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Abstract

Affect recognition is a crucial requirement for future human machine interfaces to effectively respond to nonverbal behaviors of
the user. Speech emotion recognition systems analyze acoustic features to deduce the speaker’s emotional state. However, human
voice conveys a mixture of information including speaker, lexical, cultural, physiological and emotional traits. The presence of
these communication aspects introduces variabilities that affect the performance of an emotion recognition system. Therefore,
building robust emotional models requires careful considerations to compensate for the effect of these variabilities. This study aims
to factorize speaker characteristics, verbal content and expressive behaviors in various acoustic features. The factorization technique
consists in building phoneme level trajectory models for the features. We propose a metric to quantify the dependency between
acoustic features and communication traits (i.e., speaker, lexical and emotional factors). This metric, which is motivated by the
mutual information framework, estimates the uncertainty reduction in the trajectory models when a given trait is considered. The
analysis provides important insights on the dependency between the features and the aforementioned factors. Motivated by these
results, we propose a feature normalization technique based on the whitening transformation that aims to compensate for speaker
and lexical variabilities. The benefit of employing this normalization scheme is validated with the presented factor analysis method.
The emotion recognition experiments show that the normalization approach can attenuate the variability imposed by the verbal
content and speaker identity, yielding 4.1% and 2.4% relative performance improvements on a selected set of features, respectively.
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1. Introduction

Expressing and perceiving emotions play fundamental roles
in human interaction. A message can be interpreted differently
depending on its intrinsic affective content. Even our deci-
sions, at a cognitive level, are influenced by emotions (Hastie
and Dawes, 2001). Therefore, emotions can clarify ambigui-
ties in the message and affect the listeners’ reactions. Hence,
it is important for a human machine interface (HMI) to rec-
ognize the affective state of the user and respond accordingly.
Human voice is a rich communicative channel to externalize
emotions. However, this channel conveys other communicative
aspects, such as the lexical content and the idiosyncratic char-
acteristics of the speaker. All these factors increase the variabil-
ity observed in the acoustic signal. A robust emotion recogni-
tion system should compensate for the underlying lexical- and
speaker-dependent variabilities. By reducing these variabilities,
the emotion classifiers should provide better predictions of the
users’ affective states. In this context, this paper aims to quan-
tify the speaker, lexical and emotional dependencies on various
frame level acoustic features. Building upon the analysis, the
study proposes a normalization scheme to mitigate the variabil-
ities caused by the speaker dependency and underlying lexical
content in the context of emotion recognition.

While speaker normalization schemes have been proposed
for emotion recognition (Busso et al., 2011; Vlasenko et al.,
2007; Wöllmer et al., 2008; Schuller et al., 2010), there are

few approaches that have attempted to compensate for lexical
dependency (Fu et al., 2008). The externalization of emotion
is not uniformly conveyed across time. This nonuniform en-
coding of information has been observed at various linguistic
levels such as sentence, phrase, word and phoneme (Yildirim
et al., 2004; Lee et al., 2005; Busso et al., 2007; Busso and
Narayanan, 2006, 2007; Vlasenko et al., 2011b). These studies
reveal an interplay between the externalization of emotion and
speech production (Busso and Narayanan, 2007). As a result,
certain linguistic units are more affected by emotion modula-
tion, which should be properly modeled in a robust emotion
recognition system. With a given set of standard features, com-
pensation schemes can be implemented at feature (Busso et al.,
2011; Rahman and Busso, 2012) or model (Lee et al., 2004)
level. While both approaches have advantages and limitations,
this study focuses on the front-end of an emotion recognition
system.

This study proposes a framework to identify the lexical,
speaker and emotional dependencies on the acoustic features.
The approach, which was originally developed to localize ex-
pressive areas in the face (Mariooryad and Busso, 2012), con-
sists in measuring the decrease in uncertainty when the state of
one of the factors (i.e., speaker, lexical or emotion) is known.
Separate trajectory models at the phoneme level are used to cap-
ture the temporal pattern of various acoustic features. The fea-
ture trajectory is represented by a finite dimensional vector af-
ter resampling and interpolating the signal. Then, the sample
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covariance matrix is estimated over multiple repetitions of the
phonemes. Once the trajectory models are built, the uncertainty
is measured in term of the trace of the covariance matrix (i.e.,
sum of the eigenvalues). For each acoustic feature, the pro-
posed factor analysis identifies the dominant factor yielding the
highest uncertainty reduction.

Motivated by the trajectory models, a normalization scheme
based on the whitening transformation is proposed to compen-
sate for the speaker and lexical variabilities. This scheme is de-
veloped based on the lexical normalization approach previously
introduced to enhance the performance of facial expressions
recognition systems (Mariooryad and Busso, 2013b), which is
adapted for speech features. The proposed lexical normaliza-
tion approach assumes that the transcription is available. Ac-
cording to the factor analysis metric, after speaker normaliza-
tion, the speaker dependency is attenuated in all acoustic fea-
tures. Therefore, the emotion- and lexical-dependent aspects
become the dominant factors after the normalization. Similarly,
lexical normalization reduces the effect of the underlying pho-
netic content in all the acoustic features.

To validate the findings from the analysis, an emotion recog-
nition system is built using the aforementioned normalization
schemes. When the data is properly normalized to compensate
for the lexical and speaker variabilities, the classifiers achieve
4.1% and 2.4% relative improvement over the baseline perfor-
mance, respectively. These classifiers are trained with a care-
fully selected set of features identified by the factor analysis
(reduction in 38% of the features). This reduced set is cre-
ated by identifying the acoustic features that are mainly af-
fected by emotions rather than by the speaker or lexical content
variabilities. Interestingly, these selected features preserve the
performance of the classifiers trained with all the acoustic fea-
tures. This result suggests that the proposed shape-based analy-
sis can be used as a principled method to reduce the dimension
of the feature vector, which is commonly above 4000 in emo-
tion recognition systems (Schuller et al., 2011b). Furthermore,
the insights of this study not only can guide the design of ro-
bust emotion classification systems, but also inspire solutions
in other speech processing tasks such as speech recognition and
speaker identification.

The rest of the paper is organized as follows. Section 2 sum-
marizes the related studies and highlights the contributions of
this work. Section 3 describes the database and acoustic fea-
tures considered in this study. Section 4 presents the proposed
framework, including the trajectory models, factor analysis and
the whitening normalization scheme. Section 5 provides the re-
sults of the factor analysis method, before and after the normal-
izations. This factor analysis yields a set of acoustic features to
characterize the emotions. Section 6 demonstrates the discrim-
inative power of the selected features as well as the benefit of
the normalization approach. Section 7 concludes the study with
discussion and our future directions.

2. Related Works

Compensating for factors that are not related to the task at
hand (i.e., nuisance variabilities) is of great interest in all speech

processing tasks, including language recognition (Dehak et al.,
2011), speaker identification (Kenny et al., 2007) and emotion
recognition (Li et al., 2012). The state-of-the-art compensation
methods in speech processing tasks find discriminative sub-
spaces that isolate the variable of interest from the nuisance
variabilities. One of these techniques is joint factor analy-
sis (JFA), which separates speaker and session variabilities for
speaker verification (Kenny et al., 2007). Other compensation
methods include nuisance attribute projection (NAP) and linear
discriminant analysis (LDA) in the total variability subspace,
which is known as the i-vector space (Dehak et al., 2009).
These techniques are also applied in paralinguistic recognition
tasks. Li et al. (2012) used latent factor analysis to represent the
affective states of the speaker. Xia and Liu (2012) proposed the
use of i-vector space for emotion recognition. Despite the dis-
tinct nature of these tasks, the studies often consider standard
features such as Mel frequency cepstral coefficients (MFCCs)
and Mel filter banks (MFBs). However, emotional speech af-
fects various acoustic and prosodic features. Therefore, robust
emotion recognition systems often consider big feature vec-
tors characterizing different aspects of the acoustic properties
(Schuller et al., 2011a). The aforementioned methods (i.e., la-
tent factor analysis, i-vector) cannot be easily extended to han-
dle high number of low level descriptors, since these methods
already produce high dimensional feature spaces even when 13
MFCCs are used. In contrast, we propose a factor analysis,
which considers each low level feature independently. This
work systematically studies the dependency of different spec-
tral and prosodic features on the three discussed factors in the
context of emotion recognition problem. The proposed method
identifies relevant features to model each source of variability.

Various studies have proposed feature normalization tech-
niques to reduce the speaker dependency (Busso et al., 2009;
Zeng et al., 2008; Busso et al., 2011; Rahman and Busso, 2012).
However, conventional emotion classification approaches gen-
erally disregard the dependency on the verbal content of the
message, which can result in inaccurate assessments. Previous
studies have shown the importance of considering the under-
lying lexical content to characterize paralinguistic information.
Hansen and Womack (1996) observed characteristic phoneme-
dependent patterns in speech under physical stress. Lee et al.
(2004) showed that the magnitude and direction of the formant
changes in emotional speech vary across vowels. They clus-
tered the phonemes into broad phonetic classes for emotion
recognition experiments. They showed that phoneme-class-
dependent hidden Markov models (HMMs) outperform generic
phoneme-independent HMMs for emotion recognition. In our
previous work, we demonstrated that the likelihoods of neu-
tral phoneme-dependent models can be used to discriminate
between different emotions (Busso et al., 2007). Vlasenko
et al. (2011b,a) analyzed the effect of emotion on vowel for-
mants. Based on their results, they proposed the use of vowel-
dependent models for emotion recognition. Chauhan et al.
(2011) showed that text-dependent emotion recognition im-
proves the performance compared to text-independent methods.
Fu et al. (2008) reported similar results for emotion recognition.
However, it is not practical to build a model for every possible
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Figure 1: The setting for the recording of the IEMOCAP corpus.

utterance. Therefore, this study proposes the idea of lexical nor-
malization at phoneme level to suppress the variability imposed
by verbal contents. The emotion recognition experiments sup-
ports the effectiveness of the proposed normalization to achieve
this goal. The primary contributions of this paper are:

• An exhaustive analysis of various acoustic features to
identify their dependencies at phoneme level on lexical,
speaker and emotional aspects (with main focus on emo-
tion recognition).

• A novel trajectory-based normalization scheme to com-
pensate for speaker or lexical variabilities.

3. Database and Acoustic Features

3.1. IEMOCAP Database
The factor analysis and emotion recognition tasks are con-

ducted on the interactive emotional dyadic motion capture
(IEMOCAP) database (Busso et al., 2008). This corpus was
collected to study spontaneous emotional interactions, recorded
under controlled conditions with multiple sensor technologies
(microphones, camera and motion capture system). Figure 1
depicts the data collection setting. The corpus contains five ses-
sions of dyadic conversations between two trained actors (12
hours of data). In total, ten subjects participated in the record-
ings (five females and five males). Two elicitation techniques
were used to evoke spontaneous emotional reactions. First, the
actors played three scripts carefully designed to elicit happi-
ness, anger, sadness and frustration. Then, the actors partici-
pated in improvisations of hypothetical scenarios (e.g., lost bag-
gage in an airport, enrolling in the army, and getting married).
Notice that the emotions were elicited as dictated by the dia-
log, producing realistic, natural recordings full of ambiguous
and mixed emotions (Mower et al., 2009). The utterances were
manually transcribed and segmented into turns. The phoneme
and word boundaries were estimated with forced alignment.
Subjective evaluations were conducted to assess the emotional
content of the utterances into discrete emotional categories. The
discrete labels included anger, sadness, happiness, disgust, fear,

Table 1: Emotion distribution in the IEMOCAP database. Neu: neutral, Hap:
happiness, Ang: anger, Sad: sadness

Emotion Hap Ang Sad Neu All
Number 950 678 955 1112 3695

surprise, frustration, excited, neutral and other. Although the
IEMOCAP database includes motion capture sensors to obtain
detailed facial expressions, this study only uses speech recorded
with high quality shotgun microphones (Schoeps CMIT 5U).
Detailed information about the corpus can be found in Busso
et al. (2008).

A key aspect of the proposed approach is that the acous-
tic features are represented with trajectory models (see Sec.
4.1). Building these models requires enough samples. There-
fore, the study uses only samples labeled with the four most
frequent emotional classes in the IEMOCAP database: happi-
ness, anger, sadness and neutral state. Similar to previous works
(Metallinou et al., 2010a; Mariooryad and Busso, 2013a), we
have merged the samples labeled as excited and happiness, into
a single class. The distribution of emotions in the selected
set is given in Table 1. Batliner et al. (2010) studied differ-
ent lexical units that are appropriate for emotion recognition.
They proposed word as the smallest adequate lexical unit for
the analysis of emotions. However, it is not feasible to create
lexicon-dependent model per word, so we consider phoneme as
the basic lexical unit. Notice that previous studies have used
phoneme-level processing to model emotions (Vlasenko et al.,
2011b; Lee et al., 2004). This work considers phoneme as the
basic lexical unit for processing. The phonetic alphabet used
for forced alignment consists of 47 phones. The study consid-
ers only the symbols with more than 100 repetitions per emo-
tion, reducing the set to 41 phones. This group spans 99% of
the actual phones comprising the data. For the emotion recog-
nition evaluations, we use a garbage model for the rest of the
phonemes (see Sec. 6). Notice that the ten speakers in the
database provide enough diversity to analyze the speaker de-
pendency on the features.

3.2. Acoustic Features

This study uses the exhaustive set of frame-by-frame acoustic
features provided by Schuller et al. (2011b) for the Interspeech
2011 speaker state challenge (low level descriptors (LLDs)).
Table 2 summarizes the features into spectral and prosodic fea-
tures. The auditory spectrum components are obtained after
applying the equal loudness curves and loudness compression
to the 26 MFB outputs, to mimic human auditory perception
(Hermansky, 1990). RASTA-style auditory spectrum compo-
nents are estimated by temporally filtering the MFBs with rel-
ative spectral (RASTA) filter and applying the auditory per-
ception filters. The spectral features consist of RASTA-style
filtered auditory spectrum components, MFCCs and a set of
functions derived from spectral components (i.e., short term
Fourier transform). These functions include the energy in low
frequency (i.e, fband 25-650Hz) and high frequency (i.e., fband
1k-4kHz) bands, the X roll-off point, which is the frequency
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Table 2: Acoustic feature considered in this study. The set corresponds to the
low level descriptors (LLDs) used for the Interspeech 2011 speaker state chal-
lenge (Schuller et al., 2011b).

Spectral related features
RASTA-style filt. auditory spectrum, bands 1-26 (0-8kHz)
MFCC 1-12
Spectral energy 25-650Hz, 1k-4kHZ
Spectral roll off point 0.25, 0.50, 0.75, 0.90
Spectral flux, entropy, variance, skewnewss, kurtosis

Prosodic features
L1 norm of auditory spectrum components (loudness)
L1 norm of RASTA-style filtered auditory spectrum
RMS energy
Zero-crossing rate
F0
Probability of voicing
Jitter (local, delta)

beyond which the total signal energy exceeds the X ∗ 100%
of total signal energy, and other statistics including flux, en-
tropy, variance, skewness and kurtosis. The MFCCs are low
pass liftered, which removes the excitation information. The
prosodic features include L1 norm of auditory spectrum compo-
nents, with and without applying the RASTA filters, root mean
square (RMS) energy, zero-crossing rate (ZCR), fundamental
frequency (F0), probability of voicing, jitter and its derivative.
Jitter is the frame-by-frame pitch period deviations. Note that
the F0 contour prediction produces zero values during the un-
voiced segments. Therefore, to facilitate the processing, F0 is
often interpolated during the unvoiced segments (Chappell and
Hansen, 1998; Lei et al., 2006). Given that this study proposes
trajectory models to capture the dynamics of the acoustic fea-
tures, the F0 contour is interpolated with piecewise cubic Her-
mite interpolating polynomial (PCHIP) method. These acoustic
features are extracted with the openSMILE toolkit (Eyben et al.,
2010). The detailed description of the features can be found in
Schuller et al. (2011b).

4. Methodology

To unveil characteristics of the acoustic features, this work
adopts the factor analysis model, originally proposed to study
facial expressions (Mariooryad and Busso, 2012). In contrast
to current studies that consider global statistics from acoustic
features, the proposed model directly captures the temporal tra-
jectory of the LLDs. We assume that the phonetic transcription
of the corpus is available. This section describes the proposed
trajectory model and our approach to quantify uncertainty.

4.1. Trajectory Models for Acoustic Features

Capturing the temporal dynamics of acoustic features is an
interesting and novel approach to describe expressive speech.
Previous studies have successfully implemented models to cap-
ture temporal shape of acoustic features in applications such as
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Figure 2: Mean and standard deviation of the trajectories of the auditory spec-
trum L1 norm for phoneme /æ/. For each emotion, the trajectory is extracted
across all speakers.

word spotting (Gish and Ng, 1993) and automatic speech recog-
nition (Gish and Ng, 1996; Gong, 1997). For each phoneme,
the temporal shape of the features is represented by using ei-
ther a parametric or nonparametric model trained with multiple
samples. Gish and Ng (1996) used a second order polynomial
model to capture the temporal shape of cepstral coefficients.
Gong (1997) proposed a probabilistic trajectory model for this
problem.

This study implements a nonparametric approach to capture
the temporal dynamics of the acoustic features. First, an inter-
polation and resampling scheme is used to linearly align all the
instances for a given phoneme. This approach generates an N-
dimensional vector that describes the shape of the feature. The
approach is similar to the preprocessing steps proposed by Gish
and Ng (1993, 1996). The length of the vector is empirically set
to N = 10. Our preliminary experiments showed that increas-
ing the length does not affect the reported results. The average
temporal shape for each acoustic feature A is modeled with an
N × 1 mean trajectory vector µA. An N × N covariance matrix
(ΣA) is used to captures the variations around this mean trajec-
tory. Figure 2 shows the trajectory models of auditory spectrum
L1 norm for phoneme /æ/. The trajectories are given for each
emotion, across all speakers. The solid line is the mean tra-
jectory (µA), and the dashed lines show the standard deviations
around this trajectory (i.e., square root of the diagonal elements
of ΣA). This figure not only suggests the existence of consistent
lexical pattern, but also highlights the characteristic emotional
patterns in the trajectories.

4.2. Measuring Uncertainty and Factor Analysis

The proposed factor analysis approach is based on the
premise that conditioning on a relevant factor reduces the en-
tropy of a random variable (Cover and Thomas, 2006). The
total variability of a feature is the result of the modulation of
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Figure 3: Speaker characteristic, lexical content and emotion are three sources
of variability conveyed in the speech signal (the figure does not imply orthogo-
nality between the factors).

all the underlying factors influencing the feature. Therefore, if
the space spanned by the feature is conditioned on a relevant
factor, the within-class variability is expected to decrease. The
amount of variability reduction can be regarded as a measure
of dependency between the factor and the feature. The higher
the variability reduction, the higher the dependency of the fea-
ture on that factor. Note that conditioning the feature on an
irrelevant factor will not change the distribution. Hence, it has
no effect on variability reduction. Figure 3 illustrates the total
variability of speech signal as the aggregation of independent
factors including lexical, speaker and emotional variabilities
(we acknowledge that other aspects not considered here may be
relevant). The inner cube represents the total variability space
without any restriction on the three factors. This case exhibits
the highest level of uncertainty. Conditioning the space with
respect to each of the factors will reduce the average variabili-
ties. For instance, speaker-dependent trajectory models for all
phonemes and all emotions is expected to have lower variabil-
ity than a single model for all phonemes, all emotions and all
speakers (i.e., the inner cube in Figure 3). These observations
motivate our scheme to quantify the dependency between the
three given factors and the acoustic features. The mutual infor-
mation I(A; F) can be used to measure the uncertainty reduction
in feature A, given the knowledge on factor F. Mutual informa-
tion can be expressed in term of the Shannon’s entropy H(A)
(Equation 1). Notice that P( f ) is the probability distribution of
factor F, which is estimated from the relative frequencies in the
data (e.g., P(Angry) for emotion).

I(A; F) = H(A) −
∑
f∈F

P( f )H(A | f ) (1)

In case of continuous variables, the entropy is replaced by
differential entropy. However, differential entropy does not di-
rectly determine the variability since i) it is scale variant, and
ii) it can get negative values. Notice that the entropy of multi-
variate Gaussian distributions reduces to the sum over the log-
arithms of eigenvalues of the covariance matrix plus a constant

term (Cover and Thomas, 2006). This metric is not robust
and can cause numerical issues when the covariance matrix has
some small eigenvalues, as in this case. In our previous work,
a relevance measure (RM) was proposed to quantify the uncer-
tainty reduction for continuous multivariate random variables
(Equation 2) (Mariooryad and Busso, 2012). In this metric, the
uncertainty is measured based on the approach used by Park
et al. (2010). The authors used the trace of the covariance ma-
trix (i.e., sum of the eigenvalues) as an approximate uncertainty
measure. The eigenvalues of the covariance matrix correspond
to the variances observed along the principal directions. There-
fore, the sum of eigenvalues, estimated as the trace of the co-
variance matrix, represents the total variability. RM(A, F) mea-
sures the expected uncertainty reduction of feature A when fac-
tor F (i.e., speaker identity, lexical content or emotional state)
is given. tr(ΣA) is the total variability of feature A, which repre-
sents the space covered by the inner cube in Figure 3. For each
factor F, we estimate the conditional uncertainty for feature A
(i.e., tr(ΣA|f )). Then, RM(A; F) gives the expected uncertainty
reduction when F is known. We use this metric to quantify the
dependency between the factors and the acoustic features (i.e.,
the higher the value, the stronger the dependency).

RM(A; F) = tr(ΣA) −
∑
f∈F

P( f )tr(ΣA | f ) (2)

5. Factor Analysis Results

5.1. Dominant Factor Across Acoustic Features
The discussed factor analysis technique is conducted on

each of the selected features. Notice that the lexical fac-
tor is represented at phoneme level. Therefore, phoneme-
dependent models, phone level speaker-dependent models and
phone level emotion-dependent models are built to calculate the
RM(A; F) for these factors. Different features have distinct dy-
namic ranges and, consequently, different inherent uncertain-
ties. However, the purpose of this analysis is to identify the
relative contribution of the three discussed factors on the uncer-
tainty of the acoustic feature A. Therefore, RM(A; F) is nor-
malized across the three factors to sum up to 100. Hence, the
reported values quantify the dependency of factor F on feature
A in percentage. For each feature, the dominant factor, with the
highest dependency, is given in the column “Factor”. Differ-
ent colors are used to identify the dominant factor. The lexical,
speaker and emotion factors are highlighted with white, light
gray and dark gray, respectively.

The result of this analysis is reported in Table 3 (see column
“No Normalization”). Some of the coefficients of the auditory
spectrum (RASTA) and MFCCs present similar patterns (e.g.,
the second and third MFCCs). Table 3 reports the average re-
sults for groups of these coefficients. The last row of the table
reports the average RMs across the 57 features considered in
the study (i.e., All). According to the analysis, the lexical vari-
ability across features account for 76% of total variability (on
average). The speaker and emotional variabilities account for
14.9% and 9.1% of the total variability, respectively. Due to the
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Table 3: Factor analysis results. The table gives the corresponding dependency in percentage, for each feature and factor. The analysis is performed in three
conditions: i) without any normalization, ii) with lexical normalization and iii) with speaker normalization. In each case, the dominant factor is highlighted in the
Factor column. White, light gray and dark gray represent phoneme-, speaker- and emotion-dependent features, respectively.

No Normalization Lexical Normalization Speaker Normalization
Feature Spk Pho Emo Factor Spk Pho Emo Factor Spk Pho Emo Factor

auditory spectrum L1 norm 26.06 31.64 42.29 Emotion 39.37 0.87 59.76 Emotion 7.02 42.19 50.78 Emotion
auditory spectrum (RASTA) L1 norm 3.06 87.93 9.01 Phoneme 29.57 13.37 57.07 Emotion 0.72 91.37 7.92 Phoneme

RMS energy 36.75 23.41 39.84 Emotion 48.68 1.23 50.09 Emotion 7.92 37.30 54.78 Emotion
ZCR 0.99 96.86 2.15 Phoneme 33.02 6.02 60.96 Emotion 0.59 97.07 2.33 Phoneme
F0 77.14 1.97 20.89 Speaker 78.27 0.60 21.13 Speaker 13.73 6.40 79.87 Emotion

voicing probability 9.62 81.36 9.01 Phoneme 51.48 3.84 44.68 Speaker 1.99 88.54 9.47 Phoneme
jitter local 11.94 82.31 5.75 Phoneme 30.06 50.82 19.12 Phoneme 2.75 91.91 5.33 Phoneme
jitter delta 22.92 70.75 6.33 Phoneme 0.00 99.24 0.76 Phoneme 5.65 87.93 6.42 Phoneme

auditory spectrum (RASTA) [1-2] 17.12 79.62 3.26 Phoneme 60.62 22.35 17.03 Speaker 1.15 93.88 4.97 Phoneme
auditory spectrum (RASTA) [3-10] 2.41 93.00 4.57 Phoneme 26.70 19.64 53.66 Emotion 0.58 95.41 4.01 Phoneme

auditory spectrum (RASTA) [11-18] 2.19 91.50 6.31 Phoneme 25.79 18.76 55.45 Emotion 0.57 93.72 5.72 Phoneme
auditory spectrum (RASTA) [19-26] 2.34 93.42 4.24 Phoneme 30.23 21.41 48.35 Emotion 0.64 95.20 4.17 Phoneme

MFCC [1] 4.21 90.95 4.84 Phoneme 45.97 6.28 47.75 Emotion 0.98 94.24 4.78 Phoneme
MFCC [2-8] 23.37 69.76 6.87 Phoneme 73.07 3.47 23.46 Speaker 3.90 87.71 8.38 Phoneme
MFCC [9-12] 57.46 35.32 7.22 Speaker 83.89 4.50 11.61 Speaker 12.25 80.31 7.43 Phoneme

spectral components fband 25-650 49.19 13.83 36.99 Speaker 56.69 2.83 40.49 Speaker 11.26 28.28 60.46 Emotion
spectral components fband 1000-4000 43.18 17.58 39.24 Speaker 54.53 5.34 40.13 Speaker 6.35 39.94 53.71 Emotion

spectral components roll off 25% 13.52 65.75 20.73 Phoneme 49.08 1.52 49.40 Emotion 3.73 69.34 26.93 Phoneme
spectral components roll off 50% 4.33 85.85 9.82 Phoneme 43.19 2.58 54.23 Emotion 2.02 86.20 11.78 Phoneme
spectral components roll off 75% 2.21 91.68 6.11 Phoneme 38.38 3.46 58.17 Emotion 1.57 90.64 7.79 Phoneme
spectral components roll off 90% 1.72 93.30 4.98 Phoneme 36.63 3.71 59.66 Emotion 1.45 92.17 6.38 Phoneme

spectral components flux 34.89 16.11 48.99 Emotion 42.42 1.25 56.33 Emotion 8.22 26.24 65.54 Emotion
spectral components entropy 11.57 87.95 0.49 Phoneme 91.25 5.46 3.29 Speaker 1.31 98.30 0.39 Phoneme
spectral components variance 0.72 98.82 0.46 Phoneme 42.71 15.32 41.96 Speaker 0.33 99.27 0.40 Phoneme
spectral components skewness 4.13 92.42 3.46 Phoneme 49.36 11.74 38.90 Speaker 1.65 94.77 3.57 Phoneme
spectral components kurtosis 7.66 89.52 2.82 Phoneme 66.36 8.63 25.01 Speaker 3.21 93.84 2.94 Phoneme

Average [Selected] 9.53 79.47 11.00 Phoneme 33.99 14.26 51.75 Emotion 2.16 83.13 14.71 Phoneme
Average [All] 14.89 76.01 9.10 Phoneme 44.86 14.20 40.94 Speaker 3.08 85.15 11.77 Phoneme

segmental nature of the analysis, the relevance measure cap-
tures the close relationship between the phonetic content and
the acoustic features. If the analysis had considered longer,
suprasegmental lexical units (e.g., phrases), these percentages
could have been different. Table 3 shows that the F0 contour is
highly dependent on the speaker factor (77.1%). This result is
expected given the differences observed in the vocal fold struc-
ture across individuals. This table shows that all the auditory
spectrum components and the first eight MFCCs are mainly de-
pendent on the lexical content. These speech features are the
most informative and often used features for automatic speech
recognition (ASR). The 9th-12th MFCCs and the energy in low
(fband 25-650Hz) and high (fband 1-4Hz) bands are highly de-
pendent on the speaker. These features are good candidates for
speaker identification tasks. According to this table, emotion is
the dominant factor in some energy related features, including
RMS energy, auditory spectrum L1 norm and spectral flux. The
variabilities of the remaining features are all dominated by the
lexical content. ZCR is one of these lexical-dependent features.
This result is also expected, given the discriminative power of
ZCR to distinguish between voiced and unvoiced speech (Ra-
biner and Sambur, 1975).

5.2. Speaker and Lexical Normalization
According to Table 3, emotion is not the dominant factor for

most of the acoustic features. However, it modulates the trajec-
tory shape of certain features. For instance, 20.9% of the F0

variability can be attributed to the emotional content (as mea-
sured by the proposed RM). Similarly, the emotion factor intro-
duces a variability on features that are mostly dependent on the
lexical content (e.g., auditory spectrum (RASTA) L1 norm and
ZCR). These results suggest that attenuating the speaker- and
lexical-dependent variations can enhance the characterization
of emotional information. To address this hypothesis, we pro-
pose a normalization scheme to remove the speaker and lexical
variabilities. The proposed normalization is based on our previ-
ous work on lexical normalization for facial expressions (Mari-
ooryad and Busso, 2013b). It uses the whitening transformation
over the trajectory models introduced in Section 4.1. While this
section discusses the lexical normalization by employing the
phoneme-dependent models, the same arguments and deriva-
tions are applicable for speaker normalization with the speaker-
dependent models. Given the phoneme-dependent trajectory
models, a phoneme is selected as reference pre f ∼ N(µre f ,Σre f ).
Then, the goal is to transform each phoneme pi ∼ N(µi,Σi)
to have the same statistics as the reference phoneme. Given
XN×1, a sample of pi, equations 3 and 4 perform this transfor-
mation. Vi and Di are the eigenvectors and eigenvalues of Σi in
matrix form. Similarly, Vre f and Dre f are the eigenvectors and
eigenvalues of Σre f . The whitening transformation in equation 3
decorrelates the elements of X. This equation is the extension of
the conventional Z normalization for multivariate random vari-
ables. After applying the whitening transformation, the next
step is to impose the statistics of pre f on the decorrelated data
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with equation 4 (i.e., coloring transformation). Then, all the
phonemes will have similar first and second order statistics as
the reference phoneme. Therefore, the lexical variability is at-
tenuated by these linear transformations. Motivated by our pre-
vious works (Busso et al., 2007, 2009; Mariooryad and Busso,
2013b) the transformation parameters are estimated from the
neutral utterances of the database. Hence, after performing the
whitening-coloring steps, all the neutral phonemes are forced
to have similar statistics, regardless of the actual phonetic la-
bel. Deviation from this unified neutral distribution will signal
the existence of emotional behaviors.

Xw = D−
1
2

i V ′i (X − µi) (3)

Xn = Vre f D
1
2
re f Xw + µre f (4)

The first and second rows of Figure 4 show the trajectory
models of auditory spectrum L1 norm for phonemes /æ/ and
/@/, respectively. The third row of Figure 4 depicts the trajecto-
ries of phoneme /æ/, after the whitening-coloring normalization
(i.e., /æ/⇒ /@/). The phoneme /@/ is considered as the reference
phoneme in this normalization. Notice that the normalized tra-
jectory for neutral emotion is exactly the same as the neutral tra-
jectory of phoneme /@/ (see Fig. 4(e) and Fig. 4(i)). Likewise,
considering the corresponding emotions, the similarity between
trajectories of /@/ and /æ/⇒ /@/ increases compared to the pair
/@/ and /æ/. Notice that the trajectory of /æ/ for happiness (Fig.
4(b)) is more similar to /@/ in anger (Fig. 4(g)) than to /@/ for
happiness (Fig. 4(f)). These figures show the challenge that
the underlying lexical content can introduce, blurring the emo-
tion information. However, the proposed normalization reduces
this nuisance variability. Notice that after the normalization the
trajectory of /æ/⇒ /@/ in happiness is best matched with the tra-
jectory of /@/ in happiness (Fig. 4(j) and Fig. 4(f)). This pattern
is also consistent across other emotions (compare the second
and third rows of Fig. 4).

The column “Lexical Normalization” in Table 3 gives the re-
sults of the factor analysis method after lexical normalization.
Since /@/ is the most frequent phoneme in the IEMOCAP, it
is chosen as the reference phoneme for lexical normalization.
The last row of Table 3 shows that after the normalization the
average dependency on lexical content, measured by the pro-
posed RM, reduces from 76% to 14.2%. Hence, the variabil-
ities of speaker and emotional factors increase to 44.9% and
40.9%, respectively. These results show the effectiveness of
the proposed whitening normalization. After lexical normaliza-
tion, the lexical factor is not selected as the dominant factor in
any of the features. After lexical normalization, the features
ZCR, the first MFCC and most of the auditory spectral com-
ponents are mainly dependent on the emotion factor. Speaker
factor becomes the dominant factor in the rest of the MFCCs.
Although some studies have used MFCCs for emotion recogni-
tion (Metallinou et al., 2012), this result suggests that MFBs are
more discriminative for emotions. The low pass liftering and
the decorrelation by the discrete cosine transformation (DCT)
seems to affect the discriminative power of the features for char-

acterizing emotions. Our previous experiments also support this
finding (Busso et al., 2007).

A similar normalization scheme is adapted to compensate for
the speaker factor. The speaker-dependent models across all
phonemes are used to perform the whitening-coloring scheme
to remove the speaker dependency. Notice that due to limited
size of the corpus, it is not practical to simultaneously per-
form speaker-dependent and phoneme-dependent normaliza-
tions. Therefore, these two normalizations are separately stud-
ied. The column “Speaker Normalization” in Table 3 gives the
results of the factor analysis method after applying the speaker
normalization. The female subject in the first session of the
database is selected as the reference speaker. According to the
last row of this column, the proposed speaker normalization re-
duces the speaker dependency, across all features, from 14.9%
to 3.1%, increasing the dependency on lexical and emotional
factors. On average, the trajectory-based speaker normalization
approach improves the emotion RM from 9.1% to 11.8%. No-
tice that it is not as effective as the lexical normalization (i.e.,
from 9.1% to 40.9%). However, it still increases the depen-
dency on the emotion factor. For instance, it makes emotion
the dominant factor on F0, energy in low frequency (i.e, fband
25-650Hz) and high frequency (i.e., fband 1k-4kHz) bands. F0
is one of the most commonly used features in emotion recogni-
tion studies. This result not only supports the benefit of using
this feature, but also validates the expectation that speaker nor-
malization can improve emotion discrimination.

In Table 3, the features yielding emotion as the dominant fac-
tor before or after any of the normalizations are highlighted in
dark gray. This set comprises of 37 features, which is referred
to as the Selected feature set. Notice that in the Selected set, the
lexical normalization yields higher RM values across features
for the emotional factor than the ones for the speaker factor.
Therefore, it is expected that these features are more relevant
for emotion recognition.

6. Emotion Classification

This section leverages the insights from the factor analysis
to improve the robustness of an emotion recognition system.
The experiments are performed in 10 fold leave-one-speaker-
out cross validation scheme. Each fold has two speaker-
independent partitions (9 speakers for training and 1 speaker
for testing). Emotion recognition experiments demonstrate the
discriminative power of the features selected by the analysis,
along with the effectiveness of the lexical and speaker normal-
izations.

The Selected feature set presented in Section 5.2 is obtained
using all the database including training and testing partitions.
For the classification experiments, the feature selection should
be conducted only over the training partition. Therefore, we
repeated the analysis per fold using only the training partition
(the testing partition is not considered). This approach produces
ten feature sets. On average, 35.5 (σ = 1.5) low level descrip-
tors are selected for each fold. 32 features are consistently se-
lected across the folds. In the rest of this paper, the Selected
feature set refers to these feature sets. Likewise, we train the
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Figure 4: Mean and standard deviation of the trajectories of the auditory spectrum L1 norm. The first and second rows depict the trajectory models of phonemes /æ/

and /@/, respectively. The third row shows the trajectories of /æ/ after normalization, with respect to the reference phoneme /@/. For each emotion, the trajectory is
extracted across all speakers. Neu: neutral, Hap: happiness, Ang: anger, Sad: sadness

classifiers using all the features (set All). For each feature, a
set of nine high level statistics are extracted representing the
utterance. The set of statistics include: minimum, maximum,
mean, median, standard deviation, kurtosis, skewness, lower
quartile and upper quartile. These statistics were carefully se-
lected to minimize the effect of the discontinuities introduced
at the phoneme boundaries by the normalization schemes (the
phonemes are independently normalized using Equation 3 – see
Sec. 6.2).

We use support vector machine (SVM) with linear kernel to
perform the classifications. The WEKA data mining package
(Hall et al., 2009) is used to train the SVMs with sequential
minimal optimization (SMO). The complexity parameter of the
classifier c is set to 1 for all the settings. Our preliminary ex-
periments showed that lower values of c degrade the emotion
recognition performance in all the settings. Due to the un-
balanced emotional classes (see Table 1), the results are pre-
sented in terms of accuracy (A), average precision (P), aver-
age recall (R) and F-score (F). Precision of an emotional class
is the fraction of relevant samples that are correctly classified.
We estimate the average precision, achieved by each emotional
class. Recall is the fraction of correctly retrieved samples for
one emotional class. We estimate the average recall across the
emotional classes. Equation 5 gives the F-score, which com-
bines both metrics.

F =
2PR

P + R
(5)

6.1. Baseline

Table 4 gives the baseline performance achieved by training
the classifier with acoustic features without any normalization.
A previous study on a smaller portion of this database reported
50.69% of average recall for this task, using an HMM-based
method (Metallinou et al., 2010b). Li et al. (2012) have reported
54.34% and 55.84% average recall with GMM-based approach
and latent factor analysis technique, respectively. The low accu-
racies are explained by the ambiguous emotional content of this
spontaneous corpus (Mower et al., 2009). For example, only
41% of the samples have a complete consensus in the labels
assigned by the raters in the subjective evaluations conducted
over the portion of the database used in our study. In spite of
the inherent ambiguity of the task, our SVM baseline provides
a competitive performance compared to previous studies on this
corpus.

The experiments are performed both on the Selected and All
feature sets. Interestingly, the differences in performance of the
classifiers trained with All and Selected feature sets are not sta-
tistically significant in terms of any of the performance metrics
(p − value > 0.082). This result suggests that the proposed
shape-based analysis can serve as a principled method for fea-
ture selection. This is an important problem in automatic emo-
tion recognition, since the classifiers are commonly trained with
high dimensional feature vectors obtained by extracting multi-
ple statistics over the low level descriptors. This approach can
identify low level features that are not affected by emotions, re-
ducing the high level descriptors measurably. For example, the
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Table 4: Baseline emotion recognition performance. The results are reported in
terms of Accuracy (A) and average precision (P), average recall (R) and F-score
(F).

Feature Set A P R F
Selected 54.05 54.34 54.23 54.28

All 55.32 55.95 55.73 55.84

Table 5: Emotion recognition performance after the lexical normalization. The
results are reported in terms of Accuracy (A) and average precision (P), average
recall (R) and F-score (F).

Feature Set A P R F
Selected 56.24 57.10 56.13 56.61

All 56.75 57.47 56.73 57.10

classifiers built with the set All contain 513 (57 acoustic fea-
tures × 9 statistics). In contrast, the classifiers trained with the
Selected set contain, on average, 319.5 (35.5 acoustic features
× 9 statistics) features. This corresponds to 38% feature reduc-
tion.

6.2. Effect of Lexical Normalization

To evaluate the effect of lexical normalization, the proposed
whitening transformation scheme is applied on each of the
phonemes in a given utterance (i.e., the whitening step). A sin-
gle garbage model is built for the phonemes with less than 100
repetitions per emotion. The shape based lexical normalization
is implemented as follow. First, each phoneme is independently
normalized using the proposed factor analysis (Sec. 5.2). Here,
we assume that the phonetic transcription is known. Then, the
normalized trajectories are concatenated, preserving the time
duration (i.e., the whitened phonemes are resampled to preserve
the initial phoneme durations). Finally, we estimated the same
high level statistics used for the baseline classifiers at the sen-
tence level. These statistics are used as feature in the experi-
ments. The proposed normalization uses a different linear trans-
formation for each phoneme (i.e., phoneme-dependent). Hence,
there are no discontinuities within a phoneme. However, by ap-
plying different linear transformations on adjacent phonemes,
the approach introduces discontinuities at the phoneme bound-
aries on the features (i.e., the smooth transition between the
phoneme boundaries is not necessarily preserved after the nor-
malization step). Notice that these discontinuities do not affect
the features since the statistics are carefully selected to avoid
incorporating the effect of breaks. We do not consider statistics
derived from features’ derivative and common functionals used
in other studies such as slope or linear regression coefficients.

Table 5 reports the recognition performance after the lexi-
cal normalization. With the Selected feature set, the effect of
lexical normalization is statistically significant for A, P and F
(p − value < 0.03). The results correspond to 4.1% and 4.3%
relative improvement over the baseline for A and F, respec-
tively. These results support the effectiveness of the proposed
whitening transformation to compensate for the lexical variabil-
ity. Note that this normalization also improves the performance
on the classifier trained with all features.

Table 6: Emotion recognition performance after the speaker normalization. The
results are reported in terms of Accuracy (A) and average precision (P), average
recall (R) and F-score (F).

Feature Set A P R F
Selected 55.37 56.34 55.37 55.85

All 54.45 55.27 54.67 54.97

6.3. Effect of Speaker Normalization

The discussed experimental settings are adapted to analyze
the effect of speaker normalization with the whitening transfor-
mation for emotion recognition. Hence, for each speaker, the
corresponding speaker-dependent model is used to whiten the
phonemes in the utterance. Table 6 gives the results of this ex-
periment. Notice that with the Selected feature set, the perfor-
mance increases. The result gives a 2.4% relative improvement
in accuracy compared to the baseline. However, using the fea-
ture set All reduces the recognition rates. According to Table 3,
speaker normalization boosts both lexical and emotional vari-
abilities. However, the lexical variability is still the dominant
factor across the features. In fact, on average, the emotion RM
only increases from 9.1% to 11.8%. This effect is more evident
in the feature set All. Hence, it is expected to see a drop in
performance when all the features are used. We conclude that
the proposed trajectory-based normalization is more suitable to
compensate for the lexical information.

7. Conclusions and Discussions

This paper introduced a factor analysis framework to iden-
tify the dependency of various acoustic features on speaker-
dependent characteristics, lexical content and emotional states.
For this purpose, a trajectory model was developed to analyze
the variability in the temporal shape of an exhaustive set of
acoustic features at the phoneme level. The factor analysis met-
ric quantifies the dependency of each feature on the speaker,
lexical, and emotion aspects by measuring the reduction in un-
certainty associated to the knowledge of a given factor. On av-
erage, the analysis showed that 76% of the variability in the
trajectories was associated with the lexical content. Motivated
by the analysis, we introduced a lexical/speaker normalization
scheme based on the whitening transformation. After the lexi-
cal/speaker normalization, the variability associated to the nor-
malized factor significantly decreases, showing the effective-
ness of the technique to compensate for the speaker and lexical
variabilities.

The analysis and the normalization scheme were validated
with emotion classification experiments. We built two base-
line classifiers trained with either all the features or a reduced
features set. This selected features set included all the fea-
tures for which the emotional factor was the primary source
of variability, before or after the speaker or lexical normaliza-
tion. The proportion hypothesis test shows no significant dif-
ference in the performance of both classifiers, even when 38%
less features were used with the Selected set. The results sug-
gest that the proposed shape-based analysis can be used as a
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principled method to eliminate low level descriptors that do not
provide emotional information. Likewise, emotion classifica-
tion experiments show that the proposed lexical normalization
scheme produces a relative improvement of 4.1% over the base-
line, when the Selected feature set is used. The best average
recall achieved in this study is 56.73%, which is higher than the
performance reported in previous studies on this corpus (Met-
allinou et al., 2010b; Li et al., 2012).

The analysis in this paper provides a systematic way to iden-
tify acoustic features in which the variability in their trajectories
are mainly associated with emotional information (before or af-
ter the speaker/lexical normalization). One interesting direction
is to set more restrictive thresholds on the relevance metrics to
reduce even more the number of features. Notice that the fea-
ture selection is done at the low level descriptors, before esti-
mating the statistics, which is a novel aspect of the approach.
Likewise, we are working on identifying other machine learn-
ing framework that may better leverage the proposed feature
normalization (e.g., continuous frame-by-frame classifiers).

When the proposed normalization scheme is used to com-
pensate for the speaker variability, the emotion recognition re-
sults do not provide significant improvement. This result is not
surprising, since the percentage of variability explained by the
emotional factor only increases from 9.1% to 11.8% after the
speaker normalization. Given that previous studies have shown
the importance of speaker normalization (Busso et al., 2011),
we conclude that shape-based, phoneme-level normalization
may not be the best approach to reduce the speaker variabil-
ity. We are currently exploring alternative lexical-independent
approaches based on global statistics to normalize the speaker
differences that can be coupled with the proposed lexical nor-
malization scheme. We will consider linear and nonlinear nor-
malization methods (Sethu et al., 2007).

The insights of the analysis can be leveraged in various
speech processing tasks. For example, the normalization ap-
proach can be used to compensate for the emotion variabil-
ity in the context of automatic speech recognition and speaker
identification. Studies have shown that the performance of
these systems significantly drops in presence of emotions (Wu
et al., 2006; Schuller et al., 2006) and different speaking styles
(Shriberg et al., 2008). Therefore, a feature normalization
scheme can be used to reduce the emotional variability, over-
coming these problems.

Since this study assumes that the underlying lexical content
is given, the set of potential applications is limited (e.g., judi-
cial recordings with available transcriptions). In other applica-
tions, the proposed method should rely on transcripts generated
by ASR systems. We are planning to analyze the performance
of the proposed method in presence of recognition errors in-
troduced by ASR systems. Alternatively, we are planning to
study factor analysis models such as bilinear model (Tenen-
baum and Freeman, 2000) and tied factor analysis based on
probabilistic linear discriminant analysis (PLDA) (Prince et al.,
2008) to tackle this issue. With these factor separation mod-
els, the phoneme labels are only required during the training, to
model the relationship between lexical content, emotions and
the acoustic features. The testing step utilizes the trained mod-

els and considers the lexical content as a missing variable to
infer the underlying emotion, without given transcripts. These
research directions are important steps toward building robust
emotion recognition systems that can be successfully deployed
in practical applications.
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