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ABSTRACT

Retrieving speech samples that have specific expressive content has
many applications. It is desirable to build a preference learning
framework that ranks speech samples according to emotional at-
tribute values that generalize well to new domains. A popular ar-
chitecture for preference learning is the RankNet framework, which
uses a function to obtain the preference between pairs of speech sen-
tences. This study explores implementing this function with alterna-
tive feature representations that are explicitly selected to reduce the
mismatch between source and target domains. In particular, we im-
plement our preference-learning based speech emotion recognition
(SER) system using ladder networks and adversarial domain adapta-
tion. The study also proposes a novel combination of these two un-
supervised domain adaptation strategies. The experimental results in
cross-corpus evaluations using the MSP-Podcast and MSP-IMPROV
datasets reveal that the proposed adversarial domain adaptation on a
ladder network-based feature representation performs the best across
different conditions. The results also show that preference learning
leads to better precision for retrieval tasks than comparable SER sys-
tems built to directly predict absolute emotional attribute scores.

Index Terms— Speech emotion recognition, Preference learn-
ing, Domain adaptation

1. INTRODUCTION

Recognizing emotions plays an important role in developing ad-
vanced interface systems, which enhance human-computer interac-
tions [1, 2]. While a typical speech emotion recognition (SER) sys-
tem classifies speech into emotional categories such as happiness,
sadness, and anger [3, 4], an appealing alternative is to predict emo-
tional attributes such as arousal, valence, and dominance [5–7]. Ex-
tensive research has been done to improve SER systems, where the
task is to predict emotional attributes with models trained with labels
derived from subjective evaluation from multiple annotators [8, 9].
However, achieving annotations with a high inter-evaluator agree-
ment is difficult due to the differences in perceiving emotions across
people [10]. One promising approach is to rank emotional behaviors
using preference learning strategies [11–14].

A preference learning system is designed to determine the rela-
tive emotional level between a pair of samples concerning a partic-
ular emotion or attribute. The results can be used to determine the
ranking order of several test samples. Studies have shown that an-
notators tend to agree better on relative trends [15–18], creating bet-
ter labels to train preference learning models [11, 19]. Furthermore,
a preference learning framework can be more suitable for retrieval
tasks, providing the ideal tool for screening massive speech reposi-
tories in search for samples with target emotional content. Among
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the most popular methods is to use the RankNet framework [20] to
train a preference learning model [12, 21]. This approach creates a
feature transformation that is applied to a pair of speech samples to
determine the preference with respect to a given emotional descrip-
tor. The function in the RankNet formulation is general and can be
implemented with different machine-learning strategies. This study
implements this function with a key objective in mind: generaliza-
tion to a new domain, collected under different settings.

One of the barriers for deploying SER systems is generaliza-
tion across different domains. The mismatches between domains
include acoustic conditions (microphone, environmental noise), id-
iosyncratic differences, inconsistency in the distribution of the emo-
tional content conveyed in the recordings, and differences in lan-
guage and culture. We explore two unsupervised approaches that
have been successfully implemented on SER: ladder network [22],
using intermediate layer representation reconstructions, and adver-
sarial domain adaptation (DA) [23], using domain classification im-
plemented with a gradient reversal. To the best of our knowledge,
this is the first attempt to make a preference learning-based SER
model robust to different domains. The results demonstrate that
building the RankNet function with these training strategies leads to
better performance in cross-corpus evaluations than models that are
not adapted to the target domain. An important contribution of this
study is the finding that these unsupervised adaptation frameworks
are complementary, where we show that a model that combines these
approaches achieves the best performance when tested on an un-
labeled domain. The results also demonstrate that the preference
learning frameworks lead to better performance for retrieval tasks
than models implemented to predict the absolute attribute scores in
the speech files.

2. RELATED WORK

This section describes previous studies using preference learning for
affective computing tasks. Yannakakis et al. [16, 18] detailed the
benefits of using preference learning models for emotion recognition
problems. For categorical emotions, Cao et al. [13, 24] proposed a
ranking method for categorical emotions using RankSVM. The pref-
erence between sentences was defined by imposing that all sentences
labeled with a target emotion (e.g., happiness), were preferred over
sentences annotated with a different emotion (e.g., anger). Lotfian
and Busso [25] proposed a preference learning framework without
relying on consensus labels by using inter-evaluator agreement and
intra-class confusion between the emotions. Han et al. [21] used
consistent rank logits (CORAL)-based method to jointly train multi-
ple ordinal binary SER tasks for improving consistency across sub-
classification tasks. For emotional attributes, Martinez et al. [11]
showed that better generalization can be achieved with a rank-based
transformation of emotional attributes than by grouping them into
classes. Lotfian and Busso [14] discussed practical considerations on
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Fig. 1: Block diagram of RankNet. This study explores different
implementations for the function f(·).

using preference learning in ranking speech according to emotional
attributes, including the margin in the value of the target attribute
required to prefer one sample over another. Instead of relying on
consensus labels, Parthasarathy and Busso [19, 26] proposed strate-
gies based on the qualitative agreement method [17] to create more
reliable rank labels by identifying trends across evaluators.

In terms of frameworks for preference learning in SER tasks,
Parthasarathy et al. [12] compared several alternative methods, in-
cluding RankSVM, RankNet, and DNNRegression, showing that
RankNet led to better performance.

3. PROPOSED PREFERENCE LEARNING FRAMEWORK

Our study implements RankNet using state-of-the-art domain adap-
tation strategies to increase the generalization of the models when
evaluated on a different domain. This section describes the RankNet
framework, and the building blocks of our proposed implementation.

3.1. The RankNet Framework

Figure 1 shows the formulation for RankNet, which is the preference
learning framework used in this study. The RankNet algorithm was
introduced by Burges [20]. It uses a probabilistic cost function to
learn preference between pairs of data points using gradient descent.
A typical RankNet formulation consists of a function f(·) that serves
as a feature representation for two samples. Given the feature vectors
Φi and Φj of the two samples, it generates the scores si = f(Φi),
and sj = f(Φj). The probability that sample xi is preferred over
sample xj , denoted by xi >> xj , is given by Pij = 1

1+e
−σ(si−sj)

.

During training, the function f(·) is trained using the ground truth
labels with preferences between sample pairs. If xi is preferred over
xj , the expected probability P̄ij is set to 1. Otherwise, P̄ij is set to
0. The cost function L = −P̄ij logPij − (1 − P̄ij) log(1 − Pij)
is the cross entropy between the expected probability P̄ij and actual
probability Pij , which is used to train the parameters of the function
f(·). L simplifies to L = log(1 + exp−σ(si−sj)) when P̄ij = 1,
and L = log(1 + exp−σ(sj−si)) when P̄ij = 0.

3.2. Chunk-Based Segmentation (CBS)

We consider the chunk-based segmentation (CBS) proposed by Lin
and Busso [27, 28] to obtain a fixed dimensional discriminative fea-
ture vector for variable-length speech segments. Figure 2(a) shows a
diagram of the CBS process. The first step is to extract frame-level
acoustic features for the entire sentence (Sec. 4.2). The features
are split into chunks creating a fixed number of chunks with fixed
duration regardless of the duration of the sentence. This dynamic
chunk segmentation is achieved by changing the overlap between
chunks according to the duration of the sentence. We obtain the
chunk-level representation using a long short-term memory network
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Fig. 2: Block diagram of the building blocks of our proposed pref-
erence learning approach. (a) Chunk-based segmentation, (b) ladder
network, and (c) adversarial domain adaptation.

(LSTM) on each chunk. Finally, the chunk-level representations are
temporally aggregated to obtain a sentence-level aggregation, using
the RNN-AttenVec model in Lin and Busso [27]. The final output is
a discriminative sentence-level feature vector. The CBS approach is
highly parallelizable and efficient given the fixed number of chunks,
which have fixed durations.

3.3. Ladder Network (LN)

The first strategy to increase the generalization of the model is the
ladder network strategy [22]. We consider the ladder network imple-
mentation proposed by Parthasarathy and Busso [8] for SER. Figure
2(b) shows the diagram, which consists of an encoder and a decoder
with horizontal lateral connections at each layer. Gaussian noise is
added to the encoder, and the goal is to recover a clean version of the
corresponding encoder. The goal of each decoder layer is to recover
a clean version of the input given to the corresponding encoder layer,
as the input to each encoder layer is corrupted with added Gaussian
noise. The cost function consists of two weighted components: one
for the task classifier, which is implemented at the end of the en-
coder, and one for the reconstruction losses. While both losses are
considered for the labeled source domain, only the reconstruction
losses are used for the target domain, which is assumed to be un-
labeled. The ladder network is known to minimize the mismatch
between domains, providing an effective training strategy for SER
tasks [29].

3.4. Adversarial Domain Adaptation (DA)

The second strategy to improve the generalization of the preference
learning model is adversarial domain adaptation (DA) [23]. Figure
2(c) shows the diagram, which follows the implementation presented
in Abdelwahab and Busso [30]. The approach has a task classifier
and a domain classifier. These two blocks share a common feature
representation block. The goal of the domain classifier is to rec-
ognize if the data is coming from the source or target domain. In
the adversarial DA approach, we introduce a gradient reversal layer
(GRL) between the domain classifier and the feature representation
network, which forces the domain classifier to produce maximum
classification error in classifying the source and target domains. This
strategy generates a feature representation network that creates simi-
lar responses for data from the source and target domains, effectively
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Fig. 3: Proposed architectures used to build function f(·) in
RankNet. TC: task classifier, FC: fully connected layers.

reducing the mismatch between domains. The losses of the task and
domain classifiers are considered when the network is trained using
labeled data from the source domain. However, only the loss of the
domain classifier is considered when the model is trained with the
unlabeled target domain. By alternately considering the labeled data
from the source domain and unlabeled data from the target domain,
the model ensures maximum task classification accuracy, while mak-
ing samples from both domains indistinguishable.

3.5. Proposed Architectures

Figure 3 shows the four architectures for f(·) that we consider,
which are all implemented with the CBS as the initial feature rep-
resentation. Figure 3(a) illustrates the first model, referred to as
CBS+2FC, which includes two fully connected layers on top of the
CBS. This model serves as a baseline to understand the benefits of
domain adaptation. Figures 3(b) and 3(c) show the implementation
of the two domain adaptation strategies. CBS+LN considers a lad-
der network (LN), in place of the 2FC layers, and CBS+DA adds the
adversarial domain adaptation (DA) to the CBS+2FC framework. A
contribution of this study is the combination of LN and DA. LN uses
reconstruction losses and DA uses GRL to create a feature represen-
tation that has similar responses for samples across domains. These
strategies use two different approaches to provide complementary
robustness that increases the generalization of the models. This
model is referred to as CBS+LN+DA, which is illustrated in Figure
3(d). The adversarial DA is added as an additional task on top of the
encoder of the LN.

4. EXPERIMENTAL SETTING

4.1. Emotional Databases
We consider the MSP-Podcast corpus [31] as the source domain. We
use release 1.10 consisting of 104,267 speaking turns from different
audio recordings with Creative Commons licenses. The training set
includes 63,076 speaking turns. All the speaking turns are obtained
after removing background music, noise, and speech overlaps. Each
turn is annotated by five annotators for emotional attributes, and pri-
mary and secondary emotional categories. This study uses emotional
attributes for arousal, valence, and dominance.

We consider the MSP-IMPROV dataset [32] as the target do-
main. The MSP-IMPROV corpus consists of dyadic interactions be-
tween 12 actors consisting of a total of 8,438 speaking turns. The
MSP-IMPROV database also provides annotations for the emotional
attributes of arousal, valence, and dominance. Each speech file is an-
notated by at least five annotators. Unlike the MSP-Podcast corpus,
the audio was recorded in a closed environment, making it perfect
for testing the domain mismatch. Data from the six actors from the
first three sessions are used as the test set. We have reserved the re-
maining sessions to train (matched condition) or adapt (mismatched
condition) the proposed models.

4.2. Feature extraction
For all our experiments, we extracted the wav2vec2-large fea-
ture representation [33], which is used as input for the CBS. The
wav2vec2-large model is built using 24 transformer blocks with a
model dimension of 1,024. Each vector has a receptive field of 20
ms. For the implementation, we used the pre-trained Wav2vec2.0
large model from the HuggingFace library [34]. Then, we prune the
top 12 transformer blocks, and fine-tuned the model using the MSP-
Podcast corpus. For fine-tuning the model, we rely on the Adam
optimizer [35] with a learning rate set to 0.00001 for 10 epochs.

We also present a baseline using the extended Geneva Minimal-
istic Acoustic Parameter Set (eGeMAPS) [36], which includes 88
acoustic features.

4.3. Preference learning labels

We rely on the qualitative agreement (QA)-based method proposed
by Parthasarathy and Busso [19] for obtaining preference labels. The
approach identifies trends across individual annotations, instead of
relying on the consensus label. First, it creates an N1 × N2 matrix
with pairwise comparisons across annotations assigned to two sen-
tences, where N1 and N2 are the number of annotators for sentence
1 and 2. The elements of this matrix indicate if an annotation for
sentence 1 is greater, equal or lower than an annotation for sentence
2. Then, the approach estimates the percentage for each preference.
Similar to Parthasarathy and Busso [19], we consider a pair if 60% of
the matrix’s entries show that a sentence is preferred over the other.

4.4. Implementation

We consider three baselines to implement f(·). The first baseline is
the CBS+2FC model (Fig. 3(a)). The second baseline extracts the
eGeMAPS features as the input of a network with just two fully con-
nected layers. We refer this model to as eGeMAPS+2FC. The third
baseline corresponds to the CBS+LN model (Fig. 3(b)) trained in
matched conditions (e.g., train and test on the MSP-IMPROV cor-
pus). This approach is referred to as CBS+LN* in Table 1.

The FC block in Figures 3(a) and 3(c) is implemented with two
hidden layers implemented with 128 nodes. The LN architecture is
also implemented with two hidden layers with 128 nodes. The DA
block in Figure 3(c) and 3(d) consists of two layers implemented
with 64, and 32 nodes, respectively. Each of the models is trained
for 20 epochs with a learning rate set to 0.0001. We consider the best
model using its performance on the development set of the MSP-
Podcast corpus. We have implemented all the models using Tensor-
flow 2.0 and Keras, with an NVIDIA GeForce RTX 3090 GPU.

5. EXPERIMENTAL RESULTS

As mentioned in Section 4.1, we train the models with the MSP-
Podcast corpus, evaluating the performance on the MSP-IMPROV
corpus. We evaluate if the results are statistically significant using
the one-tailed t-test, asserting significance at p-value < 0.05.

One advantage of preference learning is that the number of train-
ing samples can be increased by including different pairs. If the
training set has L samples, we can have L(L − 1)/2 pairs. First,
we evaluate the optimal amount of data needed to train the proposed
preference learning framework using only the model CBS-LN and
the MSP-Podcast corpus (120K, 240K, 480K, 720K, and 1M pairs).
We observe that the top performance is achieved with ∼480k pairs,
which we have used for training all the models.

First, we compare the performance of the preference learning
methods for valence, arousal, and dominance. We report perfor-
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Fig. 4: Precision at K achieved by different preference learning models in retrieving samples with low or high values of emotional attributes.
The figure compares models implemented for both ordinal (ord), and absolute prediction (abs). A star on top of the bar indicates that a method
is significantly better than the method represented by the color of the star.

Table 1: Kendall’s Tau (KT) coefficient and accuracy of the baselines and proposed methods. The column “Labeled” indicates the data used
to train the models. The column “Unlabeled” indicates the data used for the unsupervised domain adaptation.

Method Labeled Unlabeled Arousal Valence Dominance
KT Accuracy KT Accuracy KT Accuracy

CBS+LN* MSP-IMPROV MSP-IMPROV 0.617±0.013 84.7±1.42 0.375±0.018 66.6±1.34 0.558±0.015 81.2±1.42
eGeMAPS+2FC MSP-Podcast - 0.372±0.006 64.3±0.98 0.208±0.004 58.7±1.13 0.316±0.009 62.7±1.04
CBS+2FC MSP-Podcast - 0.417±0.011 71.9±0.87 0.258±0.010 61.8±0.91 0.392±0.006 69.2±0.85
CBS+LN MSP-Podcast MSP-IMPROV 0.484±0.005 79.2±1.22 0.313±0.007 63.9±1.26 0.447±0.011 72.3±1.01
CBS+DA MSP-Podcast MSP-IMPROV 0.462±0.010 78.5±1.04 0.301±0.013 63.7±1.71 0.442±0.009 71.5±1.17
CBS+LN+DA MSP-Podcast MSP-IMPROV 0.506±0.007 80.6±1.36 0.312±0.012 64.2±1.63 0.461±0.013 74.7±1.23

mance using both accuracy and the Kendall’s Tau (KT) coefficient.
Accuracy is defined as the percentage of the preferences in the test
set correctly predicted by the models. The KT coefficient measures
the order provided by models. To avoid computing the results across
all possible testing pairs, we consider 200 randomly selected sam-
ples from the test set at a time to compute the metrics. We re-
peat this process 20 times, reporting the average and standard de-
viation (SD) of the performance across the 20 repetitions. Table 1
shows the performance comparison between all the baselines and
the proposed models. It also shows the model CBS+LN* as a ref-
erence for matched conditions. As expected, CBS+LN* performs
the best among all the methods given that it is trained and tested on
the same dataset. Among the proposed preference learning models,
CBS+LN+DA achieves the best performance in cross-corpus evalu-
ations with at least 5% improvement over the second-best model in
terms of the KT coefficient (p-value < 0.01). We also observe im-
portant improvements in the KT coefficient over the eGeMAPS+2FC
baseline with ∼36% gain for arousal, ∼50% gain for valence, and
∼45% gain for dominance (p-value < 0.005). These results show
the benefits of adapting the preference learning models using these
unsupervised domain adaptation methods. The table also shows that
using the Wav2Vec2 features with CBS leads to better results than
using the eGeMAPS feature set. We also observed similar trends
in accuracy improvements across the results. We do not observe a
significant difference in performance between the two domain adap-
tation models (i.e., CBS+LN, and CBS+DA). The improvements ob-
served while combining these models (e.g., CBS+LN+DA) indicate
that these domain adaptation strategies are complementary, provid-
ing better generalization on new domains. The very low standard
deviation values across all the results in Table 1 show that the mod-
els are fairly consistent with performance on multiple test samples.

We also assess the performance of the methods using precision
at K (P@K). This metric estimates the precision when K percentage
of the data is retrieved. For each attribute, we split the test set into
low and high classes using the median split. We consider a success

if the retrieved sample belongs to the correct class (i.e., class high if
we are searching for samples with high value for the attribute). To
understand the importance of preference learning in retrieval tasks,
we also implement models that directly predict the scores of the
emotional attributes. The absolute models follow the same archi-
tecture shown in Figure 3, adding a linear output layer on top of
these functions. These models are trained with the average emo-
tional attributes assigned by multiple annotators. The rank is gener-
ated based on the predicted emotional attribute provided by the mod-
els. Figure 4 shows the P@K results with K = 10% and K = 20%.
The preference learning-based models are marked with (ord), and
the absolute-based models with (abs). All the proposed frameworks
are significantly better than the eGeMAPS+2FC baseline. We ob-
serve better performance for preference-learning models compared
to the corresponding absolute-based implementations. Overall, we
observe that methods with domain adaptation (CBS+LN, CBS+DA,
CBS+LN+DA) performed better than the models without any adap-
tation (eGeMAPS+2FC, CBS+2FC). This result is particularly clear
for arousal, where the CBS+LN+DA model achieves significantly
better results than both baseline models without domain adaptation.

6. CONCLUSIONS
This study explored the importance of domain adaptation in a pref-
erence learning framework, where the goal is to increase the gen-
eralization of the SER model. We considered combinations of lad-
der network and adversarial domain training strategies, implemented
using the RankNet framework. The results showed the best perfor-
mance when these domain adaptation methods were jointly com-
bined, showing the complementary robustness added by these strate-
gies. We also observed that the preference learning-based framework
is better suited for speech emotion retrieval tasks, leading to better
performance than methods trained to predict the absolute score of
emotional attributes. In the future, we will explore how a preference
learning framework can be used in cases where the goal is to predict
the absolute score associated with emotional attributes.
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