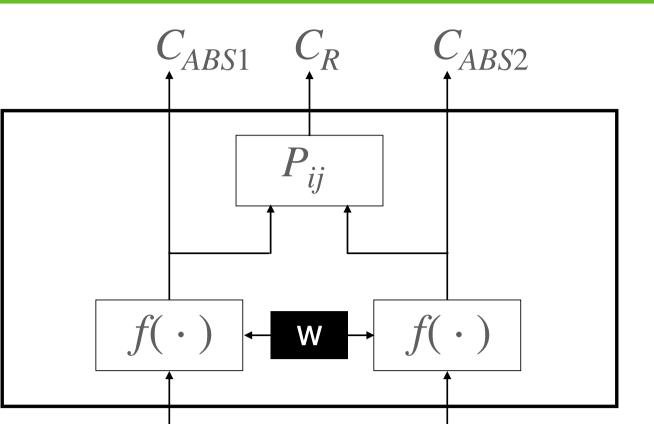
Combining relative and absolute learning formulations to predict emotional attributes from speech Abinay Reddy Naini, Shruthi Subramanium, Seong-Gyun Leem, Carlos Busso

ID THE UNIVERSITY OF TEXAS AT DALLAS

Erik Jonsson School of Engineering & Computer Science at the University of Texas at Dallas, Richardson, Texas 75080, USA

Motivation


Background:

- Ordinal representations are more appropriate for emotional tasks (e.g., preference learning)
- (e.g., more positive) Many applications require absolute emotional predictions

Proposed multi-task framework (MTL)

Training

- Model trained with a pair of sentences at a time, with three set of labels:
 - Preference label
 - Two absolute scores for the samples

2023 IIIIII

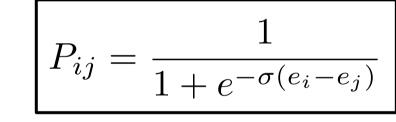
- Challenge:
- Obtaining an absolute emotional label from a typical ordinal representation (preference learning in this case)

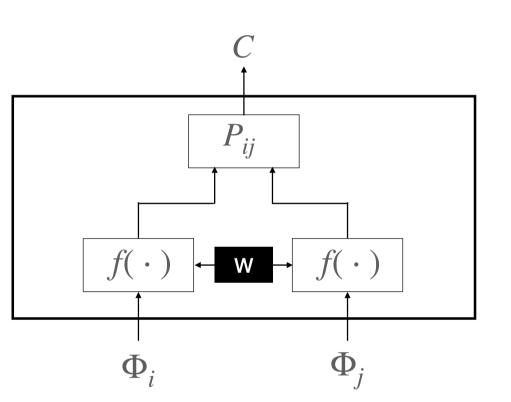
Our Work:

A novel formulation that combines preference learning and regression formulations using multitask learning (MTL)

Emotional Corpus

The MSP-Podcast corpus (v1.10)


- Naturalist data sourced from various audio-sharing websites with Creative Commons licenses
 - Train set: 63,076 speech segments
 - Development set: 10,999 speech segments
 - Test set: 16,903 speech segments


• C_{ABS} losses force the $f(\cdot)$ output to be Φ_i Φ a normalized score between 0,1 indicating the absolute emotional label $\mathcal{C} = \alpha_{PL} \mathcal{C}_{\mathcal{R}} + (\alpha_{ABS}) \left(\frac{1}{2} \mathcal{C}_{ABS1} + \frac{1}{2} \mathcal{C}_{ABS2}\right)$ Inference • $f(\cdot)$ produces an emotional score that can predict C_{ABS} = CCC loss preference rank and absolute attribute labels C_R = Rank-Net cost

Single-task Frameworks

RankNet Framework for Preference Learning (PL) [2]

- This study relies on the RankNet-based implementation for preference learning
- $f(\cdot)$ has two fully connected layers

- We use emotional attributes
- Arousal, valence, and dominance

Features

- We use the pre-trained Wav2vec2-large-robust2 model [1] from the HuggingFace library
 - We pruned the top 12 transformer blocks and fine-tuned the rest of the blocks with the train set
 - Sentence-level representation is obtained with the average pooled vector across all frames

$\mathcal{C}_{\mathcal{R}} = -\bar{P}_{ij} \log P_{ij} - (1 - \bar{P}_{ij}) \log(1 - P_{ij})$

Framework for absolute score (ABS)

• A similar function $f(\cdot)$ is trained to predict the absolute attribute score

Ordinal labels:

- QA (Qualitative Agreement): Preference labels obtaining using the QA method
 - Trained using randomly selected 200K pairs

		Sen	Sentence 1		Sentence 2		
Ra	ter 1		3.0		2.0		
Ra	ter 2		4.0		2.0		
Rater 3			3.0		3.0		
Rater 4			5.0		3.0		
Rater 5			-		4.0		
			Sentence 2				
		R1	R2	R3	R4	R5	
сц	R1		•	=	=	T	
-		•					
tence	R2	▲	I ≜	ŧ	♠	=	
Sentence 1	R2 R3	↑	 ▲	≜	↑ =	▼ = ↓	

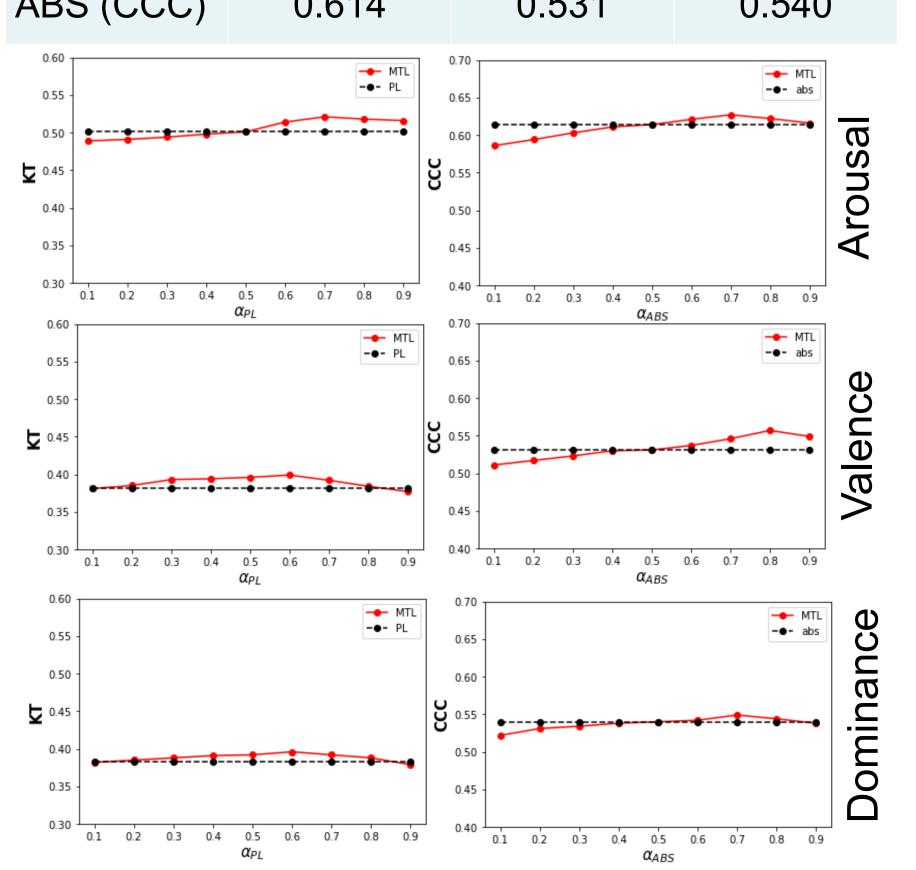
Qualitative Agreement

Performance Analysis for Speech Emotion Recognition

Conclusions

 $f(\cdot)$

Experimental Results


- We consistently observed the best performance for each task when the corresponding weight is above 0.5 but less than 1
- The proposed MTL formulation performs either ABS (CCC) 0.614 significantly better or similarly compared to the PL and ABS models

Case-1	Arousal	Valence	Dominance			
$(\alpha_{PL}, \alpha_{ABS})$	(0.45,0.55)	(0.3,0.7)	(0.4,0.6)			
MTL (KT)	0.507	0.393*	0.391*			
PL (KT)	0.502	0.381	0.383			
MTL (CCC)	0.619	0.546*	0.542			
	0.61/	0 531	0.540			

- KT: Kendall's Tau coefficient
- We proposed a novel Multi-task framework
- Preserves the relative preference while predicting the absolute emotional score
- Explored the tradeoff between both the absolute and ordinal predictions in the

The model obtains significantly better performance in each case by setting weights for ABS, PL in Case-2,3

Case-2,3	Arousal	Valence	Dominance
($\alpha_{PL}, \alpha_{ABS}$)	(0.7,0.3)	(0.6,0.4)	(0.6,0.4)
MTL (KT)	0.521*	0.399*	0.396*
PL (KT)	0.502	0.381	0.383
($\alpha_{PL}, \alpha_{ABS}$)	(0.3,0.7)	(0.2,0.8)	(0.3,0.7)
MTL (CCC)	0.627*	0.557*	0.549*
ABS (CCC)	0.614	0.531	0.540
	$(\alpha_{PL}, \alpha_{ABS})$ MTL (KT) PL (KT) $(\alpha_{PL}, \alpha_{ABS})$ MTL (CCC)	$(\alpha_{PL}, \alpha_{ABS})$ $(0.7, 0.3)$ MTL (KT) 0.521^* PL (KT) 0.502 $(\alpha_{PL}, \alpha_{ABS})$ $(0.3, 0.7)$ MTL (CCC) 0.627^*	$(\alpha_{PL}, \alpha_{ABS})$ $(0.7, 0.3)$ $(0.6, 0.4)$ MTL (KT) 0.521^* 0.399^* PL (KT) 0.502 0.381 $(\alpha_{PL}, \alpha_{ABS})$ $(0.3, 0.7)$ $(0.2, 0.8)$ MTL (CCC) 0.627^* 0.557^*

proposed MTL framework

Future Work

- Explore alternative objective functions that will improve the performance of both tasks
- Explore strategies to estimate relative labels from absolute labels

References:

[1] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, "wav2vec 2.0: A framework for selfsupervised learning of speech representa- tions," (NeurIPS 2020) [2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender, "Learning to rank using gradient descent," (ICML 2005)

This work was supported by Laboratory for Analytic Sciences

