
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2015 1

Facial Expression Recognition in the Presence
of Speech using Blind Lexical Compensation

Soroosh Mariooryad, Student Member, IEEE, and Carlos Busso, Senior Member, IEEE,

Abstract—During spontaneous conversations the articulation process as well as the internal emotional states influence the facial
configurations. Inferring the conveyed emotions from the information presented in facial expressions requires decoupling the linguistic
and affective messages in the face. Normalizing and compensating for the underlying lexical content have shown improvement in
recognizing facial expressions. However, this requires the transcription and phoneme alignment information, which is not available in
broad range of applications. This study uses the asymmetric bilinear factorization model to perform the decoupling of linguistic and
affective information when they are not given. The emotion recognition evaluations on the IEMOCAP database show the capability of
the proposed approach in separating these factors in facial expressions, yielding statistically significant performance improvements.
The achieved improvement is similar to the case when the ground truth phonetic transcription is known. Similarly, experiments on the
SEMAINE database using image-based features demonstrate the effectiveness of the proposed technique in practical scenarios.

Index Terms—facial expressions, emotion recognition, face analysis, factor analysis, bilinear model.
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1 INTRODUCTION

THE human face conveys an intricate blend of in-
formation including age, gender, ethnicity, identity,

personality, intentions, and emotions. In addition, speech
articulation greatly affects the facial appearance [1], [2].
All these aspects regulate human communication at var-
ious levels. While we can process this complex blend
of information to effectively separate the underlying
factors, the presence of all these sources of variability
makes this process a challenging task for machine-based
inferences. For instance, the performance of conventional
face recognition systems drops when the facial expres-
sions deviate from neutral emotion [3]–[5]. Similarly,
effective emotion recognition systems should be robust
against inherent variations in the facial structure across
different individuals [6].

In the context of facial expression recognition, previ-
ous studies have proposed methods to compensate for
head pose [7] and subjects differences [6]. However, it is
not clear how to reduce the variability introduced by the
spoken message during spontaneous interactions. This
is an important challenge in the development of robust
emotion recognitions systems, since speech articulation
affects the orofacial area including lips and jaw [8]. The
same facial region plays a key role in conveying emo-
tions [9]. Notice that if the underlying lexical information
is not considered, neutral facial poses may be confused
with emotional expressions. For example, uttering the
phoneme /ey/ may be confused with a smile, and ut-
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tering the phoneme /o/ may be confused with surprise
[10]. Our previous studies reveal the interplay between
verbal and affective messages in facial expressions [1],
[2], [11]. Therefore, to extract reliable emotional infor-
mation, facial expressions should be decoupled into the
underlying factors.

We have shown that the lower facial area is highly
dependent on the articulated message, which masks the
emotional information conveyed through this area [2].
Our analysis and emotion recognition evaluations indi-
cated that making use of the phonetic transcription to
compensate for the articulated message can significantly
improve the emotion discrimination of facial features
extracted over the orofacial area [2], increasing emotion
recognition rates [12]. In those studies, we assumed that
the phoneme alignment of the spoken message was
available for the lexical compensation approach. Hence,
we refer to that approach as supervised lexical compen-
sation (supervised in the sense that the transcription of
lexical content is available). Assuming the availability of
the phonetic alignment might not be realistic for real-
world applications. Although automatic speech recognition
(ASR) systems can provide this information, its use intro-
duces an extra source of complexity to the system. This
paper proposes a blind lexical compensation approach
to reduce the variability due to speech articulation in
facial expressions for robust emotion recognition. The
approach does not assume that the lexical information
is available.

This paper proposes to factorize facial movements into
the underlying phonetic and emotional content using
the asymmetric bilinear model [13], [14]. This factor
separation model was originally developed to separate
style from content in machine learning applications.
In our problem, the content represents the articulatory
configurations for each phoneme/viseme, and the style
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represents the emotional information. During the train-
ing step, the phoneme and emotional labels are provided
to capture the interaction between these two factors.
However, in the testing step, neither of these labels
are available. They are estimated with an expectation
maximization (EM) approach that iterates to obtain the
best fit for the testing data. It implicitly predicts the
phonemes, which are used to compensate for the lexical
variability. We evaluate this approach, which is referred
to as blind lexical compensation, with the IEMOCAP
database achieving performances similar to the case
where the ground truth phonetic labels are used to
compensate for the lexical variability (supervised lexi-
cal compensation approach presented in [12]). We also
present experiments on the SEMAINE database showing
emotion recognition improvements with the proposed
blind lexical compensation method.

The rest of the paper is organized as follows. Section
2 motivates the problem and presents related studies.
This section also summarizes our previous studies on
factor analysis of facial features. Section 3 describes the
IEMOCAP and SEMAINE databases. Section 4 describes
the proposed blind lexical compensation method. Section
5 presents extensive emotion recognition experiments
which show the benefits of using the proposed blind
lexical compensation. Section 6 summarizes the findings
of the paper and discusses the implications in emotion
recognition systems.

2 BACKGROUND

2.1 Related Work
Despite the advancements in identifying prototypical ex-
pressions in static images, modeling the dynamic aspects
of facial expressions is still an ongoing research problem.
Studying the significance of temporal information, in
contrast to posed expressions, and its relation to speech
articulation is among the key open aspects identified
by pioneers of the field [15]. Perceptual evaluation has
been used to understand the role of dynamic information
in facial expression. While dynamic information may
not provide complementary information in full-blown
expressions [16], its role in subtle and natural emotions is
clearly important in perceiving emotions [17]. Temporal
dynamics of facial expressions also play a key role
in characterizing other cognitive states such as embar-
rassment, amusement, pain and mood [18]. Therefore,
dynamic processing of facial expressions has recently
gained more interest [19]–[21]. In spite of these efforts,
the effect of articulation on the dynamics of facial expres-
sions during spontaneous interaction is often neglected.

Studies have shown that facial features provide better
discrimination on the valence domain (positive versus
negative) [22], and speech features provides better dis-
crimination on the arousal domain (calm versus ac-
tive) [23]. These observations suggest that fusing these
complementary modalities results in higher accuracy.
However, Picard [24] mentioned that fusing these two

modalities is not an easy task due to the differences in
mouth movements between speaking and non-speaking
conditions. Shah et al. [25] compared the performance
of facial emotion recognition under both conditions. The
performance of their classifier drops when the subjects
were speaking. To reduce the mismatch, they proposed
to train their system with data from speaking record-
ings. Despite the increase in performance, the classifiers
achieved lower accuracy than the ones achieved dur-
ing the non-speaking condition. They also concluded
that the movements in the orofacial area misled the
classifiers in detecting anger and disgust, compared to
the case when the classifiers were trained with non-
speaking faces. Due to the high lexical variability in the
lower facial area, some studies considered only features
derived from the middle and upper face area, ignoring
all the emotional information conveyed in the orofacial
area [26]. Chen and Huang [27] claimed that articulation
affects not only the lower facial area, but also the upper
part of the face, since eyebrows convey other linguistic
messages such as emphasis. Therefore, their proposed
multimodal emotion recognition system relied on speech
only when the subject was speaking and on facial expres-
sion only during the silent segments. Likewise, Yong et
al. [28] only used the non-speaking segments to analyze
the emotions in the face.

Although some approaches neglect the emotion-
discriminative information conveyed through the lower
part of the face, previous studies suggest the presence
of affective message in the orofacial area [26], [29], [30].
The orofacial appearance is closely tied with the acoustic
properties of the speech signal [8]. Therefore, expressive
behaviors modulate the orofacial area during sponta-
neous interactions. Our previous analyses demonstrated
the interplay between verbal and affective messages
unfolded in localized facial areas, especially the orofacial
area [2], [11]. Subjective studies showed that different
emotions can be conveyed through different facial areas
[31], [32]. For instance, Hoffmann et al. [32] demon-
strated that emotions such as happiness and sadness are
better perceived from the lower part of the face. These
studies suggest that the orofacial area conveys important
emotion-discriminative information that a facial expres-
sion recognition system should capitalize on to produce
robust classification.

An important step to correctly exploit and model the
emotional information in the orofacial area is to com-
pensate for the lexical variability due to the articulation
process [10]. Zeng et al. [33], [34] used a smoothing
technique to attenuate the effect of speech in facial ex-
pressions. The approach consisted in averaging the facial
features over 10 consecutive frames (i.e., 333ms). Wu et
al. [35] proposed an eigenface-based method to convert
speaking faces into non-speaking faces to compensate
for the articulation effect in the mouth area.
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Fig. 1. Speaker, lexical content and emotions are the
three factors modulating the variability of facial features.

2.2 Relation to Our Prior Work

In Mariooryad and Busso [2], we proposed to study
facial expression as the result of three main factors
that modulate the variability of facial features: speaker,
lexical and emotional contents. Figure 1 illustrates the
concepts of facial behaviors resulting from the interplay
between these three factors. Based on this assumption,
we proposed a factor analysis framework to identify
the dependency of the facial areas on these factors.
The analysis relies on the IEMOCAP database (see Sec.
3.1). Our findings clearly demonstrate the dominant
influence of speech articulation on the orofacial features.
Figure 2 depicts the dependency of each of the factors
(F 2 {Speaker ,Lexical ,Emotion}) and each facial point
along the three directions (X – left/right; Y – up/down;
Z – in/out). Darker colors indicate higher dependency.
This analysis shows that speaker dependency is almost
uniformly distributed across the entire face and it is
the weakest factor among all three. The orofacial area
is completely dominated by the lexical variability. The
effect of emotion is mainly evident in the middle and
upper face regions. Our analysis also showed that con-
straining the models on the lexical content makes the
emotion variability the dominant factor in the mouth
area too [2]. This data-driven analysis unveils the in-
terplay between emotional and lexical content on the
orofacial area. It also shows that compensating for the
underlying lexical variability can uncover the conveyed
emotional message. This study takes up that challenge
of exploring algorithms to reduce the lexical dependency
on facial features around the orofacial area. The contribu-
tion of this study is a blind lexical normalization scheme
that does not requires the underlying transcription to
compensate for the lexical information, providing an
appealing solution for practical applications.

3 DATABASES

This study uses the interactive emotional dyadic motion
capture (IEMOCAP) [36] and the sustained emotionally
coloured machine-human interaction using nonverbal ex-
pressions (SEMAINE) databases [37]. The IEMOCAP
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Fig. 2. The dependency of the factors (speaker, lexical
and emotion) and different areas on the face according
to the factor analysis technique introduced in [2]. Darker
color represent higher dependency.

(a) Setup (b) Layout (c) Selected markers

Fig. 3. (a) Recording setup for the IEMOCAP database,
(b) layout of the motion capture markers in the IEMOCAP
database, and (c) selected markers used in our previous
analysis [2], which are used for emotion recognition ex-
periments (Sec. 5).

database contains motion capture data, which is used
to perform the facial factor analysis (Fig. 2) and also
emotion recognition experiments (Sec. 5.1). To show the
potential of the proposed blind lexical compensation
method in real-world applications, we perform emo-
tion recognition experiments on image-based features
extracted from the SEMAINE database (Sec. 5.2). This
section describes these two corpora.

3.1 The IEMOCAP Database
The IEMOCAP corpus is an audiovisual database to
study expressive human interactions recorded with 10
speakers (five male and five female). In five sessions,
an actor and an actress performed scripted plays, and
improvised hypothetical situations. The scenarios and
situations are deliberately chosen to evoke emotional re-
actions (e.g., losing baggage at airport and getting school
admission). The recordings include speech, video and
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TABLE 1
Number of speaking turns for the selected emotions in

the IEMOCAP database.

Emotions Happiness Anger Sadness Neutral All
number 838 574 630 585 2627

motion capture data. The motion capture data is sampled
at 120 Hz. Only one of the actors wore the motion cap-
ture markers at a time due to the limitations in motion
capture recordings (see Fig. 3(a)). Therefore, each session
is recorded twice to collect facial expressions from both
actors. To capture precise facial movements 53 markers
are placed on the face following the layout described
in Figure 3(b). After compensating for head translation
and rotation, the detailed facial expression movements
are extracted. Given the inherent variations in the facial
structures across speakers in the corpus, we normalize
the markers using speaker-dependent z-normalization,
where we estimate the mean and standard deviation
using all the recordings from each speaker.

The conversations are segmented into speaking turns.
The turns are manually transcribed. The phoneme and
word boundaries are obtained with forced-alignment
algorithm. The turns are emotionally annotated by three
evaluators in terms of discrete categorical labels using
the following labels: anger, happiness, sadness, surprise,
disgust, frustration, fear, excitement, neutral state and
other. Due to the overlap between happiness and excite-
ment, and following the conventional approach on this
database [12], [38], we have merged these two categories.
We select the samples for which the evaluators reached
agreement using majority of votes as a criterion. We
selected the four most frequent emotions in the database
for our experiments (i.e., happiness, anger, sadness and
neutral state). Table 1 summarizes the number of sam-
ples per emotion. These speaking turns correspond to
the segments from the actors while wearing the mark-
ers. The database and related preprocessing steps are
described in Busso et al. [36].

3.2 The SEMAINE Database

SEMAINE is another audiovisual database containing
recordings of users interacting with an operator. The
operator plays the role of sensitive artificial listener (SAL)
agents [39] with different personalities (happy, gloomy,
angry and pragmatic) to evoke emotional reactions from
the users. The sessions are segmented into speaking
turns, which are manually transcribed. We also use
forced-alignment to extract the underlying phoneme
boundaries. Multiple annotators (from 2 to 8) have emo-
tionally annotated the users’ videos in 52 interaction
sessions. The annotations include the degree of arousal
(i.e., calm versus active), valence (i.e., negative versus
positive) and other continuous attributes describing af-
fective states. The FEELTRACE toolkit [40] is used to
continuously annotate these emotional descriptors in the

TABLE 2
Set of action units (AUs) extracted from lower part of the

face using CERT [44].

AU description AU description
AU 6 Cheek Raise AU 20 Lip stretch
AU 10 Lip Raise AU 23 Lip Tightener
AU 12 Lip Corner Pull AU 24 Lip Presser
AU 14 Dimpler AU 25 Lips Part
AU 15 Lip Corner Depressor AU 26 Jaw Drop
AU 17 Chin Raise AU 28 Lips Suck
AU 18 Lip Pucker

interval [-1, +1]. We have shown in our previous work
that this annotation scheme, which involves watching
the video, perceiving the affective content and respond-
ing by moving mouse cursor, introduces an intrinsic
delay between the behaviors and the annotations [41].
We have employed a maximum mutual information
criterion to estimate that delay [41], and this study uses
these values to correct the annotations. The ratings are
averaged across the annotators to obtain a single tempo-
ral trace for each session. Then, the average value along
the duration of each utterance is assigned to speaking
turns as the emotion descriptor. Similar to our previous
studies [41], [42], the values are clustered into two (e.g.,
low versus high arousal) and three (e.g., low, medium
and high valence) classes using the K-means algorithm
(with K = 2, 3) to obtain discrete labels per speaking
turn.

The proposed approach is evaluated in Sec. 5.2 using
facial features extracted from videos. We rely on action
units (AUs) as high level representations of facial ex-
pressions. The AUs are defined in the facial action coding
system (FACS) [43], and represent the degree of contrac-
tion or relaxation of one or multiple facial muscles. We
extract the AUs using the computer expression recognition
toolbox (CERT) [44]. This toolkit gives frame-by-frame
AU values based on models trained with Gabor-based
features. Since the focus of this study is on the speech
articulation effect on the orofacial area, we only choose
AUs corresponding the lower facial areas (see Table 2).
The CERT package failed to detect the user’s face in 8 out
of 52 sessions that were emotionally annotated (sessions
82, 88-91, 95-97). Thus, the study only considers the
remaining 44 sessions recorded from nine unique users.
After removing the turns for which the forced-alignment
approach failed to detect the phoneme boundaries, 939
speaking turns are selected for the experiments. We
also evaluate the performance of the proposed solution
during segments where the “user” is listening to the
“operator” (non-speaking turns – see Sec. 5.2.1). We use
814 of these segments.

4 BLIND LEXICAL COMPENSATION

In our previous work, we proposed supervised lexical
compensation methods by using phoneme alignments
using transcriptions, which is an important limitation
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TABLE 3
The mapping from phoneme to viseme proposed by
Lucey et al. [45]. The frequency of occurrence of the
phonemes in the selected portion of the IEMOCAP

database is given in column #.

# Phoneme Viseme # Phoneme Viseme
1725 B

p
1354 EY

ey1258 P 2312 EH
3077 M 2610 AE
1510 F f 589 AW
1470 V 2703 K

k

5454 T

t

1344 G
1676 TD 6476 N
713 TH 3714 L

2921 D 1597 HH
662 DD 2210 Y
216 DX 1322 NG

2414 DH 274 KD
411 TS 3679 IY iy3952 S 3487 IH

1930 Z 1475 AA aa
2560 W w 462 ER er
3071 R 1059 AO

x282 CH

ch

56 OY
540 SH 874 IX
13 ZH 2841 OW
524 JH 596 UH

uh2213 AH
ah

2254 UW
3670 AY 1501 AXR
7273 AX - SIL sp

[12] (details are given in Sec. 5.1.4). We aim to build
a blind lexical compensation method that factorizes the
contribution of emotional and lexical content that does
not require transcriptions.

Previous studies have shown the influence of lexical
content on the orofacial area. Furthermore, the study in
Mariooryad and Busso [2] demonstrated that compensat-
ing for the lexical content is useful only on the orofacial
area. Therefore, we explore a blind lexical normalization
scheme tailored to facial features derived from the lower
part of the face (i.e., the facial area with the strongest
lexical dependency). Notice that features from other
facial areas are less affected by the lexical information,
so a simpler lexical-independent model can be used. The
rest of the study considers only the 15 markers around
the mouth area, highlighted in the shaded area of Figure
3(c). These markers are identified by our study on factor
analysis on facial features [2].

We employ phonemes as our lexical unit to retain ade-
quate number of samples for building lexical-dependent
models. Phonemes have shorter duration than words or
syllables, and are more affected by coarticulation effects.
However, the compacted number of phonetical classes
to describe lexical content facilitates the training of ro-
bust lexical-dependent models. Since certain phonemes
produce similar facial appearance (e.g., phonemes /F/
and /V/), we consider visemes – visual phonemes that
cluster acoustic phonetic units with similar orofacial con-
figuration. We apply the phoneme-to-viseme mapping
given by Lucey et al. [45] to represent the lexical content
(Table 3). In total 13 non-silence visemes are used in the

experiments. Table 3 reports the number of occurrences
of the phonemes in the database.

4.1 Overview of the Asymmetric Bilinear Model

The blind lexical compensation approach builds upon
the asymmetric bilinear model introduced by Tenen-
baum and Freeman [13], [14]. The original model was
proposed to separate style from content (e.g., in isolated
character recognition content represents different letters
and style represents different fonts). The model assumes
Ns different styles, and Nc different contents. Consider
the following equations,

ysc = A

sbc =
NcX

i=1

b

c
ia

s
i (1)

A

s = [as1,a
s
2, . . . ,a

s
Nc

] (2)

where ysc is a K ⇥ 1 observation vector conveying con-
tent c in style s . The asymmetric bilinear model assumes
that ysc lies close to a lower dimensional J -subspace
(J < K ) spanned by the columns of the K ⇥ J matrix
As , associated with style s . Every instance in style s
is approximated by a linear combination of the column
vectors (asi ) of the style-dependent matrix As . The J ⇥ 1
vector bc represents the underlying content c, containing
the combination coefficients across all styles. The content
vector bc is independent of the style. Therefore, it is
possible to reproduce content c in a different style, by
replacing the matrix As from one style (i.e., s1 ) to another
style (i.e., s2 ) (see Eq. 1). The value for J is generally
small (in our study it varies from 2 to 4), providing a
low dimension subspace for the column space of A

s,
which represents the direction with more variability for
the style of s. We can use the independence between
the style (As ) and content (bc) in the bilinear model to
decouple these factors.

The bilinear model offers an ideal framework to sep-
arate the contribution of lexical (i.e., “content”) and
emotional (i.e., “style”) information. We represent the
content with visemes (Nc = 13) and the style with the
underlying emotional state (Ns = 4). The column vectors
of As form a subspace for a specific style s (emotion)
to reconstruct the content (visemes) in that style. The
bilinear structure of the models forces the basis vector
asi to have similar role across styles.

Figure 4 visualizes the implementation of the bilinear
model applied to facial features. The figure provides the
mean (solid line) and standard deviation (dashed line)
of the 15 motion capture markers for the orofacial area.
We generate these figures by training the bilinear models
for visemes /aa/ (b/aa/) and /ch/ (b/ch/), for the emo-
tional classes neutral (ANeu ), happiness (AHap), anger
(AAng ), and sadness (ASad ). Section 4.2 gives the details
on the training procedure. Vectors b/aa/ and b/ch/ are
the viseme-dependent vectors. Applying these vectors
to each of the emotion-dependent subspaces gives that
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Fig. 4. Illustration of factor separation with the asym-
metric bilinear model on the 15 orofacial motion cap-
ture markers identified in Figure 3(c). The mean and
standard deviation of the markers are depicted with
the solid and dashed lines, respectively. Multiplying the
viseme-dependent vector (b/aa/ and b/ch/) to each of
the emotion-dependent basis matrices (ANeu , AHap , AAng

and ASad ) gives the average value of the features for that
pair of viseme and emotion.

viseme in a specific emotion. The figure shows that mul-
tiplying the emotion-dependent matrix (“style”) to the
vector representing a given viseme (“content”) produces
different visual appearance. For example, the opening of
the mouth increases for happiness and anger. However,
the overall lip configuration associated to the underlying
viseme is preserved, regardless of the emotional content.

4.2 Bilinear Model Training

The goal of the training step in the bilinear model is
to estimate the content vector bc for each viseme c,
and the style matrix As for each emotion s (see Fig.
6). For training, we assume that the emotional labels,
and the phonetic alignment of the underlying visemes
are available. When the number of samples with a given
style and content are similar (balanced case), Tenenbaum
and Freeman [13] gave a closed-form solution based on

singular value decomposition (SVD). The approach esti-
mates the average observation vector ȳsc , for a given
style s and content c. Then, these vectors are stacked to
create a matrix Ȳ ,

Ȳ =

2

64
ȳ11 · · · ȳ1NC

...
. . .

...
ȳNS1 · · · ȳNSNC

3

75 = USV

T (3)

where matrices U , S and V are computed with SVD.
The first J columns of matrix US and the first J rows
of V T define the style matrices As , and content vectors
bc , respectively (see details in Tenenbaum and Freeman
[13]). For the case when the classes are not balanced,
as in our problem, there is an iterative approach that
minimizes the reconstruction error of Equation 1 [14].
The approach initializes the values for As and bc using
the SVD-based closed-form solution. Then, it estimates
As using Equation 4, assuming that bc is fixed. The
vector msc is the sum of the observations in style s and
content c (see Eq. 6). The variable nsc is the number of
samples in the training set with style s and content c.
Then, bc is estimated with Equation 5, assuming that
As is fixed. We iterate the algorithm 10 times in our
implementation.

A

s =

"
X

c

mscbcT

#"
X

c

nscb
cbcT

#�1

(4)

bc =

"
X

s

n

sc
A

sT
A

s

#�1"X

s

A

sTmsc

#
(5)

msc =
X

s,c

ysc = n

scȳsc (6)

4.3 Bilinear Model Testing

This section describes the algorithms for testing the
bilinear model. The testing step assumes that an ut-
terance is given with a set of unlabeled visemes in an
unknown emotion, which is not necessarily one of the
trained emotions. From the training step (Sec. 4.2), we
have the content vector bc for each viseme class c,
and the style matrices As for each emotion class s . The
task in the testing step is to find the best style matrix
As⇤ for an utterance without any lexical information –
the underlying visemes are unobserved. However, we
assume that the segmentation of the visemes is known
(we relax this constraint in Sec. 5.1.3).

Since the content (viseme) labels, c, are unknown, we
cannot use Equation 4 to compute matrix As⇤ . Instead,
Tenenbaum and Freeman [14] proposed to embed the bi-
linear model in a Gaussian mixture distribution referred
to as separable mixture model (SMM) and run the expec-
tation maximization (EM) algorithm to estimate the style
subspace As⇤ associated with the testing utterance. For
the training procedure (Sec. 4.2), a segment was assigned
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to a given content (viseme). The key idea of the EM pro-
cedure is replacing this hard assignment with a soft as-
signment. Let p(s⇤, c|y) be the probability that sample y
belongs to content/viseme c and style/emotion s⇤. No-
tice that the assignment of style is not important for the
EM procedure, since the approach assumes that the test-
ing utterance may belong to a different style (emotion)
not included in the training. The testing procedure starts
by initializing As⇤ with the average value across the
trained styles (As⇤ = (AHap + AAng + ASad + ANeu)/4 ).
The E-step consists in estimating the soft assignment
p(s⇤, c|y) using Equation 7. The approach assumes that
the probability of an observation y being generated by
content c and style s⇤ follows a multivariable Gaussian
distribution with mean vector As⇤bc and covariance
matrix ⌃ = �

2 I (see Eq. 8). A second assumption is
that p(s⇤, c), the prior probability of content c and style
s⇤, is uniformly distributed (this probability can also be
estimated from the data). Under these assumptions, we
estimate p(s⇤, c|y) with Equation 7.

p(s⇤, c|y) =p(y|s⇤, c)p(s⇤, c)
p(y)

=
p(y|s⇤, c)p(s⇤, c)P
c p(y|s⇤, c)p(s⇤, c)

(7)

p(y|s⇤, c) ⇠N (As⇤bc
,�

2
I) (8)

The M-step uses the soft assignment p(s⇤, c|y) to
estimate As⇤ . First, we estimate the number of samples
associated with content c and style s⇤ (Eq. 9). Then, we
estimate m̂s⇤c , the sum of the observation vectors for c
and s⇤ (Eq. 10). We estimate As⇤ with these variables
(Eq. 11).

n̂

s⇤c =
X

y

p(s⇤, c|y) (9)

m̂s⇤c =
X

y

p(s⇤, c|y)y (10)

A

s⇤ =

"
X

c

m̂s⇤cbcT

#"
X

c

n̂s⇤cb
cbcT

#�1

(11)

We use ten iterations as the stopping criterion. This
model has two parameters: J , the number of columns
of the style matrices As ; and �, the standard deviation
associated with the Gaussian distribution for p(y|s⇤, c)
(see Eq. 8). Similar to Tenenbaum and Freeman [13],
these parameters are set using cross-validation on the
training set (see Sec. 5). We run the EM algorithm with
unlabeled viseme(s) in an unknown emotion to find the
best viseme label(s), captured by p(s⇤, c|y), and the best
style subspace, captured by As⇤ . Notice that the extrac-
tion of As⇤ uses the vectors bc extracted from the bilinear
training step. This approach implicitly compensates for
the lexical variability.

There are various frameworks to separate multiple fac-
tors affecting a given variable including nuisance attribute
projection (NAP) [46], linear discriminant analysis (LDA)
[47], probabilistic linear discriminant analysis (PLDA) [48],

joint factor analysis (JFA) [49] and general n-order tensor-
based factor analysis [50]. The key advantage of us-
ing the asynchronous bilinear model is that multiple
instances (visemes in this work) can be simultaneously
used by constraining them to have the same style (emo-
tion), adapting the style subspace. This approach results
in less degrees of freedom for the adapted style and,
as a result, it gives more reliable estimation of the style
factor (i.e., emotion). While the symmetric bilinear model
can also be used to address this problem, we rely on
the asymmetric model since it provides more flexibility
in terms of style space adaptation, specially when the
testing data does not exactly match the pre-trained style
models [14].

4.4 Proposed Features For Emotion Classification
The bilinear model was proposed for solving classifica-
tion (i.e., recognizing the underlying content in unknown
styles), extrapolation (i.e., generating content in a new
style) or translation (i.e., changing a new style into a
known style) problems [13]. We make use of the testing
procedure designed for the classification problem, which
consists in recognizing the content based on p(c|y) after
estimating As⇤ in the EM iterations. However, there
is an important distinction between how the bilinear
model has been used in other studies and our proposed
method. Here, we are not interested in classifying the
visemes, but the style (emotion) based on the adapted
subspace (unknown style) achieved after testing the
bilinear model. We use the bilinear model to extract
emotional discriminant features at utterance level, which
are robust against lexical variations (As⇤ ). As discussed
in Section 4.2, the adapted subspace As⇤ is independent
of the underlying visemes and we use its entries as our
features.

If the test utterance conveys the emotion
se 2 {Hap,Ang ,Sad ,Neu}, we expect to observe higher
similarity between As⇤ and Ase than with any other
matrix with a different style (i.e., As⇤ will converge
closer to Ase ). To validate this assumption, we use the
Frobenius norm of the difference between pair-wise
elements of the subspace matrices as a measure of
similarity (Eq. 12).

d

s =
���As⇤ �A

s
���
F

(12)

For each testing emotion, Figure 5 depicts the aver-
age d s values for each of the subspaces obtained from
the training data (the lower the value, the closer the
matrices). For instance, Figure 5(a) indicates that AHap

obtained from the training data is the closest subspace
to As⇤ when it is adapted with happy testing samples.
The emotions anger and sadness follow similar patterns
– their subspaces converge closer to the subspace of
their corresponding emotion. Although the samples with
neutral emotion produce a style matrix closer to the
one for sadness, the matrix As⇤ is still close to ANeu .
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Fig. 5. The average Frobenius norm of difference be-
tween adapted subspace and four trained subspace. The
figures are depicted for each testing emotion indepen-
dently.
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Fig. 6. The proposed blind lexical compensation scheme
for robust emotion classification.

Note that neutral emotion is the most difficult state
to characterize, and it is often confused with other
emotions [42], [51]–[53]. Figure 5 shows the effectiveness
of the proposed approach in compensating for the lex-
ical variability, without transcriptions, to find the best
underlying emotion. The figure also suggests that the
subspace for happiness is significantly different from the
subspaces of other emotions.

Figure 6 depicts the proposed two-layer training pro-
cedure for our emotion classifier. Since the utterance
level classifier does not directly use the facial features,
we refer to inputs of this classifier as meta-features.
The first layer consists of training the viseme-based

bilinear model (Sec. 4.2). The second layer consists of
training the utterance-level emotion classifier with the
meta-features derived by presenting the utterances to
the bilinear model (Sec. 4.3). In addition to As⇤ , we use
two additional meta-feature sets. The first set is a 4-
D vector ds⇤ = [dHap

, dAng
, dSad

, dNeu ] (see Eq. 12). We
use this vector as a compact representation of As⇤ . The
second feature set (Fig. 6) does not rely on the bilinear
model. We separately train a lexical-independent viseme-
level emotion classifier with facial features as the first
layer of training (�e in Fig. 6). The viseme-level classifier
provides the likelihoods for every viseme in the utter-
ance. Notice that the emotional labels in the IEMOCAP
database are annotated at the utterance level. During
training, we assign the label of the utterance to each
of its individual visemes. The results of this classifier
is the emotional class likelihoods for each viseme in
the utterance. Then, we use the mean, minimum and
maximum of the four class likelihoods across the visemes
of the utterance, creating a 12-D feature vector lbas (class
likelihoods for 4 emotions ⇥ 3 statistics). This vector
lbas is used as features in the second layer of training
by the utterance-level emotion classifier (see Fig. 6).
Extraction of lbas does not make any distinction about
the underlying visemes. Therefore, it can be considered
as a baseline with no lexical compensation.

To evaluate the emotion of a testing utterance, the
features are processed at the viseme level by the bilin-
ear model to obtain As⇤ and ds⇤ , and by the lexical-
independent emotion classifier to obtain the viseme-
level class likelihoods (lbas ). These features are used to
recognize the emotions. Notice that the testing procedure
assumes that the emotion and viseme labels are both un-
known, but the viseme boundaries are given. However,
our experiments in Section 5.1.3 shows that the blind
lexical compensation approach can retain comparable
performance even without the viseme boundaries.

The bilinear model processes all the visemes of the
utterance at once to estimate As⇤ and ds⇤ . Notice that
only some of the visemes across an utterance may be
emotionally colored (e.g., we may observe “neutral”
visemes in an angry utterance). This subset of “emo-
tional” visemes in an utterance will affect the trained
subspace for that emotion. During the testing step, they
will also affect the adapted subspace providing emotion-
discriminative information. This is one of the strength
of the proposed approach, which is, up to some extent,
robust against emotion variations across the visemes of
an utterance.

5 EMOTION RECOGNITION EXPERIMENTS
We present extensive set of emotion recognition exper-
iments on the IEMOCAP database, where features are
derived from motion capture data (Sec. 5.1). The effec-
tiveness of the proposed method is also validated with
experiments on the SEMAINE database, where the facial
features are automatically extracted from the videos (Sec.
5.2).
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TABLE 4
Optimized values of J and � per cross-validation fold.

fold 1 2 3 4 5 6 7 8 9 10
J 2 3 2 2 3 2 4 2 2 2
� 2 2 2 2 1 0.5 2 2 0.5 1

The evaluation uses linear kernel SVM, with sequential
minimal optimization (SMO), both for the viseme-level
(�e ) and the utterance-level classifiers. We use the imple-
mentation provided by the WEKA toolkit [54]. We report
the classification performance in terms of accuracy and
macro-average F-score. We estimate F-score as follows.
First, we compute the precision and recall rates for
each of the emotional classes. Then, we estimate the
average precision (p̄) and recall (r̄ ) rates across emotional
classes. Then, we estimate the F-Score with Equation 13.
This metric is not biased by unbalanced classification
problems (classification performance at change is 25% for
a four-class problem). We use the proportion hypothesis
test to evaluate whether the differences in performance
are statistically significant among different settings.

F � score = 2
p̄ · r̄
p̄+ r̄

(13)

5.1 Evaluations on the IEMOCAP Database
The evaluations on the IEMOCAP database follow a
10-fold leave-one-speaker-out (LOSO) cross-validation ap-
proach. The facial features are extracted from the motion
capture data, which provides detailed facial information
that is particularly useful to analyze the proposed ap-
proach in controlled recordings. As described in Sec-
tion 4, we consider only the 15 markers around the
mouth area for the experiments (see Fig. 3(c)). For a
given viseme, we extract the following statistics of the
trajectories of the markers: minimum, maximum, mean,
standard deviation, median, lower quartile and upper
quartile. These statistics are independently extracted
from each marker, and for each direction. This gives
a 315-D feature vector (15 markers ⇥ 3 directions ⇥
7 statistics). This feature vector is consistently used in
this section for the bilinear model and the viseme-level
lexical-independent classifier. In each fold, data from
nine speakers are used for training.

5.1.1 Performance of Blind Lexical Compensation

The classification evaluation for the proposed approach
is implemented with the 10-fold LOSO cross-validation
approach. In each fold, data from nine speakers are used
for training. The data from the remaining speaker is only
used for testing. In each of the ten folds, we further
split the training data into two speaker-independent
partitions. Partition A has data from four speakers, and
it is used for training the bilinear model (Sec. 4.2). Notice
that we train the bilinear model using the viseme and
emotion labels. We also train the lexical-independent
viseme-level classifier with this partition (�e in Fig. 6).

TABLE 5
Emotion recognition results of the proposed blind lexical
compensation method. The evaluation includes correct

and random viseme boundaries – IEMOCAP.

With Boundaries Random Boundaries
Feature Sets Accuracy F-Score Accuracy F-Score

[%] [%] [%] [%]
lbas [baseline] 53.81 52.18 54.09 51.19
ds⇤ 43.62 41.36 50.02 45.06
As⇤ 58.52 57.29 58.32 56.73
lbas , ds⇤ 54.58 52.92 55.54 52.35
lbas , As⇤ 60.36 59.10 58.81 57.36
ds⇤ , As⇤ 58.83 57.54 58.17 56.66
lbas , ds⇤ , As⇤ 60.25 58.94 58.17 56.80

Partition B has data from five speakers. Utterances of this
partition are segmented into visemes and they are pre-
sented to the bilinear model (Sec. 4.3) to obtain As⇤ and
ds⇤ and also to the viseme-level classifier to obtain lbas .
These meta-features are then used to train the utterance-
level classifier (second layer of the proposed approach –
see Sec. 4.4). We emphasize that partitions A and B are
from the train set. The test set is only used to evaluate
the classification performance. This approach ensures the
generalization of the approach for new speakers.

We separately set the parameters J and � of the
model in each fold. For this purpose, we run a second
cross-validation approach over partition B (data from
five speakers used to train the emotion classifier). The
dimension of the subspace of the style matrix J is
set between 1 to 10. We evaluate the following values
for � 2 {0 .125 , 0 .25 , 0 .5 , 1 , 2}. This approach generates
different sets of parameters per fold. Table 4 reports the
optimized parameters in each fold. The table shows that
even J = 2 yields reliable prediction of emotions. Notice
that increasing the values of J significantly increases
the number of elements in As⇤ , and, consequently, the
number of features.

Table 5 reports the classification performance for the
proposed blind lexical compensation method. The table
lists the performance when we consider different combi-
nation of features (columns under “With Boundaries”).
The first row corresponds to the baseline setting with
no lexical compensation, which achieves 53.8% accuracy
and 52.2% F-score. The evaluation shows that using As⇤

alone yields 58.5% accuracy. The improvement over the
baseline lexical-independent method is statistically sig-
nificant (p-value< 1e � 10 ). Although the performance
obtained by ds⇤ is not competitive compared with other
settings, it is significantly higher than a random classifier
(25% chance), which demonstrates the discriminative
power of this feature set. Fusing the feature sets results in
performances above 60% accuracy, which shows a statis-
tically significant improvement over the baseline perfor-
mance (p-value< 1e � 10 ). Metallinou et al. [51] used 27
facial markers in the lower and middle facial area of the
IEMOCAP database for this four-emotion classification
task. The study reported 54.2% average recall. Although
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TABLE 6
Confusion matrices of the baseline classifier (first row in

Table 5) and the classifier trained with all the features
(last row in Table 5) – IEMOCAP.

lbas [baseline] lbas , ds⇤ , As⇤

Hap Ang Sad Neu Hap Ang Sad Neu
Hap 594 142 58 33 619 93 60 55
Ang 161 309 42 62 96 359 31 88
Sad 109 83 309 125 99 23 345 159
Neu 103 137 151 193 105 89 140 250
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Fig. 7. The performance of the blind lexical compensation
method across different values of J and �.

our approach only uses 15 out of these 27 markers,
the blind lexical compensation yields 58.8% average
recall, which is a statistically significant improvement (p-
value< 0 .0003 ). Table 6 reports the confusion matrices
of the baseline classifier, and the classifier trained with
all the features (first and last row in Table 5, respectivily
– “With Boundaries” condition). Table 6 shows perfor-
mance improvements for all the emotional classes. The
proposed lexical compensation is particularly effective
in reducing the confusion between happiness and anger.
After lexical compensation, the most common mistake
is between sadness and neutral speech, reflecting the
results in Figure 5.

5.1.2 Parameter Sensitivity Analysis

Although the optimized parameters reported in Table 4
vary across folds, they are not very different from each
other (J 2 {2 , 3 , 4}, � 2 {0 .5 , 1 , 2}). In fact, the perfor-
mance of the system is not very sensitive to the values
for J (i.e., dimension of the subspace of the style matrix
As ) and � (i.e., the standard deviation associated with
the Gaussian distribution in Eq. 8). To demonstrate this
finding, we retrain the system for different values of J

and � across folds. We only consider the classifier trained
with all the features lbas , ds⇤ , and As⇤ (i.e., last row in
Table 5). Figure 7 shows the performance for various
combination of values assigned to J and �. The figure
shows consistent performance across different values of
the parameters. The low value of J implies that the
dimension of the subspace to characterize emotions can
be small and still provides good discrimination between
emotions.

TABLE 7
Emotion recognition results for supervised lexical

compensation methods, by fusing the viseme-level labels
- IEMOCAP (results from Mariooryad & Busso [12]).

Lexical compensation Accuracy [%] F-Score [%]
Feature level 56.26 54.16
Model level 58.37 56.66

5.1.3 Blind Lexical Compensation Without Phoneme

Boundaries

Although the viseme labels are assumed to be unknown,
the proposed blind lexical compensation approach uses
the temporal phonetic boundaries (only the viseme seg-
mentation, not the viseme labels). However, in practice
this information is not available. We demonstrate that the
proposed approach provides competitive performance
even when the phonetic boundaries are not available.
For this purpose, we randomly segment the testing utter-
ances into short segments, and we implement the blind
lexical compensation approach using the random viseme
segmentation. The average duration of the visemes in the
database is 104 ms. Hence, we assume an exponential
distribution with mean duration equals to 104 ms. We
obtain the viseme boundaries by sampling this distribu-
tion. Notice that viseme boundaries and their labels are
used to train the bilinear model.

The last two columns of Table 5 report the results of
this experiment (columns under “Random Boundaries”).
Although we observe a decrease in performance com-
pared to the case where ground truth viseme boundaries
are given, the drop in performance is not statistically
significant (p-value> 0 .05 ). This result indicates that
even without accurate viseme boundaries the proposed
model can compensate for the lexical variability.

5.1.4 Supervised Lexical Compensation

In Mariooryad and Busso [12], we proposed two super-
vised lexical compensation methods (feature-level and
model-level), which assume that viseme labels and their
time alignment information are both available for train-
ing and testing the models (a limitation that this study
overcomes). This section presents these methods and
their performances as a reference. Both methods makes
use of the viseme-level emotion recognizers, so we use
the sum of the class likelihoods to derive a utterance
level decision.
Feature-Level Supervised Lexical Compensation: The
feature-level lexical compensation approach utilizes a
viseme-level trajectory model to compensate for lexical
variability. The lexical dependency in each viseme is
reduced by applying viseme-dependent whitening trans-
formations which unifies their distributions. Consider a
given facial marker along a given direction. First, we
build viseme-dependent trajectory models using all the
instances of a given viseme in the training set. To build
the models, we interpolate and resample the trajectories
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TABLE 8
Arousal and valence classification results for the proposed blind lexical compensation method – SEMAINE. The table

reports results for speaking and non-speaking segments for the “users” (K = 2, 3).

Speaking segments Non-speaking segments
K=2 K=3 K=2 K=3

Arousal Valence Arousal Valence Arousal Valence Arousal Valence
Feature Sets A[%] F[%] A[%] F[%] A[%] F[%] A[%] F[%] A[%] F[%] A[%] F[%] A[%] F[%] A[%] F[%]
lbas [baseline] 53.81 52.18 66.38 45.38 31.1 24.79 39.13 27.42 44.59 37.96 68.13 47.61 31.13 23.91 28.61 23.86
ds⇤ 43.62 41.36 65.11 48.00 34.82 27.38 47.61 36.03 62.16 56.58 67.03 49.74 41.67 34.55 44.25 33.61
As⇤ 58.52 57.29 68.08 56.05 43.24 37.06 50.58 45.94 64.74 61.36 66.42 53.73 41.18 34.77 45.97 34.5
lbas , ds⇤ 54.58 52.92 64.16 47.96 28.65 22.41 38.18 28.59 46.07 39.36 66.67 50.75 37.13 30.54 39.00 34.53
lbas , As⇤ 60.36 59.10 65.32 54.25 44.62 37.77 47.72 40.42 63.51 59.60 66.06 53.95 42.77 38.00 43.77 35.47
ds⇤ , As⇤ 58.83 57.54 66.49 53.93 43.66 37.45 50.48 47.31 64.62 60.8 65.93 49.22 44.61 39.68 45.60 35.69
lbas , ds⇤ , As⇤ 60.25 58.94 65.22 53.84 44.83 38.5 48.78 38.46 64.25 60.42 66.18 49.73 45.47 40.45 45.60 36.86

to represent their temporal shape with a N ⇥ 1 trajectory
vector. As a result, the trajectory model of marker M

(e.g., central chin marker – Fig. 3(c)), in a given direction
(e.g., up-down movement), for viseme V is parametrized
with its mean vector µMV and its covariance matrix
⌃MV . We compensate for the lexical information by
using the whitening transformation. Let’s consider the
eigenvalue decomposition of ⌃MV = UMV ⇤MV U

�1
MV .

The whitening transformation is an affine linear trans-
formation, where the output random vector is zero mean
and has the identity as its covariance matrix. The trans-
formation is given in Equation 14.

x

w = ⇤
� 1

2
MV U

0
MV (x� µMV ) (14)

Notice that a different transformation is applied to
each viseme class V . Therefore, the lexical dependency
on the trajectory of the facial features is reduced. The
remaining signal conveys other factors, including emo-
tions. Motivated by our previous works [55], the nor-
malization parameters are estimated from the neutral
portion of the database. This approach ensures that
the distributions of the normalized trajectories in the
neutral samples are similar, regardless of the underlying
phonetic content (i.e., a zero mean random vector with
identity covariance). Deviation from these statistics sig-
nal deviations in the facial features from neutral emotion.
Model-Level Supervised Lexical Compensation: The
model-level lexical compensation method consists in
training one emotion classifier for each of the viseme
classes. Therefore, all the instances processed by a given
viseme-dependent classifier will convey similar lexical
information. Since we consider 13 visemes, the approach
requires to train 13 different classifiers. The drawback of
the approach is that the training data per classifier is
reduced.

Table 7 reports the utterance level recognition rates
for the feature level and models level supervised lex-
ical compensation approaches. Compared to the base-
line without lexical compensation (lbas in Table 5), the
feature and model level methods yield 2.5% (relatively
4.6%) and 4.6% (relatively 8.5%) accuracy improvements,
respectively. These are statistically significant improve-

ments over the baseline setting for both methods (p-
value< 0.038).

Similar to the results of the blind lexical compensation
method, these results also demonstrate the importance of
compensating for the lexical variability to improve the
classification performance. An important limitation of
these methods is that the transcription and the phonetic
alignment is required, which reduces its usability in real
applications. The proposed blind lexical compensation
approach overcomes this problem. Notice that the results
obtained with the blind lexical compensation method
(see Table 5) even outperforms the performances of the
supervised lexical compensation methods (see Table 7),
although the differences are not statistically significant.
The blind estimation of As⇤ simultaneously takes into
account all the segmented visemes to find the best
subspace. This simultaneous estimation is not leveraged
by the supervised methods. Hence, we achieve higher
performance even without viseme labels.

5.2 Evaluations on the SEMAINE Database

The analysis and classification experiments consider fa-
cial features derived from motion capture data. These
features are not available in real-world applications.
Therefore, this section demonstrates the effectiveness of
the proposed method using facial features automatically
derived from video recordings. We replicate the exper-
iments with the SEMAINE database using the discrete
binary classes for arousal and valence defined with the
k-means algorithm (Sec. 3.2). We use a nine-fold LOSO
cross-validation evaluation. In each fold, four speakers
from the training set are used to build the bilinear
model and lexical-independent viseme-level classifier.
The remaining four speakers in the training set are used
to build the turn-level classifier. We set the parameters
of the bilinear model to the most common combination
observed in Table 4 (J = 2, � = 2). We use the 13
AUs described in Section 3.2 as image-based features.
The frame-level AUs are sampled at 25 Hz. However,
the average duration of the visemes is approximately
100ms. Therefore, the seven high level statistics used for
the IEMOCAP do not yield robust features. Instead, we
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only estimate the mean, maximum and minimum of the
AUs during each viseme, creating a 39-D feature vector
(13 AUs ⇥ 3 statistics).

The columns under “speaking segments” in Table
8 presents the results on the SEMAINE database for
arousal and valence, for segments when the “user” was
speaking. In both emotional dimensions, the blind lexical
compensation scheme significantly improves the perfor-
mance. For valence with K=2, fusing the bilinear model
features (ds⇤ , As⇤ ) and the lexical-independent features
(lbas ) do not increase the performance. However, the
F-score is higher than the lexical-independent baseline
(lbas ). The F-score improvements over the baseline classi-
fier for all the conditions trained with features including
As⇤ are statistically significant (p-value< 0 .01 ).

5.2.1 Performance during Absence of Speech

The previous evaluations considered speaking turns.
An interesting question is whether the performance of
the proposed system is competitive when subjects are
not speaking (i.e., non-speaking turns). We evaluate the
performance of the blind lexical compensation method
during the turns when the “users” were listening to their
interlocutors. Instead of retraining the models under
this condition, we evaluated the same bilinear models
trained with speaking turns, assessing the generalization
of the models. Since this evaluation considers silent
segments, we do not have phonetic boundaries. We
use the approach presented in Section 5.1.3, where the
boundaries are randomly sampled using an exponential
distribution.

The columns under “non-speaking segments” of Table
8 report the results of this evaluation. Similar to speaking
segments, the proposed method significantly improves
the performances over the baseline model. Although the
participants are not speaking in these segments, they
may still have facial movements unrelated to their emo-
tional state. The bilinear model maps those movements
to the closest viseme (i.e., content), finding the best
emotional space for that segment. With the exception of
the evaluation of valence with K=2, any condition con-
taining As⇤ in the feature set improves the F-value over
the baseline classifier. The improvements are statistically
significant with p-values close to zero.

5.3 Comparison With other Methods
We compared our approach with the method proposed
by Zeng et al. [33], [34], consisting in averaging the
facial features over consecutive frames. This approach
reduces the dependency of lexical information over facial
features. Following their settings, we apply a moving
averaging window to the facial features with a window
size of 300 milliseconds. We implemented the baseline
classifiers trained with this smoothing approach (lbas
- smoothing). The evaluation considers only speaking
turns.

Tables 9 and 10 present the results for the IEMOCAP
and SEMAINE databases, respectively. For comparison,

TABLE 9
Emotion recognition results with smoothing the facial

feature to remove speaking effect [33], [34] - IEMOCAP.

Accuracy [%] F-Score [%]
lbas [baseline] 53.8 52.2
lbas - Smoothing 54.3 52.1
lbas , ds⇤ , As⇤ 60.3 58.9

TABLE 10
Emotion recognition results with smoothing the facial

feature to remove speaking effect [33], [34] - SEMAINE.

K=2 K=3
Arousal Valence Arousal Valence
A F A F A F A F

[%] [%] [%] [%] [%] [%] [%] [%]
lbas [baseline] 53.8 52.2 66.4 45.4 31.1 24.8 39.1 27.4
lbas - Smoothing 54.0 46.9 64.2 46.4 34.7 27.2 32.9 24.9
lbas , ds⇤ , As⇤ 60.3 58.9 65.2 53.8 44.8 38.5 48.8 38.5

the tables also include the results presented in Tables 5
and 8 for the baseline classifiers (lbas ), and the classi-
fiers trained with all the features (lbas , ds⇤ , A

s⇤ ). The
evaluation shows that our approach outperforms this
method. The p-value for the proportion hypothesis test
is close to zero, showing significant improvements across
all conditions. The smoothing approach does not provide
significant improvements over the baseline classifier. In
fact, in some cases the performance dropped.

6 CONCLUSIONS AND DISCUSSION

Given the challenges in processing facial expressions
when the subject is speaking, this work introduced
a novel approach for lexical compensation based on
the asymmetric bilinear model. The proposed technique
does not require phoneme labels, which is a significant
improvement over the supervised lexical compensation
methods presented in our previous work [12]. We evalu-
ated the approach with emotion recognition experiments
with controlled recordings, where motion capture data is
available (IEMOCAP database), and with regular record-
ings, where AUs were automatically extracted from the
videos (SEMAINE database). The results in both evalu-
ations showed the benefits of the proposed blind lexical
compensation technique to mitigate the effects of speech
on facial expressions. Notice that in experiments on both
databases, when As⇤ is included in the features, we
achieve statistically significant improvements in F-value
over the baseline classifier (the only exception is for the
SEMAINE evaluation for valence, K=2, during silence
segments - Table 8). The p-value for the proportion
hypothesis test between the baseline framework and
conditions trained with As⇤ is less than 0.01, and, in
most of the cases, close to zero, showing significant
improvements.

Our future research directions include reimplementing
the approach with other facial features automatically
derived from videos. We are considering to train the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TAFFC.2015.2490070

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2015 13

asymmetric bilinear model with geometric features [56]
and appearance-based features [57]. The experimental
evaluation showed that the proposed approach achieves
competitive performance even when random segmen-
tation is used to estimate the viseme boundaries. The
performance may increase if the phone boundaries are
estimated using automatic algorithms [58].

Our analysis showed that the middle and upper facial
areas are not affected by the spoken content. Hence,
lexical-independent models are sufficient to characterize
emotions. Given the promising results of the proposed
lexical compensation scheme in the lower face region, we
plan to develop an integrated system. The approach will
incorporate lexical-independent models for the middle
and the upper face regions, and lexical-dependent mod-
els for lower face region. We expect to obtain a facial
expression recognition system that is robust against the
variability introduced by the articulatory process.
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