

speech everywhere!

Voice Activity Detection with Teacher-Student Domain Emulation

J. Luckenbaugh, S. Abplanalp, R. Gonzalez, D. Fulford, D. Gard, C. Busso

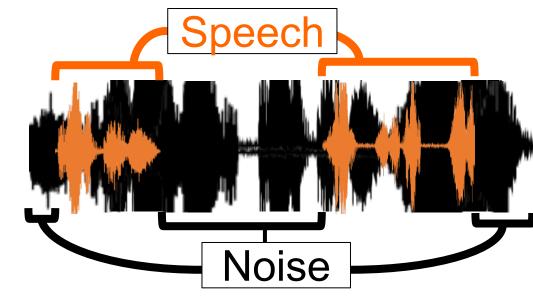
Voice Activity Detection

VAD – Classifies between speech and noise

- Essential pre-processing step for other speech tasks like ASR, SER, etc.
- Open Problem: robust performance in realistic conditions

Brief history

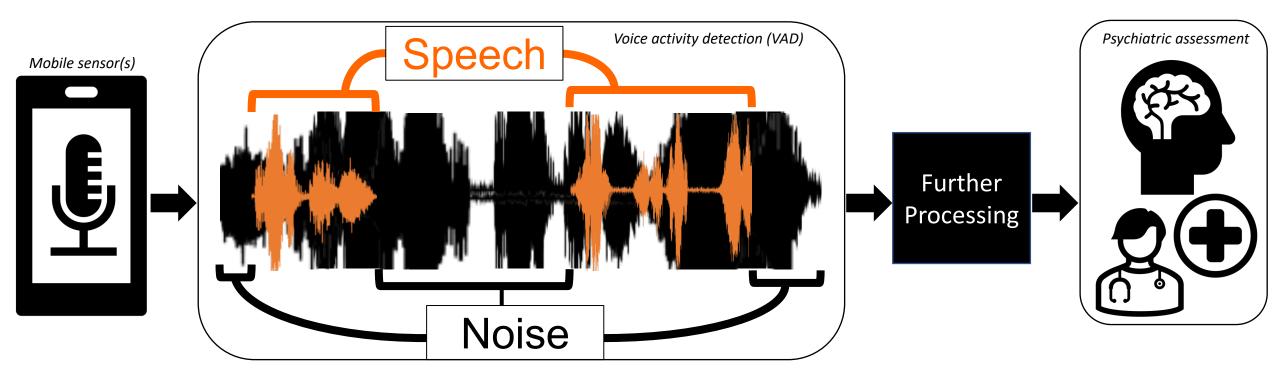
- Statistical Methods LP [1], PCA, etc.
 - Limited model capacities often linear
 - Shorter evaluation windows
- Deep learning
 - Learns nonlinear relations within sequences
 - Tends to be more robust
 - Requires training



[1] A. Benyassine, E. Shlomot, H. . Su, D. Massaloux, C. Lamblin, and J. Petit, "ITU-T Recommendation G.729 Annex B: a silence compression scheme for use with G.729 optimized for V.70 digital simultaneous voice and data applications," *IEEE Communications Magazine*, vol. 35, no. 9, pp. 64–73, 1997

Voice Activity Detection "in the wild"

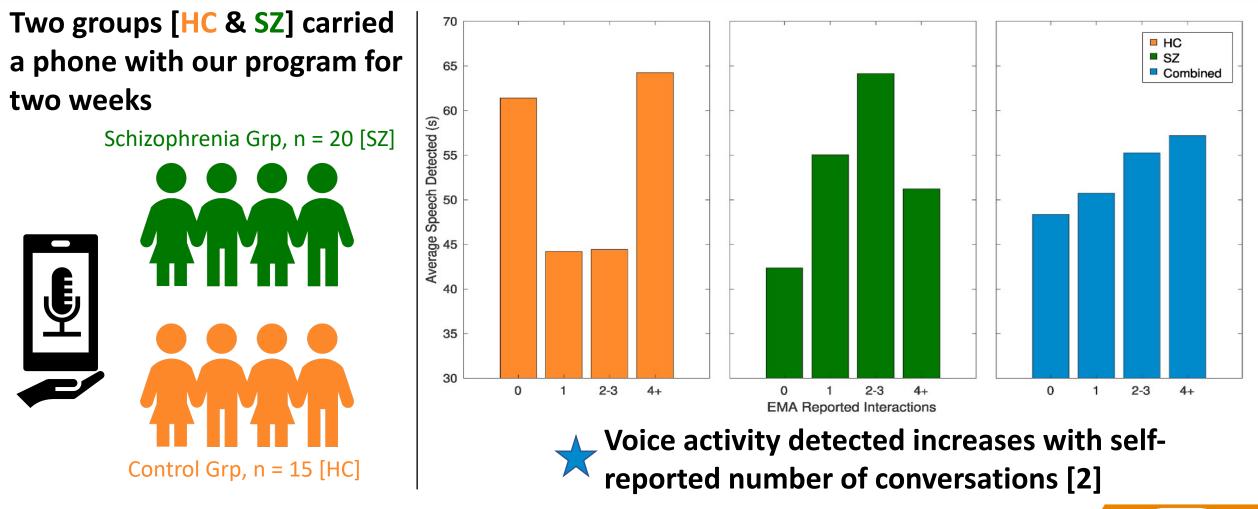
Practical applications require VAD that is robust to real world recording conditions



Transfer learning proves useful via the use of paired data in a teacher student framework

Dallas

Target Domain (TD)



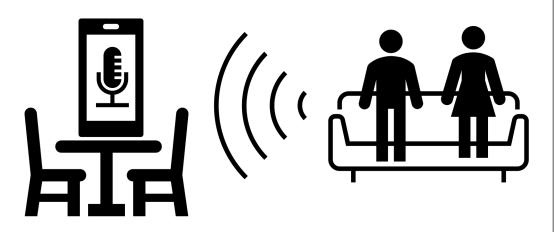
[2] D. Fulford, J. Mote, R. Gonzalez, S. Abplanalp, Y. Zhang, J. Luckenbaugh, J.P. Onnela, C. Busso, D.E. Gard, "Smartphone sensing of social interactions in people with and without schizophrenia," *Journal of Psychiatric Research*, Volume 137, 2021, Pages 613-620

THE UNIVERSITY OF TEXAS AT DALLAS

Target Domain (TD)

Ambient recordings [TD-ambient]

- Longer (5min), unprompted
- Unknown microphone placements
- Unknown number of speakers
- Sparsely voiced

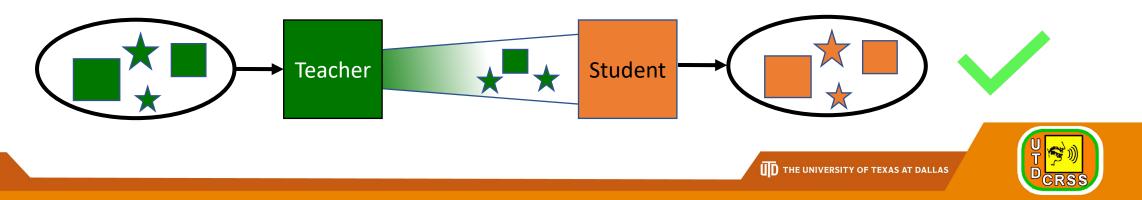


Ecological Momentary Assessments [TD-EMA]

- Shorter (~30sec), prompted
- Microphone close to speakers
- At least one speaker typically

6

- The parameters of a well-trained model encodes task info
- Sequential feature representations become more task specific with depth
- These representations can be used in new models to transfer knowledge
- Teacher model can supervise the training of a student
 - Can support generalization if tasks are similar
 - Can facilitate Supervised/unsupervised approaches
 - Can adapt a student to a slightly different domain



Method - Teacher Student Domain Emulation

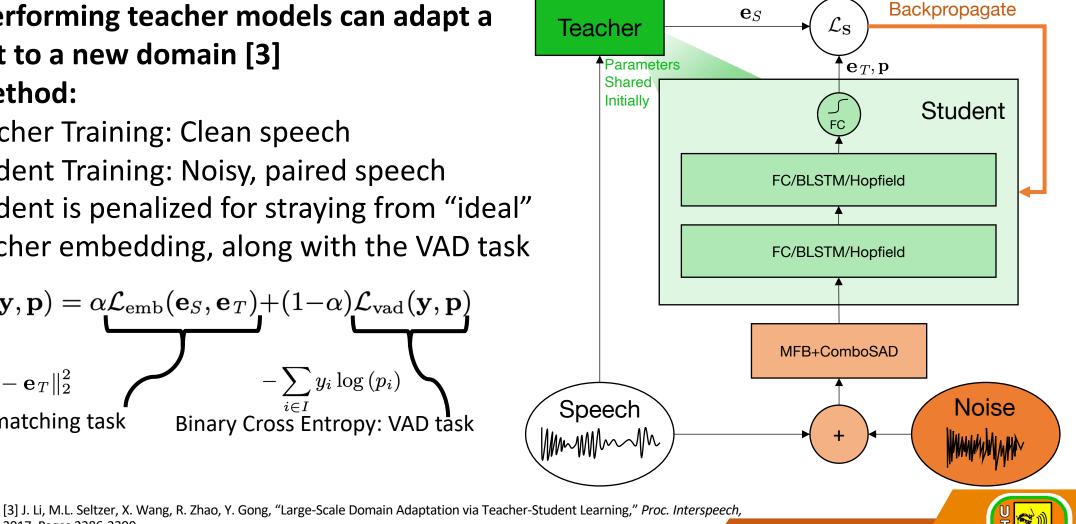
- Well performing teacher models can adapt a student to a new domain [3]
- **Our Method:**
 - Teacher Training: Clean speech

2017, Pages 2386-2390

- Student Training: Noisy, paired speech
- Student is penalized for straying from "ideal" teacher embedding, along with the VAD task

$$\mathcal{L}_{S}(\mathbf{e}_{S}, \mathbf{e}_{T}, \mathbf{y}, \mathbf{p}) = \alpha \mathcal{L}_{emb}(\mathbf{e}_{S}, \mathbf{e}_{T}) + (1 - \alpha) \mathcal{L}_{vad}(\mathbf{y}, \mathbf{p})$$

$$\frac{1}{J} \|\mathbf{e}_{S} - \mathbf{e}_{T}\|_{2}^{2} - \sum_{i \in I} y_{i} \log(p_{i})$$
Embedding matching task Binary Cross Entropy: VAD task



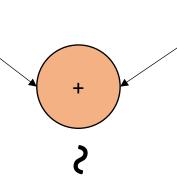
Method - Teacher Student Domain Emulation

 Method relies on generating paired data to match target domain

- Clean speech easily collected in sound booth
- Corrupting noise similar to the target domain

CRSS4English14 [4]
Clean, laboratory speech
130.3hr total
90%/5%/5%, Train/test/val

Speech



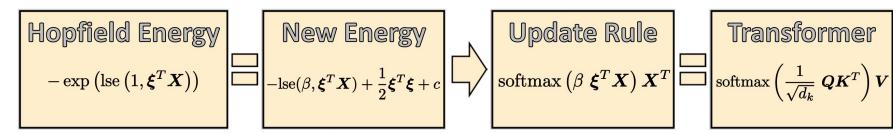
Noise

- TD-Noise (23.5hr)
- CHiME5 [5](77.4hr)
- Babble Noise (TIMIT)
- White Noise

[4] F.Tao, C.Busso, "Gating neural network for large vocabulary audiovisual speech recognition," *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 26, no. 7, pp. 1286–1298, July 2018. [5] J. Barker, S. Watanabe, E. Vincent, and J. Trmal, "The Fifth 'CHiME' Speech Separation and Recognition Challenge: Dataset, Task and Baselines," Interspeech 2018, Sep 2018.

Implementation - Temporal Models

- Proposed method may be implemented for any model architecture
- Temporal models are best to handle sequential relations in feature windows
- Bidirectional Long Short-Term Memory (BLSTM)
 - Extends LSTM to include a forward and backward pass
- Continuous State Hopfield Network (CS-Hopfield) [6]
 - Modern Hopfield network [7] with continuous states
 - More efficient than LSTM with performance similar to Transformers



[6] Ramsauer, Hubert, et al. "Hopfield Networks is All You Need," *International Conference on Learning Representations*, 2021[7] Krotov, Hopfield. "Dense associative memory for pattern recognition." Advances in neural information processing systems 29, 2016

Implementation — Experiments

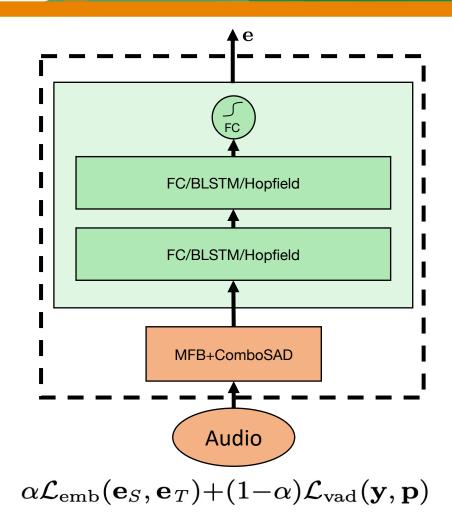
- Proposed method may be implemented for any model architecture, or feature set
- DNN Architectures Two layers before sigmoid
 - FC / Sequential layers (BLSTM/CS-Hopfield)
 - Fixed 0.6M parameters
 - ReLU activation; LayerNorm Regularization

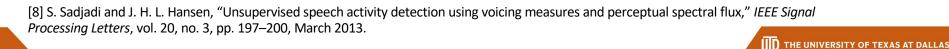
Features – Window of 11 frames of 26 MFBs

- Explored addition of 5 ComboSAD [8] features
- Frame size 20ms, Stride 10ms

Loss – Teacher: BCE, Student: Proposed

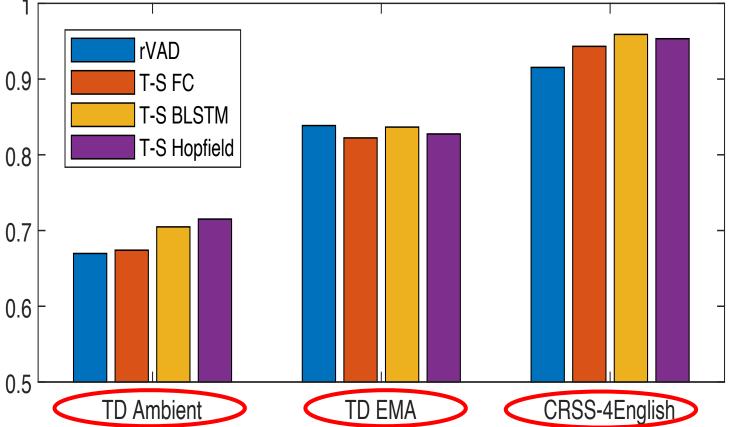
- Hyperparameter $\alpha = 0.2$
- Training ADAM(Ir =1e-5), 4 epochs





Results — Better real-world performance

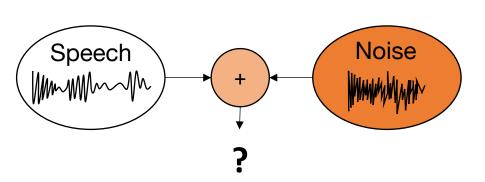
- We achieve up to 7% higher F1 score than baseline for ambient audio and laboratory speech
- Best performing implementations:
 - BLSTM for shorter, prompted audio
 - CS-Hopfield [9] for ambient audio



THE UNIVERSITY OF TEXAS AT DALLAS

Results – Domain Emulation

- Method improves performance when added training noise matches that of test condition
 - Generalization measured with AUPRG Scores [10]
 - Positive transfer highlighted



Test	White 0dB		Babble 0dB		CHiME5 0dB	
Train	Т	S	Т	S	Т	S
CRSS-4English14	0.992	0.970	0.992	0.988	0.992	0.985
+ White 0dB	0.870	0.960	0.859	0.799	0.870	0.695
+ White 10dB	0.951	0.975	0.951	0.945	0.951	0.915
+ Babble 0dB	0.434	0.248	0.390	0.465	0.434	0.353
+ Babble 10dB	0.796	0.587	0.769	0.810	0.796	0.709
+ CHiME5 0dB	0.897	0.845	0.889	0.957	0.897	0.958
+ CHiME5 10dB	0.957	0.919	0.956	0.984	0.957	0.981
+ TD Noise 0dB	0.889	0.777	0.884	0.955	0.889	0.919
+ TD Noise 10dB	0.962	0.868	0.964	0.980	0.962	0.962

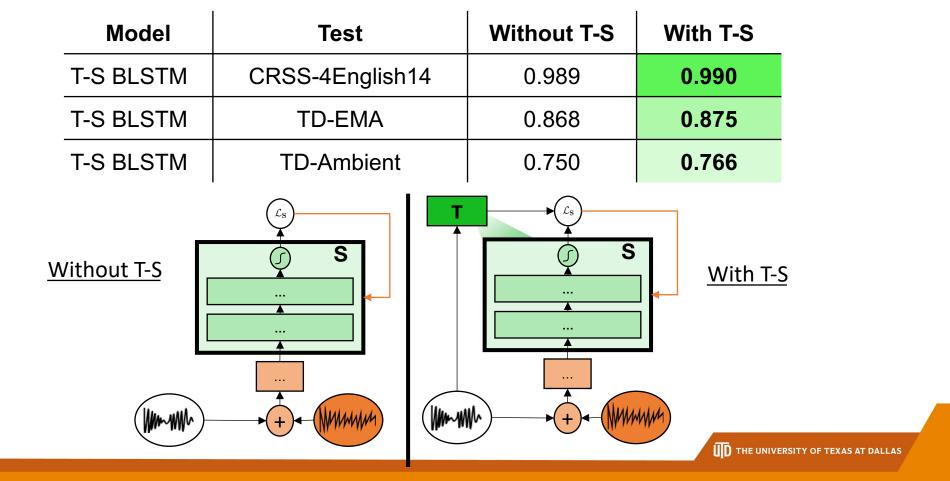
[10] P. Flach, M. Kull, Precision-Recall-Gain Curves: PR Analysis Done Right, Advances in Neural Information Processing Systems,

msp.utdallas.edu

12

Results — Ablation

- Ablation study: Student trained without teacher vs with teacher
- Method improves generalization (AUPRG) Higher values highlighted



Results – Implementation Details

Ablation study: Models trained with vs without ComboSAD features

Test	М	FB	MFB+ComboSAD		
Test	Т	S	Т	S	
CRSS 4English-14	0.994	0.989	0.994	0.990	
TD-EMA	0.902	0.864	0.905	0.875	
TD-Ambient	0.747	0.759	0.734	0.766	

- Analysis window size varied and tested on ambient set
 - i.e. number of consecutive feature frames

Mindow	Teat	T-S	HF	T-S BLSTM		
Window	Test	Т	S	Т	S	
5	TD-Ambient	0.714	0.737	0.701	0.717	
11	TD-Ambient	0.734	0.766	0.737	0.766	
61	TD-Ambient	0.819	0.790	0.743	0.806	

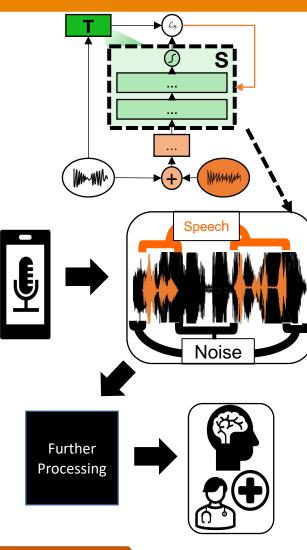
More details in our paper!

msp.utdallas.edu

Grant 1R01MH122367-01

msp.utdallas.edu

THE UNIVERSITY OF TEXAS AT DALLAS



Thank you for attending!

Contact me at:

jvl170030@utdallas.edu in linkedin.com/in/jluckenbaugh2 **()** github.com/jluckenbaugh2