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Abstract—The emotional content of several databases are annotated with continuous-time (CT) annotations, providing traces with
frame-by-frame scores describing the instantaneous value of an emotional attribute. However, having a single score describing the
global emotion of a short segment is more convenient for several emotion recognition formulations. A common approach is to derive
sentence-level (SL) labels from CT annotations by aggregating the values of the emotional traces across time and annotators. How
similar are these aggregated SL labels from labels originally collected at the sentence level? The release of the MSP-Podcast (SL
annotations) and MSP-Conversation (CT annotations) corpora provides the resources to explore the validity of aggregating SL labels
from CT annotations. There are 2,884 speech segments that belong to both corpora. Using this set, this study (1) compares both types
of annotations using statistical metrics, (2) evaluates their inter-evaluator agreements, and (3) explores the effect of these SL labels on
speech emotion recognition (SER) tasks. The analysis reveals benefits of using SL labels derived from CT annotations in the
estimation of valence. This analysis also provides insights on how the two types of labels differ and how that could affect a model.

Index Terms—Emotional annotations, continuous time annotations, sentence level annotations, resources for emotion recognition,
speech emotion recognition.
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1 INTRODUCTION

ADVANCES in human-computer interaction (HCI) have
become increasingly effective, improving our daily

interactions with technology. However, an open problem
is the inclusion of systems that are aware of emotions to
enable more effective communication between computers
and humans, mirroring the sophisticated way we interact.
Speech is an appealing modality for HCI, considering the
increased development and use of speech-based interfaces.
Hence, many studies have focused on creating speech emotion
recognition (SER) systems [1], which require a vast amount
of speech data accurately annotated with effective emotional
labels.

The labeling of emotional speech is often done in one
of two main ways: (1) sentence-level (SL) annotations, and
(2) continuous-time (CT) annotations. SL annotations assign
a single label to a speech segment, reflecting the global
emotion in that segment. Speech is split into short segments
(phrases/sentences), which are presented to evaluators who
determine the emotion that they perceive for that segment.
The duration of these segments is typically between three
to fifteen seconds [2], [3], [4], [5]. CT annotations assign
an emotional trace capturing the instantaneous values as
the evaluators judge longer speech segments (conversa-
tions/monologues). This approach captures the instanta-
neous emotional perception of the evaluator at each frame,
creating continuous traces for the emotional attribute [6],
[7], [8], [9], [10], [11], [12]. SL annotations are easier and
quicker to create than CT annotations. However, emotions
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Fig. 1. Process of deriving SL labels from the CT annotations in the
MSP-Conversation corpus. It shows arousal traces as an example (A:
arousal). The green and orange traces represent two CT annotations
from two individual evaluators. The SL annotations from the MSP-
Podcast corpus provides the timing information for the segments used
to split the traces. Aggregate refers to the different functions used to
combine the CT labels over the segments times to obtain SL labels.

and their causes are not always static in a sentence or limited
to the moment they occur, since they are affected by what is
taking place around the speaker. CT annotations are better
at capturing contextual information since annotators have
already listened to the previous parts of the conversation.
Therefore, CT annotations create labels that are based on
the current speech and the previous speech produced by
speakers in the conversation. Furthermore, CT annotations
can be subdivided and aggregated at different temporal res-
olutions as needed (phone, syllable, word, phrase, sentence,
etc.), offering a flexible resource for analysis. A common ap-
proach used in previous studies is to create SL annotations
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from CT annotations by segmenting the conversations into
sentences and aggregating the CT values across annotators
and across time [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24]. Figure 1 illustrates the process of creating
SL labels from CT annotations. However, previous work
[25] has established that aggregated SL labels and global
annotations assigned to entire conversations are not inter-
changeable, which suggests that this issue could also exist
for local SL labels. In contrast to global labels provided to
an entire conversation, SL labels describe shorter speech
segments of a few seconds capturing a measure of local
emotion rather than a measure of a conversation’s mood.
Our study aims to analyze if aggregating CT labels, in the
way it has been done in previous studies, is a valid way of
approximating SL labels. Furthermore, we aim to provide
insights into how the two types of annotations differ and
how using one or the other could affect a model or task.
The analysis in this study has implications for different
affective computing tasks, including analysis, synthesis and
recognition of emotions. To make our study more focused,
we are particularly interested on the impact of these labels
on emotion recognition tasks. We consider the following
important questions about the relationship between SL and
CT labels, and its impact on SER tasks:

• Question 1: What statistical measure, when used to ag-
gregate CT emotional annotations into SL annotations,
approximates actual SL labels the best?

• Question 2: How do the inter-evaluator agreements com-
pare for SL annotations derived from CT annotations and
actual SL annotations?

• Question 3: How well do SER models perform when
they are trained with SL annotations derived from CT
annotations compared with models trained with actual SL
annotations?

• Question 4: How is each emotional attribute affected when
SL annotations derived from CT annotations replace ac-
tual SL labels?

These questions are important for understanding the
validity of aggregating CT traces into SL annotations, which
is a common practice in emotion recognition studies [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], as well
as understanding how using such annotations could affect
models. By measuring how well aggregated SL annotations
approximate SL annotations, we get a measure of similarity
for different aggregation methods. We can obtain a measure
of validity in aggregating CT annotations by combining
those results with findings on inter-evaluator agreements
and their impact on SER results. If we have similar inter-
evaluator agreements and SER results between the two
types of labels, then we can conclude that aggregated SL
labels are as valid for our tasks as SL labels. If we have high
similarity between the two types of labels, then we can also
conclude that it is valid to use the aggregated SL labels as SL
labels. Furthermore, even if they cannot be interchangeably
used for each other, the analyses on aggregated SL labels
versus SL labels can tell us how these labels compare, giving
us insights on when to use the different types of labels
to improve results for each emotional attribute. However,
these questions are not easy to answer, since almost all the
emotional databases are labeled either with SL or CT an-

notations, but not both. We have recently made two related
corpora available to the public, offering the perfect resource
to address these questions. The first database is the MSP-
Podcast corpus [4], which contains SL annotations of both
emotional attributes and emotional categories. These anno-
tations are conducted with no-context on speech segments
of podcasts obtained from audio-sharing websites. The sec-
ond is the MSP-Conversation corpus [26], which contains
CT labels of emotional attributes for conversations from
the same podcasts. There are 2,884 speech segments that
overlap with the recordings from the MSP-Conversation
corpus. Therefore, the MSP-Conversation corpus is a perfect
complement to the MSP-Podcast corpus. This study uses
the overlapping segments to explore the relation between
SL and CT annotations of the same speech. We transform
CT annotations into SL annotations using various statistical
methods and compare these new labels (MSP-Conversation)
with the original labels from the SL annotations (MSP-
Podcast). The annotation of the MSP-Conversation corpus
contains the emotional attributes for arousal (calm to active),
valence (negative to positive), and dominance (weak to
strong). Therefore, the study focuses on these emotional
dimensions, which are the most important attributes in the
core emotion theory [27], [28], [29].

To address Questions 1 and 4, we use five statistical mea-
sures (mean, median, maximum, minimum, first quartile,
and third quartile) to aggregate the CT annotations from
the MSP-Conversation corpus over the speech segments
that are found in the MSP-Podcast corpus. The aggregated
SL labels are compared with the original SL labels from
the MSP-Pocast corpus using the mean squared error (MSE)
and the Pearson correlation coefficient (⇢). The results show
that both SL labels are indeed correlated, with different
relationships depending on the aggregation methods, but
there are still important differences between them. For ex-
ample, aggregated SL labels derived from CT annotations
do not reach extreme values for the emotional attributes and
are more skewed than the original SL annotations. These
similarities and differences are reflected on the MSE and ⇢
results reported in this study. To address Questions 2 and
4, we also study the inter-evaluator agreement within each
of these SL labels. For arousal and dominance, the inter-
evaluator agreement is better for the original SL annotations.
For valence, the inter-evaluator agreement is higher for the
aggregated SL labels, which suggests that evaluators gain
valuable information to assess valence from CT annotations.
Finally, to address Questions 3 and 4, the analysis considers
SER performances achieved when training a deep neural
network (DNN) with the aggregated SL and original SL
labels. We train SER models with the same architecture, but
with different SL labels. Similar to the inter-evaluator agree-
ment results, the models trained on arousal and dominance
achieve better performance when trained with the original
SL labels from the MSP-Podcast corpus, and the models
for valence have better performance when trained with the
aggregated SL labels from the MSP-Conversation corpus.
In addition, we conduct cross-corpus SER evaluations with
mismatched label conditions, where the SER models are
trained with labels from one corpus, but tested with the la-
bels from the other corpus. The mismatched label condition
leads to negligible performance differences for the arousal
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models, and a slight decrease in performance for the dom-
inance models. The valence models have the best results
when tested with the aggregated SL labels, regardless of the
labels used to train the models. Collectively, these results
suggest that aggregating SL labels from CT annotations is
a valid approach, which can even help in the prediction of
valence. However, the naive aggregation done to create the
SL labels still results in important differences between them
and the SL labels originally annotated after listening to only
the speech segment.

The paper is structured as follows: Section 2 discusses
related studies on SL and CT annotations and their rela-
tionships. Section 3 introduces the databases used in this
study, and explains how we aggregate CT labels to create
SL labels. Section 4 presents the results of the different sta-
tistical analyses done to compare the SL and CT annotations.
Section 5 discusses the SER models and their performance
when trained and tested with various SL labels in matched
and unmatched conditions. Section 6 analyzes the role of
context while analyzing CT labels in our results. Section 7
discusses the implications of this study, summarizing the
main observations in this paper. Finally, Section 8 concludes
the paper, suggesting future research directions.

2 RELATED WORK

Although there are many datasets that contain either SL
or CT annotations, few contain both types of annotations.
Therefore, it is difficult to explore effective comparisons
between them. However, previous studies have presented
comparisons between emotional labels collected with con-
text and without context. Cauldwell [30] compared SL an-
notations conducted in sequential order (with-context) and
in random order (without-context). The study showed a def-
inite difference in the judgements, where sentences labeled
as anger in the without-context setting were perceived as
neutral in the with-context setting, even when the same eval-
uators conducted the evaluations. This study corroborates
the idea that context changes the emotional perception of
speech. Jaiswal et al. [31] showed similar results, where SL
annotations were also collected with-context and without-
context. The two methods generated significantly different
annotations. The with-context labels had higher agreement
with the self-reported emotional labels of the speakers.
However, the agreement between evaluators was higher for
the without-context annotations. Jaiswal et al. [31] also used
the two types of labels to train two static classifiers, and
found that for arousal, the classifiers performed similarly,
but for valence, the classifier trained using with-context
labels performed worse. Moreover, when relevant context
was added to the classifier by incrementally adding features
from the previous speech segments to the input, the per-
formance of all models increased, especially for the models
trained with the labels annotated with-context. The results
of these studies suggest that the presence of context when
creating annotations will directly impact the labels, affecting
the effectiveness and robustness of SER models. Our study
differs from the previously mentioned studies since they
only focus on label differences when the surrounding speech
is considered by the annotators. Our study not only focuses

on that type of added context, but also on the effect of anno-
tations at different temporal resolutions. While annotators
must provide instantaneous ratings during CT annotations,
they have more time during SL annotations to think and
summarize their annotations.

Metallinou and Narayanan [25] presented the most sim-
ilar study to our work. CT annotations of the emotional at-
tributes of arousal, valence, and dominance were conducted
on the multimodal database CreativeIT [8], which contains
theatrical performances ranging from 2 to 10 minutes in
length. Evaluators were also asked to give a global annota-
tion of the full performance immediately after finishing the
CT annotation. The CT annotations were aggregated over
time using the mean, median, maximum, minimum, and
first and third quartiles. They estimated the MSE between
the aggregated SL annotations and the global annotations.
The lowest MSE for all attributes was when either the first or
third quartiles were chosen, which implies that extreme val-
ues in longer recordings affect global perception the most.
Notice that changes in emotions within the sessions are not
represented in the global emotional score, so the temporal
resolution provided in this study is not ideal to compare
aggregated SL annotations and SL annotations. Our study
differs in that the annotations in the MSP-Podcast and MSP-
Conversation corpora are conducted on only speech data
by different annotators, and the SL annotations are done on
much shorter segments than the global annotations of the
CreativeIT database. Global annotations encompass much
longer sequences of speech (2-10 mins), which means that
such values give a measure of mood instead of local emotion
associated with a speaking turn. The SL annotations in our
study focus on shorter speech segments, and, therefore,
do measure the local emotion in these segments. We con-
sider speech segments between three and eleven seconds
which are representative of the common sentence duration
in most speech emotional corpora [2], [3], [4], [5]. These
resources allow us to focus on the validity of using SL
labels aggregated from CT annotations as SL annotations
that are meant to capture local emotion. Furthermore, these
resources also give us insights into how CT annotations and
SL annotations differ and how they could affect SER models.

3 RESOURCES

3.1 The MSP-Podcast Corpus
The MSP-Podcast corpus [4], which is used as the source
of the original SL labels, is a publicly available corpus
of natural emotional speech sourced from podcasts on
audio-sharing websites. The selected podcasts are chosen
so that the corpus contains conversations and monologues
of varying topics, a diverse group of speakers, and diverse
emotional content. The speech is natural and spontaneous,
as it was not recorded to specifically elicit emotional speech.
For ease of sharing, the podcasts are all available under the
less restrictive Creative Commons licenses (CC-BY and CC-
0). The data protocol includes several steps. First, the pod-
casts are segmented into speaking turns using the Microsoft
Azure Video Indexer. The next step is to identify segments
without speaker overlap, music, or noise. All these steps
are automatically implemented as part of the protocol. The
selected segments have durations between 2.7s and 11s and
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are annotated in a random order. This range of the duration
of the speaking turns is selected to have speaking turns that
are long enough to covey emotional cues that can be reliably
annotated by human raters, and short enough to mitigate
long sentences where the emotional content changes within
the speaking turn. This process creates a speech repository
from where we annotated the data.

For most of the corpus, the selection of sentences to be
annotated follows the retrieval-based approach presented
by Mariooryad et al. [32], where machine learning mod-
els are used to identify speech segments with emotional
content. As explained in Section 3.2, this study uses the
sentences that overlap with the recordings of the MSP-
Conversation corpus. One of our goals is to maximize
the number of speaking turns in the MSP-Podcast corpus
that overlap with the recordings on the MSP-Conversation
corpus. Therefore, we annotate all the segments contained
in the conversations regardless of the emotional content
of the speaking turns, as long as there is no overlapped
speech, music or noisy recordings. The corpus contains
SL annotations of the speech segments, collected with a
crowdsourcing protocol inspired by the work of Burmania
et al. [33]. Evaluators are asked to label the primary and
secondary emotions of each speech segment with categor-
ical emotional labels (e.g., happiness, sadness, anger). The
annotations also include the emotional attributes valence
(negative versus positive), arousal (calm versus active), and
dominance (weak versus strong). For emotional attributes,
we used a seven-point Likert scale. The data collection is an
ongoing effort, where this study uses the release 1.9 of the
corpus, which includes 86,389 speaking turns (137 hours,
11 minutes). For this study, we only consider the segments
that overlap with the recordings of the MSP-Conversation
corpus.

3.2 The MSP-Conversation Corpus

The MSP-Conversation corpus [26] was created as a com-
plement to the MSP-Podcast corpus (Sec. 3.1) to study con-
textual information in SER tasks. The corpus is an ongoing
effort that contains conversations sourced from the same
podcasts identified in the MSP-Podcast corpus. These con-
versations are 10 to 20 minutes long and are chosen for their
emotional and speaker content, focusing on a broad and
balanced range of emotional content and gender diversity.
The conversations are segmented into three to seven minute
speech segments that are labeled with CT annotations for
the three emotional attributes (arousal, valence, and dom-
inance). Evaluators use the CARMA software [34] and a
joystick to record their instantaneous emotional perception
while listening to the conversation. The interface uses a scale
of -100 to 100 for each emotional attribute. The first version
of the MSP-Conversation corpus contains 74 conversations
(15hrs, 9mins), and contains speech from 197 different
speakers (87 female, 110 male). The corpus contains at least
six annotations from different evaluators per conversation.

The MSP-Podcast corpus contains speech segments that
overlap with the recordings in the MSP-Conversation cor-
pus. To our knowledge, they are the only datasets that,
combined, have both CT and SL labels of the same speech
audio. When we consider version 1.9 of the MSP-Podcast

corpus, and the first version of the MSP-Conversation cor-
pus, there are 2,884 MSP-Podcast speech segments found
in the MSP-Conversation speech data, which is more than
4 hours of data. We focus our analysis on these segments.
The amount of speech data available is comparable to many
early corpora that contain SL annotations [3], [35], [36],
and this data will keep growing as both the MSP-Podcast
and MSP-Conversation corpora are ongoing efforts. Further-
more, the corpora contain natural speech data collected from
spontaneous conversations, and not recorded in a laboratory
environment or purposely acted [2], [8], [9], [10], [37].

3.3 Creation of SL Annotations from CT Annotations

This study aims to compare aggregated SL labels, obtained
from CT annotations of the MSP-Conversation corpus, with
the original SL annotations of the MSP-Podcast corpus. This
section explains the process of converting the emotional
traces into SL labels for the speech segments overlapping
with the MSP-Podcast corpus. First, we segment the CT
labels from each evaluator using the timings of the 2,884
speech segments from the MSP-Podcast corpus. Then, those
traces are aggregated over time for each evaluator. We use
the aggregation methods used in Metallinou and Narayanan
[25] by taking the following statistics on the traces for each
emotional attribute during the target segments: minimum
(m), first quartile (Q1), median (Q2), mean (µ), third quartile
(Q3), and maximum (M). Then, the aggregated values of
each annotator are averaged together to get the consensus
labels for the MSP-Conversation corpus, which we refer
to as aggregated SL annotations. Figure 1 demonstrates the
full process, where the traces are the CT annotations that
are aggregated into SL annotations to be compared with
the labels in the MSP-Podcast corpus. We also account
for the reaction lag of the evaluators while annotating CT
labels (i.e., time an evaluator takes listening to and judging
the emotional content before moving the joystick to record
her/his perception [38], [39]). We use a constant time shift
(T ) to account for this reaction lag. For each annotator trace,
we shift the annotation back by T seconds, effectively using
the labels that were recorded T seconds after the annotator
heard the utterance. Then, the rest of the aggregation pro-
cess is performed. Figure 2 shows this process. We use time
shifts of 2.8, 3.0, 3.6, 4.08, 5.44, and 5.6 seconds, as they have
been found to be ideal delays by previous studies [39], [40].
In this study we focus on the simple task of constant time
shifts for all annotators, which is sufficient as a first task.
As found by Mariooryad and Busso [39], a constant delay
results in a similar performance than using annotator and
task specific delays.

4 STATISTICAL ANALYSIS

This section analyzes the MSP-Conversation SL labels for
each time shift, aggregation method, and emotional at-
tribute, comparing the results with the SL annotations from
the MSP-Podcast corpus. Section 4.1 compares the SL labels
from both corpora. Section 4.2 evaluates the inter-evaluator
agreement within each corpus.
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Fig. 2. Process of adding a time shift T to the aggregated SL labels. The
trace of one annotator (curve in black) is shifted back by T seconds to
get a shifted trace (dashed curve). The sentence timing is then used to
aggregate the shifted trace over the appropriate time.

4.1 Aggregated SL Annotations versus SL Annotations

Our first analysis is to visualize the relation between the
aggregated SL annotations from the MSP-Conversation cor-
pus and the SL annotations from the MSP-Podcast corpus.
First, we analyze the relationship between categorical and
attribute-based labels assigned by the SL and CT labels. We
plot the sentences on the arousal-valence space, grouping
the sentences according to the categorical emotion labels
provided by the MSP-Podcast corpus. We consider two
conditions by using the emotional attributes either from the
MSP-Podcast corpus (Fig. 3(a)) or aggregated from the MSP-
Conversation corpus (Fig. 3(b)) using no time shift and the
mean aggregation rule. Figure 3 shows that the SL labels
and the aggregated SL labels have similar distributions over
their given emotional space since the categorical groups are
in similar positions relative to each other. However, the
aggregated SL labels seem to have fewer extreme values,
with a shift toward the positive side of the arousal space.
One explanation is that annotators can easily react to more
active behaviors. For less active behaviors, some raters may
return to the origin instead of moving the joystick toward
lower values of arousal.

Figure 4 shows the results when the SL and aggregated
SL labels are directly compared, where each point corre-
sponds to a sentence. The plots for different time shifts and
aggregation methods look similar, so Figure 4 only reports
the case with no compensation for the reaction lag, and
with the mean aggregation rule. While the plots reveal a
level of correlation between both annotation methods, they
show that the MSP-Podcast labels cover a larger area of
their range than the aggregated MSP-Conversation labels.
Furthermore, using the maximum or minimum for aggre-
gation does not change the look of the plots, suggesting
that speech segments labeled with extreme values during
SL annotations are not being labeled with extreme values
during CT annotations. This result may be influenced by
the time annotators are given to assign a value. Humans are
notoriously less accurate at giving absolute values [41], [42],
which would be exacerbated when being asked to give an
instantaneous rating as done with the CT annotations. Using
the SL labels derived from CT annotations would lead to
models that predict emotional states closer to neutral than
using original SL annotations, and skewed towards positive
values of arousal and dominance.

We also compare the aggregated SL annotations from
the MSP-Conversation corpus with the original SL anno-
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Fig. 4. Plots of the MSP-Conversation SL labels (aggregated using the
mean and no time shift) versus the MSP-Podcast SL labels. Each point
corresponds to a speech segment.

tations from the MSP-Podcast corpus using the MSE, and
the Pearson correlation coefficient (⇢). For this analysis, the
labels from the MSP-Podcast corpus are linearly scaled to
match the range of the MSP-Conversation labels mapping
the values from a range of 1 to 7 into a range of -100 to 100.
Furthermore, looking at Figures 3 and 4, we observe that
the MSP-Conversation labels have clear shifts, especially
for the arousal and dominance dimensions. Therefore, we
conduct some experiments with normalized labels. We use
a method inspired by the normalization strategy proposed
in Busso et al. [43]. The approach takes the average of
the aggregated SL and SL labels for each attribute over
the sentences labeled with the primary class neutral in the
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Fig. 5. Mean squared error (MSE) between the MSP-Conversation SL
labels and the MSP-Podcast SL labels. The values for each time shift
are grouped to make the box plots. The traces are aggregated with the
functions minimum (m), first quartile (Q1), median (Q2), mean (µ), third

quartile (Q3), and maximum (M). The analysis is conducted with and
without the label normalization described in Section 4.1

MSP-Podcast dataset. Then, those averages were subtracted
from their corresponding labels, normalizing both the ag-
gregated SL and SL labels to be centered around the neutral
values of each attribute. This normalization mitigates the
shift between the two annotation strategies. Our analysis
considers the labels with and without this normalization.
For each attribute and aggregation scheme, we estimate
seven values corresponding to no time-shift, and the six
delays mentioned in Section 3.3 for both the original and
normalized labels. Figures 5 and 6 show these results.

Figure 5 shows the MSE between the MSP-Conversation
SL labels and the MSP-Podcast SL labels. The outliers,
marked with the ‘x’ symbol, correspond to time shifts of 0s.
The overall MSE results for the dimensions follow the trends
seen in Figure 4. Dominance has the most data points close
to the black dashed line, which represents a MSE of 0, and
arousal has the least. Therefore, dominance labels have the
smallest MSE, while arousal labels have the highest MSE.
These results are observed with and without label normal-
ization. Without label normalization, the MSE is lower when
the CT labels are aggregated over the segments with the
functions minimum (m) and first quartile (Q1) (i.e., focus
on lower extremes). However, the normalization flattens the
results, showing that the shifts in the labels affect the MSE
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Fig. 6. Pearson correlation coefficient between the MSP-Conversation
SL labels and the MSP-Podcast SL labels. We only present the results
without the label normalization, since the normalization does not affect
the correlation between the labels.

the most. This analysis also tells us that using the aggregated
SL labels in models would lead to predictions that are
different in absolute value when compared to predictions
of models trained with original SL labels, even when they
are predicting an emotional attribute with the same acoustic
features.

Figure 6 shows the results for the Pearson Correlation
Coefficient (⇢). We only present the results without the label
normalization, since the correlation does not change with
this normalization. The outliers also correspond to time
shifts of 0s. Overall, the aggregation methods focused on
middle values show better correlation. Overall, arousal has
the best ⇢ values and dominance has the worst ⇢ values.
Focusing on aggregation methods that consider middle val-
ues may capture the relative trends between the annotations
better (i.e., higher correlation). For arousal and valence, the
aggregation method using the mean (µ) had the best ⇢
values. For dominance, using the third quartile (Q3) gave
the best values. The best ⇢ values for each attribute were:
⇢=0.555 for arousal (mean aggregation function and a time
shift of 2.8s), ⇢=0.498 for valence (mean aggregation func-
tion and a time shift of 3.6s), and ⇢=0.421 for dominance
(third quartile aggregation function and a time shift of 2.8s).
Those ⇢ values show that the SL labels derived from CT
annotations are definitely correlated with the original SL
annotations, even when their absolute values are shifted.
Models trained with either labels could predict emotional
states that are ordered similarly, meaning both models could
agree on which speech segment is more active or more
positive than another.

Figures 4, 5 and 6 show that the SL annotations from the
MSP-Podcast corpus and the aggregated SL labels from the
MSP-Conversation corpus are correlated but have substan-
tially different absolute values. We see from Figure 4 that
the range of values for labels derived from CT annotations
is narrower, without reaching the extremes. For dominance
and arousal, the figure also shows that most of the anno-
tations from the MSP-Conversation corpus are over 0, so
the distributions are skewed to more active and stronger
emotions. The annotations for the MSP-Podcast corpus are
more balanced. Therefore, annotations that follow the same
trends, but are not necessarily close in value can explain the
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disagreement among the ⇢ and MSE results. As mentioned
previously, these results show that using the aggregated
SL labels to train models could lead to different absolute
predictions when compared to models trained with original
SL annotations, but both models could still agree on the
emotional ordering of sentences. Another interesting result
from Figures 5 and 6 is the lower spread of the boxes
for valence. This result suggests that changes on the time
shift to compensate for the reaction lag are less important
when deriving aggregated SL annotations from the valence
emotional traces. Arousal and dominance are more sensitive
to the time shift.

The results from the normalization are encouraging for
the typical methods of aggregating CT labels, since the
results show that using the mean or median are the best at
approximating SL labels when compared to the other simple
aggregation methods, as shown by the correlation results
(Fig. 6). Furthermore, although normalizing does make the
MSE results better, they are not too different for the mean
and median. Therefore, it is not necessary to conduct the
normalization when categorical labels are not available (the
normalization relies on selecting neutral samples). These
results show that while normalization is useful to better
understand the results obtained with different aggregation
methods, normalization is not necessary when aggregating
time-continuous traces. The statistical experiments point to
the mean and median, with a time shift, being sufficient
for CT labels approximating SL labels. When comparing the
results between time shifts, we observe that consistently a
time shift of 2.8s is best for approximating SL labels from
CT labels, but the results from time shifts do not diverge too
far from each other, supporting the results in Mariooryad
and Busso [39]. The exception is when we do not use a time
shift, which is consistently worse than any time shift. We
recommend that CT labels continue to be used by taking
into account the reaction time of the annotators by including
at least a constant time shift.

4.2 Inter-Evaluator Agreement

This section compares the inter-evaluator agreements ob-
tained after aggregating the CT annotations into SL la-
bels. The agreements are compared with the inter-evaluator
agreements from the SL annotations on the MSP-Podcast
corpus for the 2,884 target sentences. Notice that this anal-
ysis compares the agreement across annotators within each
of the labeling methods. We consider the reaction lags and
aggregation methods presented in Section 3.3. Since the
emotional attributes are rating values, we estimate the inter-
evaluator agreement using the Krippendorff’s alpha coefficient
(K alpha) [44]. The normalization done in Sec. 4.1 does not
affect the inter-evaluator agreement scores since it shifts
all annotator labels equally. Therefore, we only report the
agreements on the labels without normalization.

Table 1 shows the results. For arousal and dom-
inance, the MSP-Podcast labels had the best inter-
evaluator agreement (↵arousal=0.308 and ↵dominance=0.228).
These agreements are better than the best performance
achieved with the MSP-Conversation labels (↵arousal=0.129
and ↵dominance=0.086). For valence, in contrast, the
MSP-Conversation SL labels had the best agreement

TABLE 1
Krippendorff’s Alpha coefficient to measure inter-evaluator for (1) the

aggregated SL labels (MSP-Conversation), and (2) the original SL
labels (MSP-Podcast). The traces are aggregated with the functions

minimum (m), first quartile (Q1), median (Q2), mean (µ), third quartile

(Q3), and maximum (M).

MSP-Podcast Labels

Arousal=0.308 Valence=0.353 Dominance=0.228
MSP-Conversation Sentence Level Labels

A
ro

us
al

Time Aggregation Method

Shift µ Q2 M m Q1 Q3

0.00 0.101 0.098 0.095 0.129 0.097 0.100
2.80 0.100 0.095 0.095 0.121 0.100 0.099
3.00 0.100 0.096 0.095 0.121 0.101 0.100
3.60 0.101 0.096 0.097 0.121 0.102 0.101
4.08 0.102 0.098 0.098 0.124 0.103 0.101
5.44 0.103 0.100 0.100 0.125 0.102 0.103
5.60 0.103 0.101 0.100 0.124 0.102 0.104

Va
le

nc
e

Time Aggregation Method

Shift µ Q2 M m Q1 Q3

0.00 0.396 0.405 0.381 0.393 0.407 0.402
2.80 0.397 0.406 0.381 0.392 0.409 0.404
3.00 0.397 0.406 0.381 0.392 0.410 0.404
3.60 0.398 0.408 0.384 0.392 0.409 0.405
4.08 0.398 0.408 0.384 0.394 0.410 0.406
5.44 0.398 0.409 0.382 0.392 0.410 0.405
5.60 0.398 0.409 0.382 0.392 0.409 0.405

D
om

in
an

ce

Time Aggregation Method

Shift µ Q2 M m Q1 Q3

0.00 0.070 0.067 0.079 0.075 0.071 0.079
2.80 0.069 0.068 0.081 0.069 0.072 0.080
3.00 0.069 0.066 0.083 0.070 0.071 0.079
3.60 0.070 0.070 0.083 0.069 0.071 0.081
4.08 0.070 0.070 0.083 0.068 0.071 0.081
5.44 0.071 0.074 0.086 0.070 0.070 0.080
5.60 0.071 0.073 0.085 0.070 0.069 0.080

(↵valence=0.410), with the best agreement coming from the
labels aggregated using the first quartile and a time shift
of 3s. Using the median aggregation method is also very
competitive for valence. Between the attributes, the labels
of valence have the highest agreements for all labels and
dominance have the lowest agreements. Valence often has
the highest inter-evaluator agreement in perceptual evalua-
tions among emotional attributes [2], [4], [9]. The definition
of dominance is often more difficult to grasp than the
definitions for arousal and valence, which may lead to lower
inter-evaluator agreement. Evaluators seem to have more
distinct arousal and dominance annotations when they are
continuously annotating, but the large drop in agreement
might also be partially due to the resolution given to the
evaluators to annotate their emotional judgments. The anno-
tators for the MSP-Podcast corpus only have seven choices
for each attribute, which will force evaluators with slightly
different perceptions to choose the same rating. On the other
hand, the MSP-Conversation evaluators are given choices of
effectively any number between -100 to 100, which would
make it almost impossible for two evaluators to have the
same annotation. Furthermore, the aggregation methods
assume that all annotators have the same reaction lag, so
the annotators might agree more if their actual reaction
lags were used. All of those reasons make it surprising that
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the valence agreement increases from the MSP-Podcast to
the MSP-Conversation SL labels. This result suggests that
the process for CT annotations gives evaluators important
information for rating valence, which leads to more accurate
annotations. This could be due to the added contextual
information, since its importance for valence has been pre-
viously observed [45] (Sec. 6).

Cowie et al. [6] discussed the problem of identifying
“appropriate tasks” for emotional annotation. If the task
is appropriate then the annotations derived from it are
viable. The viability of SL annotations has been validated
by their successful usage, but the viability of aggregated
SL labels is still in question. The authors mentioned that
inter-rater agreement has been used for checking viability.
However, they argue that this is only a good criterion if
the annotators are a somewhat homogenous group anno-
tating unambiguous samples. Although the annotators for
the MSP-Conversation are relatively homogenous, as they
were chosen from the same university with similar cultural
backgrounds, the sentences being analyzed are not unam-
biguous. The agreement results in this section suggest that
the arousal and valence aggregated SL labels are viable since
the agreements are close to or higher than the agreements
for the original SL labels. The dominance labels do not
show a high enough agreement for viability, but since the
sentences could be ambiguous for dominance, we cannot
conclude that the aggregated SL dominance labels are not
viable. Using the labels in simple SER tasks gives us a clearer
idea of the viability of the aggregated SL labels for our
specific tasks (Sec. 5).

5 EVALUATION WITH SER MODELS

We evaluate the impact of aggregated SL labels derived
from CT annotations on SER tasks, comparing the results
with the ones obtained with the original SL annotations. We
compare not only the effectiveness of the models in matched
label conditions (Sec. 5.1), but also its generalization to
mismatched label conditions by training with labels from
one corpus and evaluating the results with labels from the
other corpus (Sec. 5.2). The normalization done in Sec. 4.1
does not affect the model since any simple bias taken care
of by the normalization is already accounted for in the
bias terms included in our SER model. Therefore, we only
report the SER results on the labels without normalization.
Since our focus is on emotion recognition tasks, we define
effectiveness of the labels as the ability of SER models to
predict the labels assigned by the evaluators, using either SL
or CT-based annotations. From a machine learning perspec-
tive, an SER model with good performance is able to learn
patterns from the acoustic features to predict the labels. The
consistency in the labels is expected to have a marked effect
on the performance, considering that noisy, inconsistent SL
labels in a classification task typically impair the learning
capability of the models [37].

The evaluation uses the 2,884 speech segments men-
tioned in Section 3.2. We use the partition suggested for the
MSP-Podcast corpus for training, development, and testing,
which gives us 1,688 speech segments in the train set, 903
speech segments in test set, and 293 speech segments in the
development set. The size of this set is significantly smaller

than the full corpus, so the SER results reported here cannot
be directly compared with other studies using the entire
MSP-Podcast corpus [46], [47], [48], [49], [50], [51], [52]. The
acoustic feature vector corresponds to the feature set pro-
posed for the Interspeech 2013 computational paralinguistics
challenge (ComParE) [53]. The feature set is extracted with
the openSMILE toolkit [54]. The set computes statistical de-
scriptions (e.g., mean) over frame-level features such as the
fundamental frequency and energy. The set generates a 6,373
dimensional feature vector to represent the speech segment,
regardless of the duration of the sentence. Given the reduced
size of the training set, we build a simple deep neural network
(DNN) for our evaluation. State-of-the-art SER models are
large, need an even larger amount of data, and take time to
fine-tune and train. Using a simple neural network allows us
to quickly get and validate our results, reducing the chances
of overfitting the network. The model consists of two fully
connected hidden layers implemented with 128 nodes, and
an output layer with a single node. We use tanh as the
activation function, and dropout for the second layer with
a dropout rate of p = 0.3 for arousal and dominance and a
dropout rate of p = 0.5 for valence. The higher dropout rate
for valence follows the recommendations by Sridhar et al.
[55]. The output layer has a linear activation with one node
since this is a regression task. We build separate models for
arousal, valence, and dominance. The models are trained to
maximize the concordance correlation coefficient (CCC), which
is also our evaluation metric. We use the Adam optimizer
with a learning rate of 0.0001, and early-stopping criterion
on the development set. The best model is evaluated on the
test set. We train for 100 epochs with a batch size of 128.

5.1 SER Results with Matched Label Conditions

Table 2 shows the results for the matched label condition.
The best models trained with the aggregated SL labels from
the MSP-Conversation corpus for each attribute are shown
in bold. The results show that for arousal and dominance,
the models trained with the SL labels from the MSP-Podcast
corpus have better CCC values than all the models trained
with the aggregated SL labels from the MSP-Conversation
corpus. The models have an easier time finding the relation-
ship between the features and the labels when the labels
come from SL annotations. For arousal and dominance,
the decrease in performance could be explained by the
lower agreement between the evaluators for the aggregated
SL labels (Sec. 4.2). However, this performance drop is
not as drastic as expected from the low inter-evaluator
agreements for arousal and dominance for aggregated SL
annotations. We conducted further SER model testing to
explore the relationship between inter-evaluator agreement
and our model’s performance. For this analysis, we only use
the labels from the MSP-Conversation corpus. We split the
test set of the MSP-Conversation corpus into two equal sets
by considering sentences with low and high agreement. We
order the sentences according to the standard deviation of
their attribute values assigned by the evaluators, splitting
the sentences into low and high agreement sets. We do not
retrain the SER models. Instead, we only test the models on
these two sets. We consider the best SER models in Table 2,
highlighted in bold. Figure 7 shows the results. We observe
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TABLE 2
CCC values of SER models in matched label conditions. Aggregation
functions: minimum (m), first quartile (Q1), median (Q2), mean (µ),

third quartile (Q3), and maximum (M).

MSP-Podcast Labels

Arousal=0.556 Valence=0.083 Dominance=0.462
Models Trained with MSP-Conversation SL Labels

A
ro

us
al

Time Aggregation Method

Shift µ Q2 M m Q1 Q3

0.00 0.494 0.498 0.463 0.417 0.461 0.448
2.80 0.517 0.522 0.495 0.421 0.488 0.474
3.00 0.510 0.515 0.495 0.421 0.482 0.469
3.60 0.452 0.500 0.485 0.444 0.474 0.454
4.08 0.447 0.494 0.475 0.432 0.462 0.448
5.44 0.458 0.456 0.440 0.417 0.441 0.453
5.60 0.453 0.452 0.437 0.413 0.434 0.448

Va
le

nc
e

Time Aggregation Method

Shift µ Q2 M m Q1 Q3

0.00 0.231 0.226 0.280 0.191 0.214 0.246
2.80 0.228 0.226 0.261 0.191 0.221 0.233
3.00 0.228 0.223 0.262 0.191 0.218 0.234
3.60 0.225 0.220 0.257 0.190 0.217 0.236
4.08 0.226 0.222 0.258 0.193 0.214 0.237
5.44 0.232 0.229 0.259 0.197 0.224 0.236
5.60 0.233 0.231 0.260 0.196 0.227 0.235

D
om

in
an

ce

Time Aggregation Method

Shift µ Q2 M m Q1 Q3

0.00 0.307 0.310 0.243 0.298 0.312 0.299
2.80 0.361 0.369 0.278 0.353 0.359 0.336
3.00 0.360 0.364 0.277 0.355 0.360 0.336
3.60 0.356 0.358 0.277 0.359 0.368 0.329
4.08 0.349 0.349 0.278 0.345 0.368 0.322
5.44 0.337 0.338 0.263 0.359 0.360 0.302
5.60 0.335 0.337 0.262 0.360 0.359 0.300

that higher agreements do not necessarily lead to labels
that are easier to predict. Therefore, even though arousal
and dominance do not show high agreement, their model
results can still be good. In contrast, Table 2 shows opposing
results for valence, where the aggregated SL labels result
in better predictions than using the original SL labels. We
hypothesize that these results can be explained by the extra
context combined with the instantaneous reactions captured
by CT labels. We extend the analysis on the role of context
in Section 6. The CCC results for valence are in general
lower than the other attributes. This result is expected since
valence is usually the most difficult attribute to predict from
acoustic features [56], [57], [58], [59]. The lower performance
for valence is consistently reported across SER studies. We
also observe that the CT annotations make it easier for the
SER model to learn the connection between the valence
labels and acoustic features.

We conduct two additional experiments to validate the
robustness of SER results presented in this section. First,
we use a simpler SER model to evaluate the results using
principal component analysis (PCA), and support vector machine
(SVM). PCA is set to reduce the feature dimension from
6,373D to 128D (same as the DNN model), and the SVM
model (linear kernel, penalty=1) is trained on this 128D
feature vector and their corresponding emotion labels. This
PCA-SVM model is used here as a naı̈ve model for SER.
By comparing the PCA-SVM results with the DNN results,
we both evaluate the generalizability of the conclusions
drawn in this section as well as provide a baseline for

Arousal Valence Dominance
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0.6

C
C

C

Fig. 7. CCC values of the best MSP-Conversation SER models (bolded
in Table 2) for each attribute tested with the low and high agreement
sentence sets.

the DNN results. Second, we design a speaker-independent
five-fold cross-validation (CV) setting to evaluate the SER
results. This approach aims to evaluate whether the results
in Table 2 are due to specific speech files included in the
predefined train, development, and test partitions. This CV
process is implemented for the DNN and PCA-SVM models.
Figure 8 shows the results for the two models with the
predefined partition (PD) and with the CV setting. For the
models trained with the MSP-Conversation corpus, we only
report the best results achieved with different aggrega-
tion strategies and time shifts for each of the evaluation
approaches. We consistently observe similar performance
trends across different evaluation approaches. We observe
better valence performance, but worse arousal and dom-
inance performance when using the CT labels compared
to the corresponding SL labels. These results validate the
findings reported in this section.

5.2 SER Results with Mismatched Label Conditions
To explore the generalizability of the SER models, this
section discusses the mismatched label condition where
the models are trained with labels from one corpus and
tested with labels from the other corpus. We test six of the
models with labels from the corpus they were not trained
on. The first three models are the ones trained on the
MSP-Podcast annotations. The other three models are the
best SER systems trained on the aggregated SL labels from
the MSP-Conversation corpus for each attribute (conditions
highlighted in bold in Table 2). We train all six models 10
times with different network initialization settings reporting
the average results. We assess whether the difference be-
tween matched and mismatched conditions are statistically
significant using the two-tailed t-tests, asserting significance
with p-value< 0.05 (the degree of freedom is 9).

Table 3 shows the results in both mismatched and
matched label conditions for all six models (three emotional
attributes ⇥ two types of labels). In the table, the values
at the diagonals show the test results for the matched
conditions for each attribute, and the out-of-diagonal values
are the mismatched results. The standard deviation across
the 10 runs are reported in brackets. We compare each
matched test result with the result of the same model tested
in the mismatched condition. For example, we compare the
arousal model trained and tested with the original SL labels
to the same model tested with the aggregated SL labels. Two
matched test results are shown to be significantly better than
their mismatched counterparts: the valence matched model
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Fig. 8. CCC values of SER models with different evaluation approaches
to show the consistency of the results. We compare models trained
with the MSP-Podcast original SL labels (SL-ORG) and the MSP-
Conversation aggregated SL labels (SL-AGG) The models used for the
MSP-Conversation evaluations are the best models for each attribute
and model design. The evaluation approaches are composed of either
a PD or CV partition design and either a DNN or SVM model setup.

trained with aggregated SL labels (CCC = 0.185) and the
dominance matched model trained with original SL labels
(CCC = 0.483). One mismatched test result is shown to be
significantly better than its matched counterpart: the valence
mismatched model trained with aggregated SL labels (CCC
= 0.145). For arousal, the model trained with SL labels from
the MSP-Podcast corpus increased performance when tested
with the aggregated SL labels from the MSP-Conversation
corpus. The model trained with the aggregated SL labels
achieves lower performance when tested with the original
SL labels. However, the performance differences between
matched and unmatched conditions were not statistically
significant. Therefore, we conclude that the original and
aggregated SL arousal labels share relevant information for
this SER task, which agrees with our statistical analyses
in Figure 6 that show that arousal has the most correlated
labels when considering both labels. For valence, however,
the models tested with the aggregated MSP-Conversation
SL labels had the best performance, with the best model
being trained and tested with the aggregated SL labels.
It appears that the SER model is learning some valuable
and similar connections from training with both types of

TABLE 3
Mean and standard deviation (in brackets) of CCC values of SER

models under matched and mismatched label conditions. We denote
the MSP-Podcast SL labels as SL-ORG and the MSP-Conversation

aggregated SL labels as SL-AGG. We indicate the aggregation method
and time shift in brackets. Results tagged with ⇤ indicate that the

average CCC values across 10 trials for the mismatched condition are
statistically significantly better than the results for the matched

condition (two-tailed t-test, p-value < 0.05). Results tagged with †
indicate the matched condition results in statistically significantly better

performance than the mismatched condition.

M
od

el
Te

st
Se

t

Model Train Set
Arousal SL-ORG SL-AGG (T=2.8, Q2)
SL-ORG 0.531 (0.031) 0.509 (0.015)
SL-AGG (T=2.8, Q2) 0.548 (0.025) 0.510 (0.013)
Valence SL-ORG SL-AGG (T=0, M)
SL-ORG 0.088 (0.018) 0.051 (0.014)
SL-AGG (T=0, M) 0.145†(0.051) 0.185⇤(0.074)
Dominance SL-ORG SL-AGG (T=2.8, Q2)
SL-ORG 0.483⇤(0.017) 0.378 (0.033)
SL-AGG (T=2.8, Q2) 0.215 (0.016) 0.351 (0.024)

labels. However, those connections appear to hold better
on the aggregated SL labels. For dominance, the models
tested with the original MSP-Podcast SL labels have the best
performance. The best model is when we train and test with
the original SL labels. Only the result of the models trained
with the original SL labels has a statistically significant dif-
ference compared to the mismatched condition. The models
trained with the aggregated SL labels have very similar
performance when tested with both types of labels, showing
that the labels have some similarities. For dominance, the
connections learned by the model hold best for the original
SL labels, although the performance differences are not as
large as for valance. Dominance values are the most similar
in value between the datasets (Figure 5), so it is natural
that the SER dominance results are good in mismatched
conditions even with low correlations (Figure 6).

While the aggregated SL and original SL labels have
clear differences, the overall results in this section indicate
that they still share important information relevant to SER
tasks, especially for arousal labels. The low standard devia-
tion in the CCC values across the 10 trials (Table 3) shows
that the results are consistent, validating the observations
discussed in this section.

6 CONTEXT ANALYSIS

Our experiments in Sections 4 and 5 show that there are
differences between the aggregated SL labels and the SL
labels, especially for the attribute of valence. These differ-
ences could be due to many factors in the distinct annotation
processes, including the extra context that is available when
annotating CT labels (i.e., SL labels in the MSP-Podcast
corpus are annotated out-of-context). This section analyzes
in more detail the role of context.

We compare sentences annotated at different context
levels during the CT annotation process. We divide our
sentences into two groups. The first group includes sen-
tences that happen in the first 60 seconds of a conversation,
which are referred to as low-context sentences. The second
group includes sentences that occur after three minutes in a
conversation, which are referred to as high-context sentences.
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Fig. 9. Statistical measures between the aggregated SL labels (MSP-
Conversation) and original SL labels (MSP-Podcast) for low-context
and high-context sentences. We only report the results with the mean
aggregation method.

Comparing the labels of these two groups can give us in-
sights into the role of context and the role of the continuous
annotation process in our results. There are 514 low-context
sentences, so to perform the analyses, we randomly select
514 high-context sentences to effectively compare the two
groups.

6.1 Statistical Analysis
We perform similar experiments to Section 4.1 using low-
context and high-context sentences on the labels without
normalization. Figures 9(a) and 9(b) show the results of
the statistical analyses using the mean for aggregation of
the CT labels. The MSE and ⇢ values are averaged over all
the time shifts considered in this study. There is a slightly
bigger difference between the CT and SL labels for valence
and dominance for the high-context sentences as opposed to
the low-context sentences. This result is expected since the
SL labels are conducted without context matching the low-
context setting. For arousal, however, context decreases the
differences between aggregated and original SL labels. The
similarity between the CT and SL labels is higher for the
high-context sentences than for the low-context sentences.
The results in this section show slight differences in the
patterns for aggregated and original SL labels in low-context
and high-context sentences. However, the aggregated and
original SL labels are still different in both conditions, so
we conclude that the differences cannot be exclusively at-
tributed to context.

6.2 Evaluation with SER Models
We replicate SER experiments from Section 5.2 on the low-
context and high-context sentences. Given the reduced size
of the corpus, the experiment results are based on the PCA-
SVM method mentioned in Section 5.1. We assign sentences
to the train, development, and test partitions based on the

TABLE 4
CCC values of SER models under matched and mismatched label

conditions trained and evaluated on low-context or high-context
sentences. We denote the MSP-Podcast original SL labels as SL-ORG

and the MSP-Conversation aggregated SL labels as SL-AGG.

Low-Context Sentences

M
od

el
Te

st
Se

t

Model Train Set
Arousal SL-ORG SL-AGG (T=2.8, Q2)
SL-ORG 0.492 0.484
SL-AGG (T=2.8, Q2) 0.569 0.470
Valence SL-ORG SL-AGG (T=0, M)
SL-ORG 0.008 0.048
SL-AGG (T=0, M) 0.104 0.156
Dominance SL-ORG SL-AGG (T=2.8, Q2)
SL-ORG 0.557 0.494
SL-AGG (T=2.8, Q2) 0.413 0.417

High-Context Sentences

M
od

el
Te

st
Se

t

Model Train Set
Arousal SL-ORG SL-AGG (T=2.8, Q2)
SL-ORG 0.502 (0.044) 0.421 (0.043)
SL-AGG (T=2.8, Q2) 0.469 (0.033) 0.443 (0.039)
Valence SL-ORG SL-AGG (T=0, M)
SL-ORG 0.045 (0.072) 0.022 (0.095)
SL-AGG (T=0, M) 0.182 (0.108) 0.261 (0.092)
Dominance SL-ORG SL-AGG (T=2.8, Q2)
SL-ORG 0.369 (0.017) 0.307 (0.041)
SL-AGG (T=2.8, Q2) 0.201 (0.051) 0.241 (0.077)

original partition of the MSP-Podcast corpus. To ensure that
our results are not affected by the choice of high-context
sentences, we repeat the random sampling process of the
high-context set five times, reporting the average results.
Since there are only 514 low-context sentences, we only
have one repetition for the low-context set. The number of
sentences is too low to perform multiple samples and train
an SER model.

Table 4 shows our results. If context plays a role in
the performance for matched and mismatched conditions,
we would observe a smaller percentage difference in the
low context setting compared to the high context setting
in Table 4. For arousal, we observe that models trained on
the low-context sentences show slight CCC improvements
from matched to mismatched conditions (from 0.492 to
0.569 when trained with original SL labels; from 0.470 to
0.484 when trained with aggregated SL labels). The models
trained on high-context sentences show the opposite trends,
with slightly worse performance going from matched to
mismatched conditions (from 0.502 to 0.469 when trained
with original SL labels; from 0.443 to 0.421 when trained
with aggregated SL labels). These results suggest that aggre-
gated SL labels for arousal are better for using in conjunction
with SL labels for SER tasks when they are conducted in a
low-context setting. Context seems to make the CT labels
diverge from SL labels for SER tasks, which is expected since
SL labels are conducted out-of-context. However, the results
in Tables 2 and 3 show that the two types of labels can be
successfully used together in these tasks. Although context
might change the labels slightly, these changes are not large
enough to have a drastic effect on the results.

For dominance, the low and high-context results support
previous results that show lower CCC results for models
trained and/or tested with the aggregated SL labels. We
conducted two-tailed paired t-tests (p-value < 0.05) for
each attribute to check if the differences between the low
and high-context results are statistically significant. Only
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the dominance results show a statistically significant dif-
ference between the two context settings, where the low-
context setting has significantly better results. However,
when comparing matched and mismatched results for each
dominance model, we see that the differences between the
two testing results are similar for both context settings.
The percentage differences for the models trained using
the original SL labels are 29.7% (0.557 versus 0.413 CCC
values) and 16.9% (0.369 versus 0.201 CCC values) for the
low and high-context settings, respectively. For the models
trained using the aggregated SL labels, the percentage differ-
ences are 16.9% (0.494 versus 0.417 CCC values) and 24.1%
(0.307 versus 0.241 CCC values), respectively. The addition
of context to the aggregated SL labels does not seem to
affect how much worse the models perform when using
mismatched dominance labels. Ultimately, context seems
to have a minimal effect on the differences between the
aggregated SL and SL labels for dominance in SER tasks.

For valence, the low-context and high-context results
show similar trends to previous results in Tables 2 and
3. Testing with the MSP-Conversation SL labels results
in much better predictions. The high-context results show
better CCC values than the low-context results as well.
These experiments suggest that valence results could be
improved by using in-context labels, as suggested by Lee
et al. [45] which showed that the addition of contextual in-
formation to valence models increases accuracy significantly
more than for arousal. However, the addition of context in
the aggregated SL labels does not affect the performance
differences between the models tested with matched and
mismatched labels. Similar to dominance, the percentage
differences between the matched and mismatched results
for each model are similar between the two context settings.
For the models trained with the original SL labels, the
percentage differences are 171% (0.008 versus 0.104 CCC
values) and 121% (0.045 versus 0.182 CCC values) for the
low and high-context settings, respectively. For the mod-
els trained with the aggregated SL labels, the percentage
differences are 106% (0.048 versus 0.156 CCC values) and
169% (0.022 versus 0.261 CCC values), respectively. The
still large difference between the prediction performances
of models tested with the original SL valence labels and the
low-context aggregated SL valence labels implies that the
differences between the types of labels are due to more than
just context. These preliminary experiments point to the idea
that CT annotations add information, through context and
other aspects, that is lost when conducting out-of-context SL
annotations for valence.

The addition or lack of context seems to affect the at-
tribute of arousal the most, but for both valence and domi-
nance, there seems to be an aspect innate to CT annotations
independent of context that makes the aggregated SL labels
and the original SL labels different for SER tasks. Cowie et al.
[6] discuss the unique aspects of CT annotations, the main
one being the instantaneous reactions that are captured and
cannot be extracted from more thoughtful annotations. Fur-
thermore, Cowie et al. [6] argued that emotional attributes
that can be numerically captured can also capture more
instantaneous reactions as opposed to categorical emotions.
Putting emotions into language changes the emotional state
of humans in a way that does not happen when just

experiencing the emotions [60]. Although both types of
annotations analyzed in our experiments use dimensional
labels, the SL annotations from the MSP-Podcast corpus are
captured using a questionnaire. The questionnaire not only
gives an annotator more time for a thoughtful annotation,
but also asks raters to label sentences with an emotional
category (putting emotion into language). These differences
do not seem to affect the attribute of arousal, but they do
affect valence and dominance, affecting valence at a much
higher rate for our SER task.

The instantaneous reactions captured by the CT annota-
tions are beneficial for the prediction of valence in SER tasks
as well as the context added. Thoughtful and out-of-context
annotations seem to not only make raters diverge in their
ratings of valence (Section 4.2), but also detangle the labels
from the speech features in a way that makes them harder to
predict with simple SER models (Section 5). Dominance SER
models seem to have the opposite trend, where thoughtful
annotations are better. Further research on the rating of
emotion at the personal level is needed to explain these
phenomena, but these results do indicate important con-
siderations for the field. As mentioned previously, valence
is historically harder to predict than the other attributes.
The role of context in increasing valence predictability has
been previously observed and used [45], but the role of
instantaneous reactions has not. The combination of both
aspects in modeling and data collection could significantly
help valence SER predictions.

7 DISCUSSION

The comparisons made between the CT and SL labels are
informative, even when one corpus was collected in context
and the other was collected out of context. From a practical
viewpoint, out-of-context SL labels make up a significant
part of the emotional annotations used in the speech emo-
tion recognition field. Therefore, much of the infrastructure
and models are based on such labels. Furthermore, many
new datasets are including CT labels [8], [10], [11], [12],
which are expensive and time-consuming to obtain. If the
field can find a way to use the new CT labels in the same
framework as the previously used SL labels, then the field
can consolidate much of its resources and not start from
scratch when it comes to using the CT labels. Our results
show that both types of labels can be used together, which
is an encouraging outcome, since that suggests that current
resources and models used for SL labels can be modified
for use with CT labels with less time and effort than if they
were widely different. Furthermore, several studies blindly
combine databases collected with different labels [61], [62],
including databases collected with CT and SL annotations
[63]. Our study is instrumental to determine the validity of
this approach.

Our stated goal introduced in Section 1 included four
questions we wanted to answer with our analysis. To an-
swer Questions 1 and 4, we evaluated different aggregation
functions used to aggregate the CT labels into SL labels. We
compared the original SL (MSP-Podcast corpus) and aggre-
gated SL (MSP-Conversation corpus) labels using the MSE
and correlation metrics. We also compare the labels after
normalizing both types of labels. The results showed that
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the labels are correlated. When analyzing the aggregation
functions, we observe that using the mean or median as
aggregation functions results in aggregated SL labels that
approximate the original SL labels the best. This suggests
that annotators use average emotional values to make their
SL judgements as opposed to the more extreme values.

The inter-evaluator agreements for the original SL an-
notations (MSP-Podcast corpus) and for the SL annotations
derived from CT labels (MSP-Conversation corpus) were
calculated to answer Questions 2 and 4. The results for
the aggregated SL labels showed much lower agreement
for arousal and dominance, as expected, given the larger
number of choices for values in the CT annotations. Surpris-
ingly, the aggregated SL labels for valence had the highest
agreement, even above the original SL labels, showing how
the two types of labels affect emotional attributes differently.

The analysis also explored the effect of using either the
aggregated SL annotations or the original SL annotations
in SER tasks to respond to Questions 3 and 4. We trained
SER models, comparing their performances when trained
and tested with both types of SL annotations. Like the
inter-evaluator agreement results, the arousal and domi-
nance models had lower performance when using the ag-
gregated MSP-Conversation SL labels. The valence models
had greater performance when using the aggregated MSP-
Conversation SL labels for training. Collectively, the results
of the SER models and the inter-evaluator agreement show
that the emotional attribute of valence gains the most when
SL labels are created from CT annotations. The results in
mismatched conditions, when training with labels from one
corpus and testing with labels from the other corpus, led
to very similar results for the attribute of arousal, mixed
results for dominance, and significantly different results
for valence. The mismatched results highlight that the two
types of labels have similarities in the information relevant
to an SER model, so aggregating CT labels to make SL labels
is valid for simple SER tasks.

We conducted further analyses to understand the role of
context. In particular, we compared the MSP-Conversation
SL labels and MSP-Podcast SL labels for sentences with
low and high-context during the MSP-Conversation anno-
tations. The results showed that although the context does
play a role in the differences between the two types of
labels, there are features unique to CT annotations that also
affect the labels. The differences in our simple SER task are
more drastic for valence and dominance labels, suggesting
that context, instantaneous reactions, and thoughtful anno-
tations affect these SER tasks the most.

Overall, the results from this study indicate that aggre-
gated SL labels obtained from CT labels can be a valid
approach, since they are correlated with the original SL
labels, have comparable agreements, and can create SER
models with similar performances. The statistical experi-
ments point to the mean and median, with a time shift, being
sufficient for CT labels approximating SL labels. However,
when adding the agreement and modeling results, we see
that there are clear aggregation methods that are better
for each attribute. The results across time shifts are more
consistent. We recommend that the field use multiple aggre-
gation methods when evaluating models using aggregated
SL labels, with a constant time shift also being used. This

time shift can be three seconds, recommended in previous
literature [39], or tuned to the specific dataset or annotator.
The aggregation method can also be tuned to the specific
task by using a small subset of the dataset. However, it is
important to be aware that the two types of labels have
differences, as they are not interchangeable in all cases using
the aggregation methods used in this study. Comparing
models using both types of annotations can be done, but
the comparison is not as valid as comparing models using
only SL labels since there are performance differences (using
one type of label will not always lead to lower performance)
depending on the attribute. These biases can be considered
when comparing models. The results of the analysis could
also be used to develop new aggregation methods that can
better approximate original SL labels. We observed that the
normalization strategy used in Section 4.1 was successful in
removing the shift between the labels, indicating that more
sophisticated normalization methods can be effective for
this task. Moreover, our analysis shows that the attribute of
valence, which is famously the lowest performing attribute
in SER models [57], [59], gains the most from the CT labels.
We observed that the reason for the higher performance is a
mix between the added context and instantaneous reactions
of CT annotations. Further research in leveraging these
aspects of CT labels could be extremely helpful in closing
the gap between valence and the other attributes.

8 CONCLUSIONS

This paper evaluated the approach of aggregating SL anno-
tations from CT annotations, which is a common approach
used in emotion recognition tasks. The analysis lever-
aged the annotations of two publicly available databases
that provide the perfect resource to study the validity of
this approach. We used the CT annotations of the MSP-
Conversation corpus [26], and the SL annotations of the
MSP-Podcast corpus [4], focusing on 2,884 speech segments
that are present in both corpora. The CT labels of the MSP-
Conversation corpus were aggregated over the target speech
segments to create SL annotations, which were compared
with the original SL annotations from the MSP-Podcast cor-
pus. Comparing the SL labels from both corpora indicated
that although they are clearly different in absolute values,
they are definitely correlated and can be used together for
various tasks. With further developments in aggregation
approaches, they could be used interchangeably. We left
as future work the analysis of when the labels are inter-
changeable or when using one type of label over the other is
best. Our analysis supports the idea that for the emotional
dimension of valence, using SL labels derived from CT
annotations leads to better performance. However, this is
not the case for arousal and dominance. Therefore, further
work needs to be done to validate these observations.

There are several implications and recommendations
that can be drawn from this study. We recommend that
both types of annotations, CT and SL, continue to be col-
lected to aid in the development and testing of models.
We recommend using aggregated SL labels by tuning the
aggregation over time and taking into account the reaction
time of the annotators by including a constant time shift,
although careful considerations of the differences noted
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in this paper should be mentioned. Our analysis of the
role of context in the differences between the two types
of labels suggests that context and the differences between
instantaneous and thoughtful annotations both play a role
in our results. Considering how the two annotation styles
differ could make the labels more valuable for specific
tasks. For example, if the ultimate usage of an SER model
is to engage a human in a game or a conversation, then
labels that capture instantaneous reactions (CT annotations)
could lead to better engagement [64]. On the other hand,
if the application calls for more thoughtful considerations
of human emotions to educate or calm a person, then SL
annotations that require putting emotions into words could
be more useful.

In our future work, we will include more speech data
to compare SL and CT annotations. We only had 2,884
speech segments to use for this analysis, which is limited
especially for performing automatic recognition analyses.
The data collection of both corpora are ongoing efforts, so
the expectation is that new releases of these corpora will
increase the number of speech segments contained in both
databases. This study only considers emotional attributes.
Some emotional corpora are annotated with CT annotations
for emotional categories (e.g., the SEMAINE database [9]).
A similar analysis may be conducted for categorical CT
labels. Furthermore, our analysis explores out-of-context SL
annotations and typical CT annotations, which does not
completely isolate the differences between the two types.
Collecting additional in-context SL annotations and com-
paring all three types of annotations would allow us to
explore which aspects of the annotation process affect the
differences between them and give us more insight into how
humans perceive emotion in speech.
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and M. Schröder, “’FEELTRACE’: An instrument for recording
perceived emotion in real time,” in ISCA Tutorial and Research
Workshop (ITRW) on Speech and Emotion. Newcastle, Northern
Ireland, UK: ISCA, September 2000, pp. 19–24.

[8] A. Metallinou, Z. Yang, C.-C. Lee, C. Busso, S. Carnicke, and
S. Narayanan, “The USC CreativeIT database of multimodal
dyadic interactions: From speech and full body motion capture to
continuous emotional annotations,” Journal of Language Resources
and Evaluation, vol. 50, no. 3, pp. 497–521, September 2016.

[9] G. McKeown, M. Valstar, R. Cowie, M. Pantic, and M. Schröder,
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