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ABSTRACT
An effective human computer interaction system should be
equipped with mechanisms to recognize and respond to the
affective state of the user. However, spoken message con-
veys different communicative aspects such as the verbal con-
tent, emotional state and idiosyncrasy of the speaker. Each
of these aspects introduces variability that will affect the per-
formance of an emotion recognition system. If the models
used to capture the expressive behaviors are constrained by
the lexical content and speaker identity, it is expected that the
observed uncertainty in the channel will decrease, improving
the accuracy of the system. Motivated by these observations,
this study aims to quantify and localize the speaker, lexical
and emotional variabilities observed in the face during human
interaction. A metric inspired in mutual information theory
is proposed to quantify the dependency of facial features on
these factors. This metric uses the trace of the covariance ma-
trix of facial motion trajectories to measure the uncertainty.
The experimental results confirm the strong influence of the
lexical information in the lower part of the face. For this fa-
cial region, the results demonstrate the benefit of constraining
the emotional model on the lexical content. The ultimate goal
of this research is to utilize this information to constrain the
emotional models on the underlying lexical units to improve
the accuracy of emotion recognition systems.

Index Terms— Facial expressions, emotion recognition,
factor analysis, face analysis.

1. INTRODUCTION
Perceiving and expressing emotions are fundamental charac-
teristics in human interaction. The emotional content in a
conversation can clarify ambiguities in the message, influenc-
ing the expected reactions from the listeners. Recent findings
suggest that emotions, at a cognitive level, impact our deci-
sion makings [1]. For all these reasons, it is important for
a human machine interface (HMI) to recognize the affective
state of the user. Among different modalities, facial expres-
sion is one of the most important channels used to externalize
emotions. Facial emotion recognition systems rely on visual
cues to deduce the affective state of the speaker. However,
human communication is a sophisticated phenomenon which
involves the interplay of cognitive, physiological, cultural and
conversational processes. Therefore, the emotional state of
the speaker is not the only factor that affects the facial ap-
pearance. The face is also manipulated by the verbal content
of the spoken message, and the intrinsic cultural, physiolog-
ical and idiosyncratic characteristics of the speaker (Fig. 1).
This paper aims to quantify and localize the speaker, lexical
and emotional variabilities observed in facial movements.

Conventional facial expression recognition systems have
attempted to remove speaker dependency, by employing nor-
malization techniques [2]. However, the verbal content of
the message is generally disregarded [3], which may lead to

erroneous assessments. In fact, our previous work showed
that conditioning the emotional facial models on the speech-
related unit (phoneme) improves the emotion recognition rate
[4]. In the area of facial animation, Cao et al. explored these
ideas to synthesize talking heads [5]. They used Independent
Component Analysis (ICA) to identify emotion and lexical re-
lated subspaces for facial gestures. These spaces were used to
manipulate the emotional content of the synthesized facial an-
imations. A key open problem is to identify facial areas that
are more affected by speaker and lexical variabilities. If these
dependencies can be localized, then lexicon and speaker de-
pendent models can be built for features extracted from these
facial areas. This is the precise, ultimate goal of this study.

The proposed approach builds upon our previous study,
which analyzed the interplay between linguistic and affective
goals in the face [6]. This previous work was based on con-
trolled experiments, in which the same sentences were uttered
by a single actor expressing different emotions. In this paper,
we extend the approach by considering the speaker, lexical
and emotional variabilities in the face during spontaneous hu-
man interactions. The proposed factor analysis consists in
estimating a metric similar to mutual information. The pro-
posed metric measures the amount of decrease in variability
of the facial movement models when the models are con-
strained by each of the three factors, compared to the case
when there is no constraint on the factors. In this work, the
trace of the covariance matrix of motion trajectories is used
as the measure of variability. The results reveal that the lex-
ical variability is localized on the lower region of the face.
The speaker variability (after feature normalization) is evenly
distributed across the face. The emotional variability is local-
ized in the middle and upper facial regions. Moreover, con-
ditioning the emotional facial models on the lexical informa-
tion significantly reduces the variability in the orofacial area.
These results support the benefit of lexical dependent mod-
els for emotion recognition. These findings can be leveraged
to build robust lexical dependent models for facial expression
recognition, which is our long term ultimate goal.

2. METHODOLOGY
This study focuses on the lexical information at syllable and
word levels. In contrast with phoneme, these longer units of-
fer better choice to capture motion trajectories and also to
handle co-articulation effects. The face is represented with
53 markers that were placed on the subjects’ face (Sec. 2.1).
In this work, the emotion factor is represented by categori-
cal labels (e.g., happy and sad). This section describes the
database, the normalization scheme, the factors influencing
facial movements and the proposed factor analysis technique.

2.1. IEMOCAP Database
This study uses the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) database [7]. This corpus was col-
lected to study multimodal expressive human communica-
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Fig. 1. Interplay between speaker, lexical and emotional con-
tent in the face, during expressive interaction.

(a) (b) (c)

Fig. 2. (a) Layout of 53 markers attached to the face of the
subjects. (b) Subject with the markers. (c) Facial subdivision:
(F1) Forehead, (F2) Left eye, (F3) Right eye, (F4) Left cheek,
(F5) Right cheek, (F6) Nasolabial, and (F7) Chin.

tion. It contains five sessions of dyadic interactions. In each
session, two actors (one male and one female) performed
three carefully selected scripts. They were also asked to im-
provise hypothetical scenarios such as getting married. The
scripts and scenarios were selected to elicit emotional mani-
festations. The recording includes speech and synchronized
motion capture data, which provides detailed facial motion
information. In total, 53 markers were placed on the face of
the subjects. The markers’ layout is depicted in Figures 2(a)
and 2(b). For each marker, the motions in three directions
(X , Y and Z) are extracted. The markers were translated
and rotated so that the remaining motions correspond to the
subjects’ facial expressions [7]. The corpus was manually
transcribed and segmented into turns. Forced alignment was
used to estimate the phone and word boundaries. The syllable
alignment was estimated using the syllabification software
tsylb2 [8]. The emotional content of the utterances was as-
sessed by subjective evaluations by three raters at turn level
within the following categories: anger, sadness, happiness,
disgust, fear, surprise, frustration, excited, neutral and other.
The corpus is described in details by Busso et al. [7].

2.2. Speaker Normalization
The markers were manually attached to the subjects follow-
ing the layout shown in Figure 2(a). Due to the differences
in facial anatomy of the actors and the variation in the actual
location of the markers, it is meaningless to directly compare
the motion captured data across subjects. Therefore, the tra-
jectory of the facial markers was normalized. Unfortunately,
this normalization will affect the speaker variability measured
by the proposed analysis.

The proposed speaker normalization method is motivated
by the scheme developed by Zeng et al. [2]. The approach
consists in matching the first and second order statistics of fa-
cial movements observed across all the speakers during neu-
tral interaction (i.e., samples labeled as neutral). One speaker

Table 1. The 10 most frequent syllables and words in the
IEMOCAP database. The values below the tokens are the
corresponding number of repetitions in the corpus.

Syllables
AY Y UW AX N OW T AX AX T L AY K DH AX G OW AX N D

3232 2437 1748 1556 899 823 733 693 670 599

Words
I YOU KNOW A TO THE LIKE AND DO ME

3152 2402 955 952 739 690 566 541 523 503

is selected as the reference (female speaker in the first ses-
sion). The markers of other subjects are mapped into the
markers’ space of the reference subject. Equation 1 describes
this speaker normalization technique. The ith marker of the
speaker s in the direction d ∈ {X, Y, Z}, (ms

i,d), is trans-

formed to match the reference speaker (ref ), where μ and σ
are the mean and standard deviation of the markers.

ḿs
i,d = (ms

i,d − μs
i,d) ×

σref
i,d

σs
i,d

+ μref
i,d (1)

2.3. Factors Influencing Facial Movements
Based on the size of the database, we limited the study by
considering only the ten most frequent syllables and words
across all speakers in the corpus. Therefore, we guarantee
that the number of instances for each of these lexical tokens
is large enough for the analysis. The selected lexical tokens
with the number of repetitions are given in Table 1. The lower
quartiles for durations of the syllables and words are 66 and
77 ms, respectively. The upper quartiles for both units are
150 ms. There are ten speakers in the database, which facili-
tates the analysis of the speaker factor for this study. Among
the emotional categories in the IEMOCAP, the four most fre-
quent classes are selected for studying the emotion factor (i.e.,
happy, angry, sad and neutral).

2.4. Facial Motion Trajectory Models
The goal of building facial models is to capture the movement
pattern of each marker in each of the directions (X , Y and Z).
The proposed approach consists in estimating the temporal
shape of the markers’ trajectory for syllables or words across
many repetitions. To build the models, all the sequences are
linearly aligned to have equal length N , which is empirically
set to 25 frames (preliminary results showed that increasing
N did not affect the reported results). This alignment is per-
formed with an interpolation and resampling scheme. Then,
for each marker m, the average pattern is modeled with the
N × 1 mean trajectory vector μm. The variation around this
trajectory across time is captured with the N ×N covariance
matrix (Σm).

Figure 3 depicts an example of the models for the word
WELL, with different emotions across all the speakers. The
figure shows the trajectory of the marker on the middle of
the chin (highlighted in Fig. 2(b)) in Y direction (i.e., up-
down). The mean pattern μm is shown with solid line. The
variance at each frame is shown with dashed lines. Figure
3 not only shows the existence of a lexical pattern, but also
suggests characteristic emotional patterns that can be used for
emotion recognition.

2.5. Measuring Uncertainty and Factor Analysis
If a variable depends on various factors, its overall variabil-
ity reflects the influence of all the factors. If the variable is
segregated according to one of these factors, it is expected
that the within-class variability will be lower than the origi-
nal overall variability. The difference can be considered as a

2606



measure of the dependency between the factor and the vari-
able (the higher the variance reduction, the higher the depen-
dency). If the feature is independent of the factor, then this
segregation does not change the distribution and the variabil-
ity of the features, leading to no variability reduction. The
inner cube in Figure 1 represents the overall variability ob-
served in the face. By building lexicon, speaker or emotion
dependent models, we expect a reduction in the variability.
For instance, breaking down the models with respect to the
speaker factor will lead to ten speaker dependent models with
lower average variability than the initial model (inner cube).
This approach is used here to evaluate and quantify the de-
pendencies of these three factors on localized facial regions
during expressive speech.

The notion of uncertainty provides a suitable framework
to measure variability. Mutual information, given in Equa-
tion 2, uses the Shannon’s entropy H(m) to estimate the un-
certainty reduction achieved by the knowledge of factor F .
Since the facial features are continuous variables, the entropy
should be replaced by the differential entropy. However, dif-
ferential entropy does not directly carry the uncertainty con-
cept, because i) it is not scale invariant, and ii) it can get
negative values. Also, in the case of multivariate Gaussian
distributions, the entropy is reduced to the sum of the loga-
rithms of eigenvalues of the covariance matrix plus a constant
term, which is not robust and brings up computational issues
when the covariance matrix has some small eigenvalues, as in
this case.

I(m, F ) = H(m) −
∑

f∈F

P (f)H(m | f) (2)

RM(m, F ) = tr(Σm) −
∑

f∈F

P (f)tr(Σm | f) (3)

RMn(m, F ) =
RM(m, F )

tr(Σm)
(4)

We propose a relevance measure (RM) to quantify the un-
certainty reduction for continuous multivariate random vari-
ables (Equation 3). The uncertainty is measured following the
approach used by Park et al. [9]. The authors used the trace of
the covariance matrix (i.e., sum of the eigenvalues) as a rough
measure of uncertainty. Notice that the eigenvalues of the co-
variance matrix give the variance in the principal components
of the data. Therefore, the trace captures the overall variance.
RM(m, F ) estimates the expected amount of decrease in un-
certainty of marker m, when factor F (i.e., speaker, lexical
or emotional content) is known. The probability distribution
of each factor, p(f), is estimated from their relative frequen-
cies in the data (e.g., p(Happy) for emotion). First, the un-
certainty of the inner cube in Figure 1 is calculated tr(Σm).
Then, the model is broken down into separate models, which
are conditioned on each factor F to calculate the conditional
uncertainties (i.e., tr(Σm|f)). Then, the metric RM(m, F )
is estimated according to Equation 3 to quantify the relevance
of factor F in the facial features m. The normalized version
of the proposed metric is given in Equation 4 to compensate
for different inherent unconditional uncertainties (tr(Σm)) of
the facial points in a given direction. In Section 3, we use
RMn(m, F ) to factorize the three variabilities across differ-
ent facial regions.

3. EXPERIMENT RESULTS
To compare the three factors, the face is divided into seven
subdivisions which are depicted in Figure 2(c). Table 2 gives
the average RMn(m, F ) values for each factor. The results

(a) Neutral (b) Happy (c) Angry (d) Sad

Fig. 3. Mean and variance of trajectories of the middle marker
on the chin, in Y direction, for word WELL.

are aggregated for facial subdivisions (F1 to F7) and for
marker directions (X , Y and Z). Two separate analyses are
conducted for the selected data, by considering syllables and
words as lexical units. For each region, the prominent fac-
tor with the highest RMn(m, F ) value is highlighted. The
results at word level are also shown in Figure 4 for visualiza-
tion purpose. In this figure, darker regions represent higher
RMn(m, F ) values.

Table 2 and Figure 4 reveal that subdivision 7 (i.e., lower
region in the face - see Fig. 2(c)) is strongly affected by the
lexical information. We observe lower speaker and emotional
variabilities in this region (both at the syllable and word lev-
els). This result indicates that facial features extracted from
this area should be constrained by the lexical information
of the message. In other facial regions, the lexical variabil-
ity is almost absent (especially for the upper facial area).
Emotion is the dominant factor in other subdivisions (F1-
F6). These results agree with our previous study [6], which
confirms the presence of emotion modulation in the mid-
dle and upper facial regions. For these facial areas (F1-F6),
lexicon-independent models should be enough to capture the
emotional variability. Figure 4 also reveals the differences
in the emotional variability across directions. In the X (left-
right) and Y (up-down) directions, the emotional variability
is mainly observed in the middle region of the face. In con-
trast, the emotional variability in the Z (in-out) direction is
higher in the upper facial region. These results are useful to
guide the design of facial emotion recognition systems and
expressive talking head. The results show that the speaker
variability is almost uniformly distributed and it is not the
prominent factor in any of the subdivisions. This finding
confirms the effectiveness of our speaker normalization.

4. LEXICON DEPENDENT EMOTIONAL MODELS
An important research goal of this paper is to assess the ben-
efits of using lexicon-dependent models for emotion recogni-
tion. The proposed analysis in this section aims to estimate
the decrease in uncertainty by conditioning on emotional
factor, when the underlying lexical token is known. For this
purpose, we compare the emotional variability across all
lexical tokens (i.e., lexicon-independent condition) with the
emotional variability when the models are also constrained
by the lexical units (i.e., lexicon-dependent condition). The
lexicon-independent condition corresponds to the experi-
ments in Section 3 (Emotion columns in Table 2). For the
lexicon-dependent condition, the data is segmented accord-
ing to the lexical units and the emotions. A facial motion
model is built for each combination (i.e., angry-WELL).

Important information can be derived by comparing the
variation in the RMn(m, F ) values for emotion factor be-
tween lexicon-dependent and lexicon-independent facial mo-
tion models. Table 3 gives the average RMn(m, F ) values
for emotion factor across all dimensions for the lexical de-
pendent experiment. The columns Δ(%) give the percentage
of increase in RMn(m, F ) compared to the corresponding
values in the Emotion columns of Table 2. A positive value
indicates the dependency of emotional variability on the ver-
bal content. The table shows that constraining the emotional
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Table 2. Average RMn(m, F ) values for speaker, lexical and
emotion factors in different regions of the face (see Fig. 2(c)).

Div# Dir
Syllable Level Word Level

Speaker Syllable Emotion Speaker Word Emotion

F1

X 0.064 0.003 0.019 0.068 0.001 0.020
Y 0.046 0.018 0.004 0.045 0.017 0.004
Z 0.094 0.020 0.184 0.96 0.030 0.189

Avg 0.068 0.014 0.069 0.070 0.016 0.071

F2

X 0.030 0.003 0.052 0.032 0.003 0.057
Y 0.074 0.018 0.014 0.077 0.016 0.019
Z 0.055 0.020 0.092 0.058 0.026 0.094

Avg 0.053 0.014 0.053 0.056 0.015 0.057

F3

X 0.035 0.002 0.059 0.037 0.001 0.060
Y 0.065 0.017 0.018 0.061 0.014 0.017
Z 0.000 0.021 0.112 -0.008 0.029 0.114

Avg 0.033 0.013 0.063 0.035 0.015 0.064

F4

X 0.077 0.026 0.099 0.085 0.026 0.098
Y 0.081 0.016 0.163 0.077 0.023 0.153
Z 0.066 0.050 0.060 0.070 0.066 0.055

Avg 0.075 0.031 0.107 0.077 0.038 0.102

F5

X 0.067 0.022 0.125 0.067 0.022 0.124
Y 0.085 0.020 0.164 0.084 0.026 0.155
Z 0.088 0.054 0.051 0.091 0.071 0.047

Avg 0.080 0.032 0.113 0.081 0.040 0.109

F6

X 0.068 0.033 0.123 0.71 0.036 0.122
Y 0.089 0.018 0.139 0.087 0.023 0.133
Z 0.029 0.168 0.088 0.031 0.208 0.085

Avg 0.062 0.073 0.117 0.063 0.089 0.114

F7

X 0.052 0.045 0.075 0.053 0.053 0.073
Y 0.029 0.188 0.055 0.031 0.228 0.045
Z 0.033 0.226 0.013 0.035 0.272 0.012

Avg 0.038 0.153 0.048 0.040 0.184 0.043

Table 3. The average RMn(m, F ) values for emotion factor,
in lexicon-dependent experiment. The Δ(%) columns give
the amount of increment in RMn(m, F ) compared to the av-
erage values in the Emotion columns of Table 2.

Div#
Syllable Level Word Level

Emotion(Syl Dep) Δ(%) Emotion(Syl Dep) Δ(%)

F1 0.070 1.44 0.069 -2.28
F2 0.053 0.00 0.053 -7.01
F3 0.068 7.93 0.063 -1.58
F4 0.115 7.47 0.103 0.98
F5 0.122 7.56 0.111 1.83
F6 0.123 5.12 0.115 0.87
F7 0.067 39.58 0.063 46.51

models on the lexical information reduces the uncertainty in
the orofacial area (F7). However, it has no significant effect
on other facial subdivisions. These results confirm that only
the orofacial area should be constrained by the lexical infor-
mation of the message to build emotional models.

5. CONCLUSIONS
The paper introduced a metric to perform factor analysis on
facial movements. The analysis shows that the lower facial
region is mainly affected by the lexical information. The
results show that conditioning the emotional models on the
lexical units reduces the uncertainty only in the orofacial
area. These results demonstrate the benefits of using lexicon-
dependent models for features extracted from this facial area.
While speaker variability is observed across the face, the re-
sults show that the emotional modulation is concentrated in
the middle and upper facial regions.

Our next step is to build a facial emotion recognition sys-
tem that leverages the insights provided by this study. We
will combine lexicon-dependent models for the lower facial
region with lexicon-independent models for the rest of the
face. Another research direction is to define suitable lexical
units. It is not practical to build separate model for each syl-
lable, since there are more than 2000 syllables in English. We
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Average X direction Y direction Z direction

Fig. 4. RMn(m, F ) for each factor (speaker, word and emo-
tion) in the face. Darker regions represent higher dependency.

are exploring the use of clustering to find syllables with simi-
lar trajectories (i.e., visimes for syllables). These are some of
the directions that we are working toward designing a robust
emotion recognition system.
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