

- between pair of speech samples

Our Work:

- We propose a method to obtain preference labels
- That leverage the anchoring process by considering preference across consecutive annotations
- The proposed consecutive labels (CL) are result of annotation trends assigned by a rater to consecutive samples
- Achieved better performance with sparse set of relative labels

Step1:

Obtained individual CL matrices for all k annotators indicating their consecutive preferences

Step2:

Combined all individual CL matrices to obtain cumulative CL matrix.

Experimental Results

CL1: All pairs

CL2: Pairs preferred by at least two annotators CL3: Pairs preferred by at least three annotators

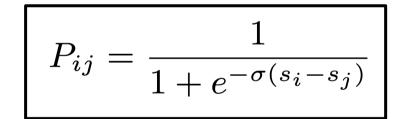
	CL1			CL2			CL3		
	А	V	D	А	V	D	А	V	D
Num. of Pairs in[K]	204	193	174	43	47	39	21	21	19
Coverage (%)	96.5	95.6	96.8	85.2	88.5	82.7	61.3	64.6	59.8
A: Arousal, V: Valence, D: Dominance, out of ~63K training samples									

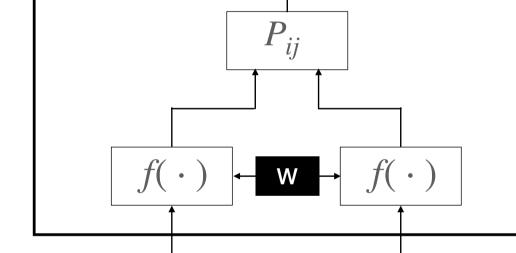
KT: Kendall's Tau coefficient

Preference Learning Framework and Performance Analysis for Speech Emotion Recognition

RankNet Framework¹

This study relies on the RankNet-based implementation for preference learning





 Φ

 Φ_{i}

$$\mathcal{C} = -\bar{P_{ij}} \log P_{ij} - (1 - \bar{P_{ij}}) \log(1 - P_{ij})$$

Baseline ordinal labels:

- ABS (Baseline): Preference labels obtained using a difference between consensus score. Trained using all possible pairs.
- QA (Qualitative Agreement): Preference labels obtaining using QA method. Trained using randomly selected 200K pairs.
- \succ Proposed CL resulted in a better performance, even on the test sets obtained using baseline label methods (ABS, QA).
- > Among the proposed CL schemes, CL2 performed best for arousal, and dominance.
- \succ CL3 leads to better performance in valence.

KT	ABS	QA	CL1	CL2	CL3	KT	ABS	QA	CL1	CL2	CL3	
	Arousal						Valence					
ABS	0.482	0.496	0.489	0.494	0.497	ABS	0.301	0.292	0.284	0.289	0.292	
QA	0.491	0.512	0.481	0.486	0.485	QA	0.311	0.316	0.298	0.304	0.302	
CL1	0.501	0.521	0.526	0.534	0.535	CL1	0.308	0.321	0.331	0.334	0.331	
CL2	0.504	0.527	0.533	0.539	0.537	CL2	0.315	0.330	0.346	0.348	0.341	
CL3	0.498	0.513	0.518	0.535	0.539	CL3	0.314	0.329	0.349	0.351	0.345	

	KT	ABS	QA	CL1	CL2	CL3						
		Dominance										
Trained using	ABS	0.380	0.376	0.364	0.369	0.373						
	QA	0.388	0.393	0.382	0.393	0.397						
	CL1	0.398	0.395	0.417	0.419	0.426						
	CL2	0.395	0.402	0.428	0.430	0.424						
	CL3	0.389	0.406	0.416	0.426	0.432						

Tested using

Gorpora

The MSP-PODCAST corpus (Emotional corpus collected at UT Dallas **)**

- We used 1.10 version of the corpus, which is sourced from various audio-sharing websites with creative commons licenses
- Includes 63,076 segments of audio for training, (10,999, and 16,903) segments for development and testing
- We have only used attributes (arousal, valence, and dominance) labels in this work

Features

- We used pre-trained wav2vec2-large-robust² model from the HuggingFace library. We pruned top 12 transformer blocks and fine-tuned with MSP-PODCAST train set
- Considered average pooled vector across all frames as the sentence level representation

- Considered ordinal labels using consecutive annotations from annotators, resulting in less noisy and reliable labels.
- Explored trade-off between quality and quantity in the implementation of the proposed ordinal labels.

Future Work

In the future, we want to explore similar strategies to deal with ordinal labels for categorical emotions.

References:

[1] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender, "Learning to rank using gradient descent," (ICML 2005) [2] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, "wav2vec 2.0: A framework for selfsupervised learning of speech representa- tions," (NeurIPS 2020)

This work was supported by NSF under Grant CNS-2016719

