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Motivation Proposed multi-task tramewark (MTL)

Caps1  Cg Cupso

Training
= Model trained with a pair of sentences P,
at a time, with three set of labels:

= Preference label f(“-) - f(“-)

= Two absolute scores for the samples

Background:

= Ordinal representations are more appropriate for emotional
tasks (e.g., preference learning)

M M (e.g., more positive)

= Many applications require absolute emotional predictions

= C,ps lOosses force the f(-) output to be D D
a normalized score between 0,1
indicating the absolute emotional label

= Challenge:

= Obtaining an absolute emotional label from a typical ordinal
representation (preference learning in this case)
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Inference C =aprCr + (aaps)(5Cansi + 5Caps2)

Our Work:

= f(-) produces an emotional score that can predict
preference rank and absolute attribute labels

C,gs = CCC loss
= Rank-Net cost

= A novel formulation that combines preference learning and
regression formulations using multitask learning (MTL)

tmotional Lorpus dingle-task Frameworks

The MSP-Podcast corpus (v1.10)
= Naturalist data sourced from various audio-sharing

RankNet Framework for Preference Learning (PL) [2]
= This study relies on the RankNet-based C

websites with Creative Commons licenses implementation for preference learning o
]
= Train set: 63,076 speech segments = f(+) has two fully connected layers
= Development set: 10,999 speech segments . 1 ) -l )
ij = f f
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= Test set: 16,903 speech segments

= We use emotional attributes

Cr = —P;jlog P;j — (1 — P;;)log(1 — P;;)

= Arousal, valence, and dominance

Features Framework for absolute score (ABS) | —
= We use the pre-trained Wav2vec2-large-robust2 model [1] " Asimilar functlor.w f () 1s trained to predict | () e
. . the absolute attribute score [ s 50 s
from the HuggingFace library o e

= We pruned the top 12 transformer blocks and fine-tuned the rest Ordinal labels: i ---S--Z-
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Qualitative Agreement

= QA (Qualitative Agreement): Preference labels
obtaining using the QA method

of the blocks with the train set

Sentence 1

= Sentence-level representation is obtained with the average
pooled vector across all frames

» Trained using randomly selected 200K pairs

Pertformance Analysis for speech Emotion Recognition Lonclusions

KT: Kendall's Tau coefficient
Experimental Results Case-1 Arousal  Valence Dominance

= We proposed a novel Multi-task framework

: 0.45,0.55 0.3,0.7 0.4,0.6 . ' '
- We consistently observed the best performance (%7 %ss) | ) ) ) Preserves the relative preference while
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above U.o butiess than MTL (CCC)  0.619 0.546" 0.542 it and ordinal orediction i 1
= The proposed MTL formulation performs either = ABS (CCC) 0.614 0.531 0.540 abs0lUte ana ordinal predictions in the
significantly better or similarly compared to the o =o T proposed MTL framework
PL and ABS models ) | [ Future Work
v, g > : : : : :
= The model obtains significantly better O = Explore alternative objective functions that will
. . . T < improve the performance of both tasks
performance in each case by setting weights for R
ABS. PL in Case-2 3 T o = Explore strategies to estimate relative labels
| | 3 from absolute labels
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