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Abstract—Defining useful emotional descriptors to character-
ize expressive behaviors is an important research area in affective
computing. Recent studies have shown the benefits of using con-
tinuous emotional evaluations to annotate spontaneous corpora.
Instead of assigning global labels per segments, this approach
captures the temporal dynamic evolution of the emotions. A
challenge of continuous assessments is the inherent reaction lag of
the evaluators. During the annotation process, an observer needs
to sense the stimulus, perceive the emotional message, and define
his/her judgment, all this in real time. As a result, we expect a
reaction lag between the annotation and the underlying emotional
content. This paper uses mutual information to quantify and
compensate for this reaction lag. Classification experiments on
the SEMAINE database demonstrate that the performance of
emotion recognition systems improve when the evaluator reaction
lag is considered. We explore annotator-dependent and annotator-
independent compensation schemes.

Keywords—Emotion Recognition, Continuous Emotion Anno-
tation

I. INTRODUCTION

Defining reliable emotional labels is a critical aspect in the
area of affective computing [1], [2], [3], [4]. The labels are
used as ground truth to train and evaluate emotion recognition
systems. Therefore, the success of these systems is tied to the
quality of the emotional labels. The common approach in the
field of affective computing is the use of discrete labels such
happiness and anger, or continuous emotional attributes such
as activation (calm versus active) and valence (negative versus
positive). These labels are usually assigned to specific seg-
ments (e.g., words, chunks or sentences) by multiple external
observers who annotate the perceived emotion of the stimulus.

One limitation of assigning a label per segment is that
the emotional descriptors cannot capture emotional variations
within the segment (e.g., sharp changes, hot spots). While
decreasing the length of the segments to smaller units such
as words can solve part of the problem [5], it is not clear
whether evaluators can perceive the emotional content from
short segments. An appealing, alternative approach is to track
the perceived emotional content of the stimuli continuously
over time (e.g., many labels per second) [3], [4]. This approach
is possible with graphical user interfaces (GUIs) that record
the position of a cursor controlled by the user over a coordinate
system with emotional dimensions as axes. Examples of these
GUIs are FEELTRACE [6] and Gtrace [4] for evaluating
audiovisual recordings and MoodSwings [7] and EmuJoy [8]
for evaluating emotional music.

Scherer proposed the use of an adapted version of the
Brunswik’s lens model to study vocal communication of
emotions [9]. This model makes an explicit distinction be-
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Fig. 1. Illustration of the evaluators’ reaction lag between the annotations
(solid line) and the underlying emotional content (dashed line).

tween the encoding (speaker), the transmission, and the rep-
resentation (listener) of paralinguistic messages. The speaker
encodes his/her communicative goals (trait or state), resulting
in the production of distal indicators. These distal cues are
manifested through modulation over various communication
channels (e.g., speech and gestures). These distal indicators
are transmitted to the listener, who perceives the informa-
tion, referred to as proximal percepts and makes inferences
about their attributes. These proximal precepts are mapped
into neural representation, resulting in perceptual judgments.
In this context, the assumption that evaluators can provide
instantaneous assessments that are tightly aligned with the
emotional content of the stimulus is not realistic (see Fig.
1). The evaluators have to sense the stimuli, perceive the
emotional message, and define their judgment, before moving
the cursor to the selected location. This process introduces
a delay between the emotional annotations and emotional
content of the stimulus [3]. This paper studies this delay, which
is referred to as the evaluator’s reaction lag, using mutual
information framework. We present experimental results on
the SEMAINE database [10], demonstrating that an emotion
recognition system can significantly improve its performance
when this delay is considered.

II. BACKGROUND
A. Related Work

Since global discrete affective labels associated to multi-
media content cannot represent localized events, recent studies
have considered continuous emotional annotations [4]. This
approach facilitates the analysis of complete dialogs without
the need of pre-segmenting the interactions into turns. It also
offers the opportunity to study emotional modulation over dif-
ferent segments (e.g., sentence, phrase, chunk, word, syllable,
phoneme). Because of these advantages, continuous emotional
annotations have been used to evaluate the emotional content
of TV programs [11] and movie clips [12]. However, this type
of annotation introduces unique challenges [3].
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We believe that one of the main problems of continuous
emotional annotations is the delay between the labels and
the emotional content of the stimulus. This delay is caused
by the reaction time that an evaluator takes from sensing
the emotional cues to adjusting the evaluation scores. Nicolle
et al. [13] identified this problem in their studies using the
SEMAINE corpus. They assumed a linear relationship between
the user’s facial features and the annotated scores. They
proposed a correlation-based measurement to find the delay,
which was separately measured over four emotion primitive
dimensions (activation, valence, expectation and power). They
compared the correlation of facial features with the delayed
emotional annotations across different delay intervals. They
presented the probability distribution of the delay. The most
probable delay was between three to six seconds for different
primitive dimensions. It is interesting that the emotion recog-
nition performance on the SEMAINE database are usually
low [14], [15], [16]. While the corpus provides spontaneous
recording with ambiguous emotions that are hard to predict,
the use of labels that are not representative of the instantaneous
expressive behaviors may cause lower performances.

Other related studies attempt to compensate for inter-
evaluator delays. Nicolaou et al. [17] estimated constant shifts
between the evaluations to minimize their mean square er-
ror. The authors later introduced the dynamic probabilistic
canonical correlation with time warping (DPCTW) approach
to compensate for localized shifts between annotations of
different evaluators [18].

B. SEMAINE Database

We use the sustained emotionally colored machine-human
interaction using nonverbal expression (SEMAINE) database
[10] to analyze the evaluator’s reaction lag. This database uses
the sensitive artificial learner (SAL) technique [19] to elicit
emotional reactions of users interacting with an operator. The
operator has a given personality and his/her goal is to induce
emotional reactions on the users. The SEMAINE database
was recorded using different implementations of the SAL
technique: solid SAL (i.e., human operator), semi-automated
SAL (a virtual character operator controlled by humans), and
automated-SAL (i.e., a virtual character operator controlled by
a dialog management system). This study considers the solid
SAL portion of the corpus. Using teleprompter screens the user
and operator interact with each other while sitting in separate
rooms. The speech and videos are simultaneously recorded.

The user’s behaviors are continuously annotated over time
in terms of activation (i.e., active versus passive), and valence
(i.e., negative versus positive). The database also provides
continuous annotations of other aspects including power, and
expectation dimensions, and continuous labels describing the
intensity of categorical attributes such as happiness, anger,
interested, and thoughtfulness. We only consider activation
and valence as the emotional descriptors, which are the most
common dimensions used in related studies. The emotional
evaluation is conducted with the FEELTRACE toolkit [6],
which consists of a GUI displaying the activation/valence
space. The annotator moves the cursor controlled by the com-
puter’s mouse over the GUI as he/she watches and evaluates
the emotional content of the video. In contrast to segment
level evaluations, these continuous annotations capture the
temporal evolution of the perceived emotional content. Each

TABLE I. THE LIST OF action units (AUS) EXTRACTED BY CERT [20].

AU description AU description
AU 1 Inner Brow Raise AU 15 Lip Corner Depressor
AU 2 Outer Brow Raise AU 17 Chin Raise
AU 4 Brow Lower AU 18 Lip Pucker
AU 5 Eye Widen AU 20 Lip stretch
AU 6 Cheek Raise AU 23 Lip Tightener
AU 7 Lids Tight AU 24 Lip Presser
AU 9 Nose Wrinkle AU 25 Lips Part

AU 10 Lip Raise AU 26 Jaw Drop
AU 12 Lip Corner Pull AU 28 Lips Suck
AU 14 Dimpler AU 45 Blink/Eye Closure

conversation session is annotated by multiple evaluators (2 to
8). These annotations are mapped into the interval [-1, +1].

C. Facial and Acoustic Features
The user’s videos include the profile and frontal views.

We use the computer expression recognition toolbox (CERT)
[20] to automatically extract facial features from the frontal
view videos. The CERT toolkit makes use of a frame-by-
frame processing method, yielding robust performance against
different illumination settings. CERT estimates the values of
action units (AUs), defined in the facial action coding system
(FACS) [21]. The AUs describe movements of individual facial
muscles or a group of facial muscles. Table I lists the 20
AUs used to represent facial expressions. In addition, we
estimate three head rotation parameters using CERT (i.e., pitch,
yaw, roll movements). Out of 94 currently released SEMAINE
sessions, only 52 sessions are emotionally annotated. In eight
of these sessions (sessions 82, 88-91, 95-97), CERT does not
detect the user’s face. Hence, only the remaining 44 sessions
are used for the analysis and classification experiments. There
are nine unique speakers in this portion of the corpus.

The emotion classification experiments use the exhaustive
set of acoustic features introduced for the Interspeech 2011
speaker state challenge [22]. This set contains 4368 turn level
features extracted from a set of frame-level features (i.e.,
statistics or functional extracted from a given speech segment).
This set includes prosodic, spectral and voice quality features,
and it is extracted with openSMILE [23]. Detailed description
of this feature set can be found in Schuller et al. [22].

III. ANALYSIS OF THE EVALUATORS’ REACTION LAG

As mentioned in Section II-B, the analysis uses the SE-
MAINE database, which was continuously evaluated with
the FEELTRACE toolkit. We choose this corpus given that
it is one of the largest naturalistic emotional corpora with
continuous emotional annotations. This section describes the
proposed approach to capture the reaction lag of the evaluators
(Sec. III-A), and the results of the analysis which provide
the optimum delay between the emotional annotation and the
underlying emotional content (Sec. III-B).

A. Proposed Approach
The goal of this paper is to estimate the optimum delay

between the continuous frame-by-frame emotional annotations
and the underlying emotional content of the recordings. The
proposed framework relies on mutual information, which is
defined in Equation 1. The variables X and Y are characterized
by their probability mass functions (PMFs) p(x) and p(y)
and their joint PMF p(x, y). Mutual information measures the
dependency between two discrete random variables. Therefore,
it provides an appealing approach to capture the dependency
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Fig. 2. The clusters obtained with the K-means algorithm on the activation-
valence space considering no delay on the annotations (τ=0).

between the emotional content of the stimulus (EMO) and a τ -
sec-shifted version of the emotional annotations (ANN τ ). The
optimum reaction lag is given by the shift τ̂ that maximizes
the dependency between these variables (Eq. 2).

I[X;Y ] =
∑

y∈Y

∑

x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(1)

τ̂ = argτ max I[EMO ;ANN τ ] (2)

While ANN τ is derived by shifting the emotional annota-
tions, the underlying emotional content EMO is not available.
However, this metric can be approximated by estimating
a continuous emotional profile describing the deviations in
the features from normal behaviors. This study only uses
facial features (EMOF ) for the following reasons. First, AUs
measure deviations from normal facial poses. Therefore, they
are adequate to represent the emotional profile. Second, it is
possible to estimate facial features even when the subject is
listening, while acoustic features are only available during
speaking turns. Finally, conducting the analysis on facial
expression allows us to approximate the underlying emotional
content on a frame-by-frame basis. Prosodic features such
as F0 contour and energy are suprasegmental features, in
which the emotional information is conveyed by changes on
the temporal patterns rather than on the actual values of the
features. This is the reason that emotion classifiers from speech
usually rely on statistics of the acoustic features estimated from
longer segments (e.g., sentences, words, chunks). In contrast,
AUs describe the actual facial expressions displayed on the
given frames. Notice that emotion perception is also affected
by speech properties, which is not be captured by our approach.
Likewise, the estimation of the emotional profile depends on
the robustness of CERT to provide reliable AUs information. In
spite of these limitations, the experimental results validate the
proposed approach, which increases the emotion recognition
performance (Sec. IV).

The variables EMOF and ANN τ are discrete. Therefore,
we use the K-means algorithm to define clusters for the
continuous values of facial features and emotional annotations.
We estimate the required PMFs from these nonuniform bins.
For facial features, EMOF , we use K ∈ {2, 4, 6, 8, 10, 16, 20}
over the joint feature space defined by the 23 facial features
(Sec. II-C). We report the average results across these settings.
For the τ -sec-shifted emotional annotations, ANN τ , we follow
a similar approach. For a given τ , we estimate the mean value
of the emotional annotations across evaluators. We assume
that the inter-evaluator differences in reaction lag is negligible.
Notice that we relax this assumption in Section IV-C by con-
sidering different reaction’s lags across evaluators. Then, we
estimate the mean value for each sentence. We transform the
continuous values of the activation/valence space into discrete

pe
r

fo
ld

0 5 100.1

0.12

0.14

0.16

τ (seconds)

I(E
M

OF ;A
NN

τ )

(a) Act

0 5 10

0.08

0.1

0.12

0.14

τ (seconds)

I(E
M

OF ;A
NN

τ )

(b) Val

0 5 10

0.14

0.16

0.18

τ (seconds)

I(E
M

OF ;A
NN

τ )

(c) Act-Val

av
er

ag
e

0 5 10

0.132
0.134
0.136
0.138

0.14

τ (seconds)

I(E
M

OF ;A
NN

τ )

(d) Act

0 5 100.108
0.11

0.112
0.114
0.116
0.118

τ (seconds)

I(E
M

OF ;A
NN

τ )

(e) Val

0 5 10

0.155

0.16

0.165

τ (seconds)

I(E
M

OF ;A
NN

τ )

(f) Act-Val

Fig. 3. Analysis of the evaluator’s reaction lag in the emotional anno-
tations of the SEMAINE database. The figures show the mutual information
between facial features and τ -sec-delayed emotion annotations. The results are
presented for each fold for (a) activation, (b) valence and (c) joint activation-
valence space, and the average across all folds for (d) activation, (e) valence
and (d) joint activation-valence space.

classes using the K-means algorithm with k ∈ {2, 3, 4}. This
clustering is separately done for each dimension, and on the
joint activation-valence space. For example, Figure 2 shows
the clusters built on the activation-valence space when τ=0.
The results of the analysis (Sec. III-B) and the classification
experiments (Sec. IV) are reported for each dimension and
for the joint activation-valence space. Notice that previous
studies on emotion recognition have also used this approach
to transform continuous emotional attributes into K discrete
emotional classes [24], [25], [26].

B. Quantifying the Optimum Delay
We evaluate different delay values by changing τ from 0

to 10 sec in jumps of 40 ms. We assume that the reaction lag
is a wise sense stationary random variable. Since the optimum
evaluators’ reaction lag will be used in the classification
experiments (Sec. IV), we estimate τ̂ using a nine-fold speaker-
independent, cross-validation scheme. In this approach, we
only use the training set to estimate the delay (data from
8 speakers). Therefore, the classification results, which are
evaluated on the testing set, are not biased by the selection
of the delay. As a result, we estimate a different τ̂ for each of
the nine folds.

Figures 3 (a-c) show examples of the average mutual
information observed for each fold across different values
of τ . The figures describe the activation, valence and joint
activation-valence space with K = 3. These figures clearly
illustrate the increase in mutual information between the
emotional annotations and the emotional content on the facial
features as τ increases from zero. We observe that the curves
reach a plateau followed by a gradual decrease in the mutual
information. This pattern is clearly seen in Figures 3 (d-f),
which show the average of the individual curves across folds.
This pattern is consistent with the probability distribution of
the delay reported by Nicolle et al. [13].

We define the optimum evaluators’ reaction lag as the min-
imum value of τ for which the derivative of I[EMOF ;ANN τ ]
is non-positive. While this approach does not always give the
maximum value of the mutual information, it favors shorter
delays by selecting the beginning of the plateau region. We
estimate τ̂ for each fold generating nine different delays for
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TABLE II. MEAN AND STANDARD DEVIATION OF THE ESTIMATED
evaluator’s reaction lags ACROSS THE NINE FOLDS FOR ACTIVATION,

VALENCE AND JOINT ACTIVATION-VALENCE SPACE (SEE FIG. 3).

Attribute K = 2 K = 3 K = 4
mean std mean std mean std

Act 2.27 0.82 2.84 1.21 3.94 1.55
Val 3.48 0.66 3.68 0.86 3.37 0.79

Act-Val 3.61 0.52 4.98 0.84 4.43 1.36

activation, valence, and the activation-valence space. Table
II reports the mean and standard deviation of the estimated
delays for each of these dimensions, and for different values
of emotional clusters (K). The table reports reaction lags in
the annotations ranging from 2-5 secs. Given that the median
duration of the sentences in this corpus is 2.76 sec, it is
very important to consider this delay in emotion recognition
experiments.

IV. EMOTION RECOGNITION RESULTS

This section presents emotion classification experiments
that validate the need for compensating the reaction lag of
the evaluators. We build classifiers that are trained and tested
with and without shifting the emotional labels (nine-fold
speaker independent cross-validation scheme). In addition to
the optimum value of τ̂ , we implemented fixed shifts of 1, 2
and 3 seconds. The experiments are conducted at the turn level
with the segmentation provided in the SEMAINE corpus. We
only consider the user’s speaking turns with at least 300 ms
duration, resulting in 1049 segments. Similar to the analysis
section, the ground truth for the emotional labels are defined
by averaging the annotation scores across the evaluators, and
across the duration of the speaking turn. In this estimation,
we consider the value of τ before estimating the average
emotion evaluation scores. The values are then transformed
into categorical classes using the clusters provided by the K-
means algorithm for activation, valence and activation-valence
space. Since the value of τ̂ varies across folds, the emotional
labels used for the emotion recognition experiments may
change for each cross validation.

All the classifiers are implemented with linear kernel
support vector machine (SVM). We use the WEKA [27]
implementation with sequential minimal optimization (SMO)
training. The complexity parameter of SVM is set to c =
0.1 for all the classifiers. Since, the data is not uniformly
distributed between the classes (see Fig. 2), the recognition
results are reported in terms of accuracy (A), macro-average
precision (P), macro-average recall (R) and macro-average F-
score (F). Equation 3 gives the macro-average F-score. We use
the large sample proportion hypothesis test to measure whether
the differences in performance are statistically significant. We
conduct separate experiments for emotion recognition from
facial (Sec. IV-A) and acoustic (Sec. IV-B) features.

F =
2PR

P +R
(3)

A. Emotion Recognition from Face

For each turn, a set of six statistics are extracted from each
facial feature creating a 138D feature vector (i.e., [20 AUs
+ 3 head rotation] × 6 statistics). The statistics are the 1%,

25%, 75% and 99% quantiles, the mean and standard deviation.
Table III reports the classification performances for different
settings by considering different delays on the annotations
(0, 1, 2, 3 and τ̂ seconds). The table shows improvement in
performance in most of the experiments in which the emotional
labels are shifted (33 out of 36 cases for accuracy; 32 out of
36 cases for F-score). On average across all the conditions,
the optimal value of τ̂ gives the best performance in accuracy
and F-score. In the activation-valence space, the optimal delay
always gives statistically significant improvements in F-score
(p− value <0.0073) and accuracy (p− value <0.0441) over
the baseline settings without delay compensation.

B. Emotion Recognition from Speech

Given the size of the corpus and the high dimension of
the acoustic feature vector, we use the correlation feature
selection (CFS) method to reduce the number of acoustic
features. We employ the WEKA’s best first search algorithm
implementation. This non-wrapper-based method selects the
features with low correlation between themselves and high
correlation with the target labels. The search method uses the
correlation metrics to evaluate the effect of adding one feature
at a time. This search is also enhanced by backtracking option.
The feature selection is separately performed for each fold and
for each delay using only the training set for K ∈ {2, 3, 4}.
The average number of selected features for activation, valence
and joint activation-valence spaces are 103 (σ = 15), 87
(σ = 17) and 106 (σ = 13), respectively. Table IV gives
the speech emotion recognition experiments before and after
compensating for the delays. The delayed annotations always
improve the accuracy of the baseline (i.e., no delay), excepting
the case for activation with K = 3. Even when we use fixed
delays, we observe improvements in performances for most
of the cases. In the activation-valence space, the increase in
accuracy and F-score for the optimal delay is statistically
significant when K = 2 and 4 (p − value <0.0069). As an
aside, it is interesting that we achieved better performance
on valence than on activation, since acoustic features do not
discriminate very well across valence dimension [28].

C. Pre-Aligning the Annotations of Evaluators

The analysis assumes that the reaction lag is consistent
across evaluators. However, it is expected that the perception
process will introduce delays that are evaluator-dependent [17],
[18]. This section considers the variability in the reaction time
across the evaluators. The approach consists in pre-aligning
the evaluations before estimating the optimum value of τ .
We consider two approximations: a) the phase between two
different annotations is fixed across time (e.g., time-invariant),
and b) this phase is less than one second. For each session,
we select at random one of the annotations, which is set as the
reference. Then, we estimate the best alignment by computing
the correlation between this reference annotation and each of
the other annotations, which are shifted from -1 sec to 1 sec.
After the emotional annotations are aligned, we estimate the
reaction lag between the average, aligned annotation scores
and the facial features using the same approach described
in Section III-A. The optimum values for τ are selected for
each fold and used to replicate the recognition experiments
presented in sections IV-A and IV-B.
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TABLE III. FACIAL EMOTION RECOGNITION ON ACTIVATION, VALENCE AND ACTIVATION-VALENCE, CONSIDERING DIFFERENT NUMBER OF CLUSTERS
(K). RESULTS ARE REPORTED FOR DELAYS OF 0, 1, 2, 3 AND τ̂ SEC, IN TERMS OF Accuracy (A), average precision (P), average recall (R) AND F score (F).

Attribute lag K = 2 [chances = 50%] K = 3 [chances = 33.33%] K = 4 [chances = 25%]
A P R F A P R F A P R F

Activation

0 60.06 57.66 56.85 57.25 41.75 39.27 38.32 38.79 32.60 30.10 30.85 30.47
1 60.27 58.80 58.97 58.88 46.35 48.17 46.72 47.43 34.17 32.62 32.21 32.41
2 60.64 60.16 59.04 59.59 45.77 49.42 46.29 47.80 35.96 34.31 34.33 34.32
3 61.06 54.12 54.33 54.22 45.50 46.13 45.36 45.74 30.92 34.10 32.18 33.11

Optimal 58.24 58.71 58.72 58.71 47.70 40.82 41.61 41.21 35.95 36.08 39.65 37.78

Valence

0 67.49 69.19 67.82 68.50 53.00 46.96 50.65 48.74 34.13 28.90 28.09 28.49
1 68.52 64.83 63.73 64.28 53.93 61.21 51.99 56.22 37.14 36.43 35.72 36.07
2 72.40 74.13 70.38 72.21 54.62 57.29 47.20 51.76 37.71 26.48 27.18 26.83
3 70.06 71.91 68.72 70.28 55.48 55.96 55.05 55.50 39.92 39.38 38.16 38.76

Optimal 69.12 67.24 64.16 65.66 54.76 51.17 48.98 50.05 39.37 39.96 40.33 40.14

[Activation, Valence]

0 56.24 59.50 59.34 59.42 50.52 49.39 48.20 48.79 37.27 36.55 34.94 35.73
1 59.50 65.61 65.94 65.77 44.05 55.72 44.82 49.68 39.35 38.58 41.54 40.01
2 62.78 62.64 63.29 62.96 50.73 53.05 51.23 52.12 43.25 44.45 44.99 44.72
3 63.11 64.09 63.30 63.69 54.99 52.50 51.15 51.82 40.22 36.02 36.71 36.36

Optimal 64.12 65.74 67.03 66.38 59.17 57.32 56.44 56.88 40.90 40.34 41.50 40.91

TABLE IV. SPEECH EMOTION RECOGNITION ON ACTIVATION, VALENCE AND ACTIVATION-VALENCE, CONSIDERING DIFFERENT NUMBER OF CLUSTERS
(K). RESULTS ARE REPORTED FOR DELAYS OF 0, 1, 2, 3 AND τ̂ SEC, IN TERMS OF Accuracy (A), average precision (P), average recall (R) AND F score (F).

Attribute lag K = 2 [chances = 50%] K = 3 [chances = 33.33%] K = 4 [chances = 25%]
A P R F A P R F A P R F

Activation

0 55.3 58.92 58.62 58.77 42.62 42.35 44.4 43.35 29.73 30.14 30.33 30.23
1 56.15 56.58 56.42 56.5 41.96 41.18 41.34 41.26 30.47 30.18 30.97 30.57
2 57.35 57.31 57.32 57.31 42.45 44.83 46.65 45.72 30.62 28.85 30 29.41
3 57.47 58.32 58.41 58.36 41.57 39.51 39.26 39.38 32.07 31.92 31.27 31.59

Optimal 57.93 58.74 58.84 58.79 42.07 41.77 42.17 41.97 32.9 31.31 31.68 31.49

Valence

0 66.31 63.94 59.1 61.42 41.88 45 42.17 43.54 40.94 42.87 39.08 40.89
1 67.09 66.74 66.95 66.84 42.36 42.45 45.07 43.72 41.42 38.61 38.75 38.68
2 67.26 65.38 66.1 65.74 45.25 45.28 46.66 45.96 41.63 41.83 41.24 41.53
3 68.13 64.06 62.4 63.22 43.29 40.33 40.59 40.46 43.63 41.13 40.17 40.64

Optimal 67.47 67.85 68.95 68.4 43.1 39.77 39.76 39.76 42.77 44.23 43.53 43.88

[Activation, Valence]

0 47.99 49.46 49.48 49.47 42.42 43.5 43.65 43.57 37.38 36.98 38.22 37.59
1 50.07 49.94 49.95 49.94 44.53 43.56 44.49 44.02 39.05 41.02 40.1 40.55
2 52.02 54.96 55.16 55.06 45.52 47.69 45.3 46.46 41.49 39.48 38.04 38.75
3 53.89 55.3 55.08 55.19 47.08 45.65 46.07 45.86 38.82 36.1 35.36 35.73

Optimal 53.82 56.3 56.61 56.45 45.11 41.63 41.63 41.63 42.19 45.01 40.88 42.85
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Fig. 4. The F-score achieved with τ̂ for facial and speech emotion
recognitions with and without pre-aligning the annotations. Pre-aligning the
annotations improves slightly the performance.

The results after pre-aligning the emotional annotations are
slightly better than the ones achieved without pre-alignment.
Pairwise comparisons of the results on Tables III and IV
with the corresponding ones obtained after the pre-alignment

step (not reported in the paper) show 1.06% and 0.26%
improvements, on average, in F-score for face and speech emo-
tion recognition, respectively (across all conditions). Figure 4
shows the F-scores obtained for the optimal reaction lag τ̂ with
and without the pre-alignment step. According to this figure,
in most of the cases we observe an improvement in F-score.
However, the difference in performance is small.

V. CONCLUSIONS AND FUTURE WORK

This paper studied the reaction lag of evaluators using con-
tinuous emotional annotations. The analysis is based on mutual
information measurements, which clearly demonstrates the
delay between the emotional annotations and the underlying
emotional content. We conducted exhaustive emotion recogni-
tion experiments to validate the importance of considering the
delay. The systems trained with shift-delayed emotional an-
notations achieved statistically significant improvements over
baseline systems by compensating the evaluators’ reaction lag.

Although the estimated delays are obtained by comparing
the mutual information of annotation scores with only facial
features, the improvements were observed in both facial and
speech emotion recognition systems. Our future work will
consider the estimation of emotional content using speech
features. We will derive these metrics by contrasting emotional
speech with the pattern observed in neutral speech using
neutral models [29]. Likewise, the analysis shows evaluator-
dependent patterns on the annotations. This variability should
be considered to achieve more reliable emotional labels. Fur-
thermore, the underlying assumption of this study is that the
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delay is consistent across the evaluation sessions. However,
the delay may be not only evaluator-dependent, but also time-
variant. Therefore, we plan to explore approaches to estimate
delays over localized segments. For example, we can couple
the proposed approach with the DPCTW method presented by
Nicolaou et al. [18]. These techniques can provide more robust
labels to train emotion recognition systems.
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