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* Improvement in recognition performance Emotions examined * Shift each marker such that:
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» Linear projection to maximize variance * Decorrelate markers using PCA criteria * Select features that: Viseme MOdE'Ing
*» 30 first principal components (out of 138) *+ Select a reduced set of decorrelated markers *+ Maximize between class variability
» Keep >95% of variance + Method: *+ Minimize within class variability * Viseme: Lip shape during the voicing of a phoneme
» Derivatives of projections: 60-dimensions *+ Average neighboring markers * Method: * Modeling emotional visemes:
*» Interpretation: principal directions of facial * PFA to select 30 features *+ Average neighboring markers * (Constraint the speech-related variability
movement + Normalization + Normalization ¢ Use available phoneme-level transcriptions
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____PFA  [ANG% HAP% NEU% SAD% UW% | Emotions: . . References
GMM(16) 47.03 73.37 36.55 58.35 53.83+6.09 * Happiness is the best recognized emotion 1) C. Busso, M. Bulut, C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. Chang
Viseme-GMM(16) 58.44 7/1.71 37.22 49.28 54.16%6.24 + Neutrality Is the lowest recognized state S. Lee, and S. Narayanan, “IEMOCAP:Interactive Emotional Dyadic Motion
Viseme-HMM(16) 57.52 7698 34.79 53.68 55.74+5.26 * Great performance differences between speakers Capture Database,” Journal of Language Resources and Evaluation, vol.
___ Fisher  [ANG% HAP% NEU% SAD% UW% | * PFA and Fisher features have similar performance 4800, 335509, 2008 & ’ ’
2) M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive
Viseme-GMM(8) 62.78 73.76 29.57 42.62 52.18+7.05 o D L oriculat deling is beneficial 3) I. Cohen, Q. T. Xiang, S. Zhou, X. Sean, Z. Thomas, and T. S. Huang,
Viseme-HMM|(8) 62.92 7597 27.65 46.46 53.25+8.30 ynamic articuiation moaeling 1s beneticial. “Feature selection using principal feature analysis,” 2002.
+ Total unweighted performance (UW) 4) S. Lee and D. Yook, “Audio-to-visual conversion using Hidden Markov
* 10-fold leave-one-speaker-out cross validations * Anger and happiness Models,” in Proc. 7th Pacific Rim Int. Conf. on Artificial Intelligence,
* Report the average over the 10 folds * ...but sadness recognition performance decreases 2002.
+ Decisions are per sentence | imitations: ) ’
+ Majority rule used *+ Multimodal nature of emotional expression This research was supported by funds from NSF
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