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§ Emotion recognition is critical for the Intelligence 
Community (IC)
§ Analyze massive amount of information available through media 

domains
§ Identify and preselect segments with potentially threatening 

behaviors

Role of  Emotion Recognition 
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§ Categorical labels
§ Anger, happiness, sadness, neutral

§ Dimensional or attribute-based labels
§ Valence (negative versus positive)
§ Arousal (calm versus active) 
§ Dominance (weak versus strong)
§ More accurate emotion descriptors (intensity)

Expression of  Emotion
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Ordinal Representation of  Emotion

§ Thesis: emotions are intrinsically ordinal (relative)
§ The benefits of representing them that way are many!
§ This thesis is supported by theoretical arguments across 

disciplines and empirical evidence in Affective Computing 

Georgios N. Yannakakis, Roddy Cowie, and Carlos Busso, "The ordinal nature of emotions: An emerging approach," IEEE Transactions on 
Affective Computing, vol. To appear, 2019
Georgios N. Yannakakis, Roddy Cowie, and Carlos Busso, "The ordinal nature of emotions," in International Conference on Affective Computing 
and Intelligent Interaction (ACII 2017), San Antonio, TX, USA, October 2017, pp. 248-255.

<<

How positive 
is this image?
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§ Preference learning

Preference learning formulation

Preference learning
Based SER

Sentence #1

Sentence #2

Arousal (Sentence #1 >> Sentence #2)
Valence (Sentence #2 >> Sentence #1)
Dominance (Sentence #2 >> Sentence #1)

§ Why preference learning?

§ Humans are better at relative 
comparisons than absolute values

§ Appealing to Emotional Retrieval tasks
§ Better use of training data

§ N(N-1)/2 potential pairs

Getting preference labels ?



6

Qualitative Agreement

QA-based labels for sentence-level annotations

S. Parthasarathy and C. Busso, “Preference-learning with qualitative agreement for sentence level 
emotional annotations,” in Interspeech 2018, Hyderabad, India, September 2018, pp. 252–256.

§ The goal is to define trends in the evaluations
§ In the above example, there are 15 preferences for sentence one, 2 preferences for 

sentence two, and 7 draws
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RankNet (Previous works)
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Sample sentences 𝑖,𝑗, with features 𝜱i , 𝜱j

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender, “Learning to rank 
using gradient descent,” in International conference on Machine learning (ICML 2005), Bonn, Germany, 
August 2005, pp. 89–96.
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§ We can implement function f() with arbitrary architectures
§ Focus on generalization

§ Train on one domain and test on another

§ We consider two alternative and complementary domain 
adaptation schemes
§ Ladder networks (feature reconstruction)
§ Adversarial domain adaptation (feature representation)

Speech Emotion Recognition Formulation
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Chunk based segmentation

2-LSTM layers

RNN-AttenVec
h1 hc

Wav2Vec 2.0
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Adversarial Domain Adaptation Model

Feature 
Representation

Task classifier (f)

Domain classifier
0 or 1

Source domain

Target domain

Task classifier (f)

W P

Domain classifier

W1 C2

0 or 1

M.Abdelwahaband, C.Busso,“Domain adversarial for acoustic emotion recognition,” IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, vol. 26, no. 12, pp. 2423–2435, December 2018

Task classifier loss =

Domain classifier loss =
Source domain
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Ladder network for domain adaptation (LN)
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Noisy	Encoder Decoder Clean	Encoder

Feature 
vector

Task classifier Task prediction

Feature 
vector

§ The goal is to recover a clean version of the encoder 
while obtaining task-specific encoded features 

§ Source domain: Both task classifier loss along with 
reconstruction loss

§ Target domain: Only reconstruction loss.

S. Parthasarathy and C. Busso, “Semi-supervised speech emotion recognition with ladder networks,” 
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2697–2709, 
September 2020.

Total cost =
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Proposed Architectures
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Chunk-based 
segmentation 

CBS + 2FC CBS +LN CBS+DA CBS+LN+DA

CBS: Chunk-based segmentation, TC: Task classifier, FC: Fully connected 
layers, LN: Ladder Network, DA: Adversarial Domain Adaptation 

Task 
Classifier
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Proposed Architectures
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Proposed Architectures
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Chunk-based 
segmentation 

Domain 
adaptation

Task 
Classifier

CBS + 2FC CBS +LN CBS+DA CBS+LN+DA

CBS: Chunk-based segmentation, TC: Task classifier, FC: Fully connected 
layers, LN: Ladder Network, DA: Adversarial Domain Adaptation 
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Proposed Architectures

CBS + 2FC CBS +LN CBS+DA CBS+LN+DA

CBS: Chunk-based segmentation, TC: Task classifier, FC: Fully connected 
layers, LN: Ladder Network, DA: Adversarial Domain Adaptation 
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§ Data preparation
§ MSP-Podcast v1.10 (Source domain)

§ Recordings are annotated for emotional attribute labels (arousal, valence, dominance)
§ We have used ~420k pairs of samples from MSP-Podcast training set.

§ MSP-IMPROV (Target domain)
§ Recordings are annotated for emotional attribute labels (arousal, valence, dominance) 

like MSP-Podcast.
§ Data from the first three sessions are used as the test set, remaining sessions are 

reserved for adaptation. 
§ We samples equal number of pairs (~420k) for adaptation.

Experiment setting
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§ Feature extraction
§ Wav2vec2-large-robust1

§ wav2vec2-large feature representation (1024) using pre-trained Wav2vec2.0 large model 
from the HuggingFace library.

§ Then, we prune the top 12 transformer blocks, and fine-tuned the model using the MSP- 
Podcast corpus.

§ extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)2

§ We also present a baseline using the extended Geneva Minimalistic Acoustic Parameter 
Set (eGeMAPS), which includes 88 acoustic features. 

Experiment setting

1. A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for self-supervised learning of speech representations,” in 
Advances in Neural Information Processing Systems (NeurIPS 2020), Virtual, December 2020, vol. 33, pp. 12449–12460.

2.  F. Eyben et al., “The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing,” IEEE 
Transactions on Affective Computing, vol. 7, no. 2, pp. 190–202, April-June 2016.
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Kendall’s Tau correlation coefficient (KT)

§ If (x1,y1) …. (xn,yn) be a set of observations
§ (xi,xj), (yi,yj) are said to be concordant if the sort order agrees.

§ For testing: 200 utterance are sampled randomly. This process is repeated 20 
times, then mean and SD of the result are reported.
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Results
KT: Kendall’s Tau correlation coefficient Accuracy: Overall test accuracy

Method Labeled Un-labeled
Arousal Valence Dominance

KT Accuracy KT Accuracy KT Accuracy

eGeMAPS+2FC MSP-PODCAST - 0.372 64.3 0.208 58.7 0.316 62.7

CBS+2FC MSP-PODCAST - 0.417 71.9 0.258 61.8 0.392 69.2

CBS+LN MSP-PODCAST MSP-IMPROV 0.484 79.2 0.313 63.9 0.447 72.3

CBS+DA MSP-PODCAST MSP-IMPROV 0.462 78.5 0.301 63.7 0.442 71.5

CBS+LN+DA MSP-PODCAST MSP-IMPROV 0.506 80.6 0.312 64.2 0.461 74.7

CBS+LN* MSP-IMPROV MSP-IMPROV 0.617 84.7 0.375 66.6 0.558 81.2

§ Observations:
§ Lower performance without domain adaptation
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§ Best performance achieved by combining ladder network and 

domain adaptation
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§ Precision as the number of retrieved samples increases
§ We evaluate 10% and 20% of the data
§ We retrieve samples with low and high values of an attribute

§ Arousal, valence, and dominance
§ Success: retrieved samples belong to the correct class created with a median split

§ Baselines: models using f(), trained to predict absolute scores

Precision at K

HighLow

ValenceArousal Dominance
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Summary

§ In this work we explored different preference learning based architectures for SER.
§ We observed ladder network and Adversarial Domain Adaptation are complementary while adapting SER 

model to new domain. 

This study is supported by 

Thank You


