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Over-sampling Emotional Speech Data Based on
Subjective Evaluations Provided by Multiple Individuals
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Abstract—A common step in the area of speech emotion recognition is to obtain ground-truth labels describing the emotional content
of a sentence. The underlying emotion of a given recording is usually unknown, so perceptual evaluations are conducted to annotate
its perceived emotion. Each sentence is often annotated by multiple raters, which are aggregated with methods such as majority vote
rules. This paper argues that several labels provided by different individuals convey more information than the consensus labels. We
demonstrate that leveraging the information provided by separate evaluations collected by multiple raters can help in building more
robust classifiers which maximize the utilization of labeled data. Motivated by the synthetic minority over-sampling technique (SMOTE),
we present a novel over-sampling approach during training, where the samples with categorical emotion labels are over-sampled
according to the labels assigned by multiple individuals. This approach (1) increases the number of sentences from classes with
underrepresented consensus labels, and (2) utilizes sentences with ambiguous emotional content even if they do not reach consensus
agreement. The experimental evaluation shows the benefits of the approach over a baseline classifier trained with consensus labels,
which increases the F1-score by 5.2% (absolute) for the USC-IEMOCAP corpus, and 5.4% (absolute) for the MSP-IMPROV corpus.

Index Terms—Speech emotion recognition, synthetic over-sampling, data augmentation for deep neural network
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1 INTRODUCTION

EMOTION is an important aspect of human social interaction
[1]. Machines that can recognize the emotional state of the

user will be able to respond more efficiently and naturally
to the users. Incorporating emotional capabilities to speech-
based human-machine interfaces (HMIs) involves studying and
understanding the emotional modulation conveyed in expres-
sive speech, as well as designing robust machine-learning
frameworks based on the underlying characteristics conveyed
in emotional speech.

Emotional databases used for emotion recognition usually
rely on subjective evaluations to annotate the emotional con-
tent of each stimulus. The annotations are then employed as
ground truth to train emotional classifiers. The major challenge
in collecting subjective evaluations is to reliably annotate the
emotional content. Even experienced and attentive annotators
often disagree on the emotion conveyed in a speech sentence
due to the subjective nature in perceiving emotions. To address
this issue and to obtain more robust labels for training emotion
recognition classifiers, each speech sentence is independently
evaluated multiple times by different subjects. Then, these
labels are aggregated to build a single consensus label with
rules such as majority vote or more sophisticated algorithms
that aim to correct for the bias and reliability of the evaluators
[2], [3]. The drawback of this approach is the increased cost of
labeling new data. For a fixed budget, increasing the number of
annotations per sentence decreases the number of recordings to
be annotated. During the estimation of the aggregated labels,
annotations that are different from the consensus label are
ignored. Furthermore, in many cases a consensus cannot be
reached. For these cases, the common approach is to discard
sentences without agreement. This paper proposes that dis-
agreement between annotators provides useful information,
and should be leveraged in the training of emotional classifiers.
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The assumption behind using a consensus label is that the
evaluations are noisy and rules such as majority vote give
a good approximation of the true emotion of the sentence.
However, the perception of emotion is subjective and more than
one answer can be right. Furthermore, when the evaluators
have many categorical options to select, they might overlook
less frequent classes, biasing their assessments to more common
classes. For example, anger might be often selected as the
primary emotion over emotional classes such as disgust, since it
is a more common emotion during human interaction. For these
sentences, it is unlikely that the consensus label will correspond
to the less common emotion (in this example disgust), even
though some annotators may have selected that class. Having
classes with few sentences affects the balance of the corpus,
affecting the classification task. This problem is more critical for
classifiers based on deep neural networks (DNN) where a large
training set is crucial for robust performance.

This study proposes a novel over-sampling method to train
an emotion classifier aiming to recognize categorical emotion
classes. The approach mitigates the sparsity of minority classes
and avoid discarding sentences due to lack of agreement. The
proposed approach relies on over-sampling the training corpus
based on the evaluations from multiple raters assigned to
speech sentences (i.e., labels before aggregating the annota-
tions). We use the term sample to refer to synthetic examples cre-
ated by oversampling frameworks. Our approach is inspired by
the synthetic minority over-sampling technique (SMOTE). First, we
replicate the sentences by making copies. The labels for these
copies are assigned by sampling from the separate evaluations
assigned to that sentence. This approach considers emotional
labels that differ from the consensus label. Second, we create
synthetic examples by linearly moving the replicated samples
toward the distribution of their respective classes in the feature
space. This step reduces the overlap of the sentences between
classes in the feature space caused by adding synthetic samples.
It also avoids the problem of having a sample with two different
labels, which creates non-separable classes in the recognition
task. The proposed approach is a principled framework to
augment the data, which has been successfully used to train
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deep learning classifiers in emotion recognition [4], and in other
domains [5], [6]. Even though over-sampling methods have
been previously used on emotion classification [4], to the best
knowledge of the authors, this is the first time that an over-
sampling approach leverages evaluations provided by multiple
raters, which are often ignored after estimating the consensus
labels. In contrast, our approach uses all the sentences even
when consensus labels cannot be obtained. This is a principled
approach to leverage emotional evaluations collected across
multiple individuals. This approach is also radically different
from the conventional SMOTE, which synthesizes new samples
relying on the consensus labels. This key difference distin-
guishes the proposed method from various implementation of
SMOTE in different applications [7], [8], and other techniques
for dealing with class imbalance [9], [10].

We extensively evaluate the proposed approach with two
emotional databases: the MSP-IMPROV and USC-IEMOCAP
corpora. The experimental evaluation clearly shows the benefit
of using the proposed over-sampling method over classifiers
trained with consensus labels. The proposed approach increases
the F1-score by 5.2% (absolute) for the MSP-IMPROV database,
and 5.4% (absolute) for the USC-IEMOCAP database over
the baseline approach relying on consensus labels. Even after
over-sampling only two samples per sentence, the proposed
approach obtained significant improvements over a baseline
classifier trained with consensus labels. We also show that
our method outperforms the conventional SMOTE, where the
differences are statistically significant. When compared with
SMOTE, the proposed approach leads to absolute improve-
ments in F1-score between 1.2% and 2.7%. The proposed
method can also be used to over-sample minority classes to
build a balanced training set. The results show the benefit of
using our method over alternative feature space based data
augmentation methods.

The rest of this paper is organized as follows. Section 2
reviews over-sampling techniques with a focus on emotion
recognition. Section 3 briefly introduces the two independent
databases and the acoustic features that we use in this study.
Section 4 describes the motivation behind using the proposed
over-sampling approach for speech emotion classification, de-
scribing the framework. Section 5 describes the experimental
evaluation and the results. Section 6 concludes this paper,
summarizing the main contributions and suggesting future
research directions.

2 RELATED WORK

Learning from imbalanced datasets is a well-known problem
in machine learning, where the performance of the algorithms
is affected by the skewness of the class distribution. Learning
from such data requires sampling algorithms that efficiently
employ underrepresented classes. Two common approaches
are random down-sampling and random over-sampling. An
example of random down-sampling is the Tomek links [11],
which aims to remove samples from the majority class that are
closer to the samples in the minority class. Other examples
of down-sampling methods include one sided selection [12]
and Hart’s condensed nearest neighbor rule [13]. The second
approach includes over-sampling the data, which is the main
focus of this paper.

2.1 Data Augmentation
The practice of enlarging the size of the training set by artifi-
cially making new instances is a common approach in many
machine-learning applications [6], [14], [15]. This procedure

usually involves employing transformations that generate ran-
dom variations of the original example while preserving the
label. For example in image classification, studies have aug-
mented the data by creating horizontal reflections or changing
the intensities of the RGB channels to produce new training
samples. These approaches avoid a substantial over-fitting
problem due to a small training set and increase robustness
by creating variations that are likely to appear in the testing set
(e.g., rotation and translation). In speech processing, Bellegarda
et al. [16] used data augmentation for speaker adaptation in
speaker-dependent speech recognition, where the enrollment
data available from a new speaker is rather small to train
acoustic models. They proposed to apply piecewise linear trans-
formations that map the reference speakers to a new speaker at
the phone level. Cui et al. [5] investigated other approaches
for data augmentation such as vocal tract length perturbation
(VTLP) [17] and stochastic feature mapping (SFM) for DNNs
and convolutional neural networks (CNNs). The results showed
that data augmentation effectively decreased the word error
rate (WER). Ragni et al. [18] also used a data augmentation
approach for low resource languages by synthesizing target
language speech with methods such as concatenative speech
synthesis. In these examples, the data augmentation method
was targeted to each application. The transformations were
carefully designed to increase data variations without affecting
the discriminative characteristic of the primary classification
task (e.g., idiosyncratic cues in speaker verification, objects in
images, and phonetic content in speech recognition).

The second type of over-sampling approach is to synthet-
ically build new instances for certain classes by manipulat-
ing their samples in the feature domain. These approaches
are more general, since they can be used across domains. A
representative approach is the synthetic minority over-sampling
technique (SMOTE), which is an over-sampling method where
the minority class is over-sampled by synthesizing additional
examples. The objective of SMOTE is to over-sample a minority
class by N% where N is usually chosen to be a multiple of 100.
It starts by finding the K nearest neighbor of the samples in
the minority class. Then, depending on the amount of over-
sampling N , it selects some of the K nearest neighbors. For
example forN = 300%, the approach selects three of the nearest
neighbors. For each of these neighbors, a new synthetic sample
is generated by randomly finding one point on the line segment
in the feature domain connecting the original sample and the
selected neighbor. The new point will be added to the minority
class increasing the size of the underrepresented class. This
process is repeated for all the N/100 nearest neighbors. The
SMOTE approach has been widely used in many applications
where an unbalanced set of data is used for classification.
Phua et al. [7] used SMOTE for fraud detection, where the
database was skewed towards non-fraud cases. They show
that balancing the data with SMOTE improves the detection
rate compare to training with the original dataset. The SMOTE
framework has also been implemented together with under-
sampling methods to avoid over-fitting. For example, Batista et
al. [19] proposed SMOTE+Tomek links and SMOTE+ Wilson’s
edited nearest neighbor (ENN) rule [20] to expand minority class
clusters.

2.2 Using Data Augmentation in Emotion Recognition

Studies have shown that data augmentation is a useful frame-
work to increase performance in emotion recognition. Schuller
and Burkhardt [21] showed that the training set can be in-
creased by using synthetic emotional speech. They showed
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that combining synthetic samples and natural training sen-
tences provided better accuracy than using only natural speech.
Aldeneh and Provost [4] implemented data augmentation for
speech emotion recognition following the approach suggested
by Ko et al. [22] for speech recognition, where the speech rate is
increased while preserving the spectral properties. Augmenting
the data led to statistically significant gains in the classification
performance [4]. A similar approach was used by Abdelwahab
and Busso [23].

The previous studies on categorical emotion classification
consistently face the problem of unbalanced class size with
relatively small databases. Therefore, over-sampling methods,
especially those using SMOTE, have been widely used in
the past to balance the training set by simultaneously over-
sampling minority classes and/or down-sampling majority
classes [24], [25], [26], [27], [28], [29]. For example, Yildirim
et al. [30] applied SMOTE to obtain a more balanced class
distribution in a three-way classification problem to avoid
biasing the classifiers toward the more prominent class neutral.
They doubled the number of instances of the minority classes
polite and frustrated. Calix et al. [31] used SMOTE to address the
problem of training with unbalanced classes on the SEMAINE
database.

2.3 Leveraging Separate Labels in Perceptual Evaluation

In the aforementioned examples of data augmentation, the
underlying assumption is that the true class label is known for
the original training sentences. Therefore, the newly generated
over-sampled instances inherit the class label from the original
sample. This assumption is known to be flawed in emotion
recognition, since expression of emotions are often perceived
differently by different listeners. Therefore, each sample can
potentially belong to more than one class (e.g., soft labels).
To address this issue, some studies have relied on emotional
profiles as labels, which better capture the emotional content of
a speech sample [32], [33], [34]. For example, a speech audio
that is perceived as happy by all the annotators indicates that
this sample is a stronger example of the given emotion than
a speech sample in which some annotators choose happy but
others select neutral. Studies have explored this problem in
the context of emotion recognition. For retrieving categorical
emotions, Lotfian and Busso [35] derived a probabilistic rele-
vance score from emotional annotations provided by multiple
raters to determine the level in which a target emotion is
conveyed in a sentence. The relevance score was higher for
sentences that were consistently assigned to the target emo-
tional category. This relevance score was used to create relative
labels between two sentences (e.g., sentence one is happier
than sentence two), training preference leaning algorithms to
rank sentences according to categorical emotions. Steidl et al.
[36] suggested that the systematic confusions across evaluators
should be accounted for when assessing the performance eval-
uation of an emotional classifier. They introduced an entropy-
based measure that considers common disagreements between
evaluations assigned to a sample, showing that with this metric
a classifier can perform as well as human labelers.

There are few studies that have leveraged separate evalu-
ations provided by multiple raters (before estimating consen-
sus) to improve the modeling of emotion. Fayek et al. [34]
formulated the problem with an ensemble of DNNs, each
of them representing an individual annotator. The output of
the DNNs were later combined to create a single label. They
also suggested training DNNs with soft-labels, reflecting the
distribution of the classes assigned to a given speech sample.

Their experimental results showed the benefit of considering
separate evaluations in building emotion classifiers. Lotfian
and Busso [33] derived a new soft-label formulation by mod-
eling the process of perceiving and annotating emotions as a
probabilistic model. They showed that their proposed soft-label
approach achieved better classification performance compared
to classifiers trained with hard labels derived from consensus
labels and soft-labels that only reflected the proportions of the
classes selected by evaluators.

2.4 Contributions of this Study

The contribution of this work in comparison to other data
augmentation solutions for emotion recognition is that the over-
sampling approach considers evaluations assigned to a sample
before aggregating the consensus labels. The disagreement be-
tween evaluators is not considered as noise, as in most studies,
but as useful information. The proposed approach has the
following advantages:
• It better utilizes the available information for training the
classifiers by exploiting all the annotations assigned to a sam-
ple.
• In contrast to SMOTE, a single sentence can be used to
synthesize new samples from different classes in proportion to
the label distribution assigned to the sentence.
• It creates new samples even when the majority consensus la-
bel is not reached due to lack of agreement between evaluators.

The proposed method addresses some well-known prob-
lems in the recognition of categorical emotions. Since each
sample is labeled multiple times, the number of available labels
is larger than the number of sentences, so extending the training
set is straightforward. Furthermore, conflicting labels for a sam-
ple that do not lead to a consensus can still be used, avoiding
discarding sentences due to lack of agreement. This feature of
our method also leads to larger training sets. The over-sampling
framework is particularly effective for minority classes that are
less common in human interaction. Another advantage is that
this method addresses the challenge of inter-class variability
in categorical emotions. Considering majority vote labels, all
the sentences in a class will be treated equally independent of
their intensity. In practice, high intensity prototypical behaviors
with clear emotional content tend to have higher agreement
between evaluators. This over-sampling approach will create
multiple samples for the target class, having a stronger impact
on the classifier. Ambiguous emotional behaviors, in contrast,
will have more disagreement, so the over-sampling method will
reflect this ambiguity.

3 DATABASES AND ACOUSTIC FEATURES

This study considers two emotional databases to explore differ-
ent aspects of the proposed over-sampling method. We consider
the USC-IEMOCAP database [37], which includes ten cate-
gorical emotions in the perceptual evaluations. The extended
number of emotional classes leads to classes with few exam-
ples, which challenges the training of emotional classifiers. The
second database is the MSP-IMPROV database [38], since it has
at least five subjective evaluations per audio sample. The effect
of the proposed over-sampling method on these classes will
give insight on the benefits of using the proposed method in
dealing with such cases. While these corpora are audiovisual
databases, this study relies only on speech. This section briefly
describes these two databases and the acoustic features used in
the evaluation.
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Fig. 1. Example to illustrate the proposed over-sampling method. The figure shows four sentences with evaluations from three raters. (a) The label
inside the circle defines the consensus labels. (b) The IEOS step replicates N samples per sentence, assigning the labels provided by separate
evaluators (in this case N = 3). (c) The SIEOS step moves the samples toward randomly selected neighbor sentences assigned with the target
emotion.

3.1 The USC-IEMOCAP database

This study relies on the interactive emotional dyadic motion capture
(IEMOCAP) database [37] collected to study expressive human
interactions under controlled conditions. The corpus contains
12 hours of dyadic conversations recorded in five different
sessions between ten trained actors. The emotions were elicited
with scripts and spontaneous improvisations to evoke sadness,
happiness, anger and frustration. Other emotions were also
elicited as dictated by the course of the conversation between
the actors. By employing well-established theories and methods
of theater, the recording provided emotional displays close
to natural interactions, even though the corpus was collected
from actors [39]. The spontaneous dialogs were segmented into
speaker turns and manually transcribed. The emotional annota-
tions were collected for categorical and attribute-based labels at
the turn level. For categorical emotions, three evaluators evalu-
ated each turn by selecting the following 10 options: neutral,
happiness, sadness, anger, frustration, excitement, surprise,
fear, disgust or other. The corpus is not emotionally balanced,
where some of these classes have few sentences. Therefore, we
investigate the effect of the proposed over-sampling method
when the classes are unbalanced. The speaking turns with
overlapped speech were excluded from the evaluation. In total,
5,496 speaking turns are used in this study. Further information
about the database is provided in Busso et al. [37].

3.2 The MSP-IMPROV database

The MSP-IMPROV database [38] is an audiovisual corpus col-
lected to explore emotional behaviors during dyadic conversa-
tional interactions. The data collection scenarios were designed
to promote natural recordings, while keeping control over the
lexical content. This goal was achieved by creating specific
scenarios per emotion, which led one actor to utter a target
sentence. This elicitation approach facilitated the recording
of spontaneous sentences conveying the same lexical content
under different emotions. In addition to the target sentences,
the corpus includes all the turns during the improvisation that
led one of the actors to utter the target sentence. The corpus
also includes the conversations during the break, since the mi-
crophones and cameras were not stopped. In total, this corpus
consists of 8,438 speaking turns (over 9 hours). The emotional
labels of the corpus were collected through a crowdsourcing
perceptual evaluation described in Burmania et al. [40]. The
primary emotional classes used in the evaluation are anger,
happiness, sadness, neutral and other. The key feature of this
corpus is that each turn was annotated by at least five raters,
providing the ideal resource to study the effect of the over-
sampling rate on the performance of classifiers. For further

information about this corpus the readers are referred to Busso
et al. [38].

3.3 Feature set
This study uses the Geneva minimalistic acoustic parameter set
(GeMAPS) [41], which includes standard acoustic parameters
carefully selected for paralinguistic tasks. This study uses the
extended version (eGeMAPS), which contains 88 parameters
extracted using the OpenSMILE toolkit [42]. The set includes
features related to frequency, energy/amplitude and spectral
parameters. The acoustic features are extracted for each speak-
ing turn independent of its length. The readers are referred to
Eyben et al. [41] for a detailed description of this feature set.

4 PROPOSED OVER-SAMPLING METHOD

This section describes the proposed over-sampling approach,
which considers the conventional perceptual evaluation process
used to annotate emotional databases. The intuition behind
our method is that a speech sample in spontaneous conver-
sations often conveys more than one emotional trait [43]. We
have observed in our previous evaluations that listeners often
identify more than one emotional classper sample [33], [38],
[44]. Furthermore, they often disagree between themselves
while evaluating the same speech file. We propose to take this
phenomenon into consideration by sampling speech samples
from the class labels assigned by each annotator during the per-
ceptual evaluation. This section describes our proposed over-
sampling approach to leverage this information and improve
the performance of categorical emotional classifiers.

4.1 Synthetic Individual Evaluation Over-Sampling
(SIEOS) Method
We motivate the proposed approach with the illustration in
Figure 1. Figure 1(a) shows that there are four speech sentences
in this example, represented with circles, each receiving three
independent evaluations (H: happiness, S: sadness, N: neutral).
The speech sentences are plotted in two dimensions which
represents the feature space (in our implementation this process
is applied to a 88-dimensional feature space). The circles are
labeled with the consensus labels obtained with the majority
vote rule. Figure 1(a) shows that we initially have two happy
sentences (H), one sad sentence (S) and one neutral sentence (N).
The consensus labels ignore the fact that some evaluators did
not agree with the aggregated label, even when these sentences
may convey emotional traits of the secondary emotions. Our
over-sampling method aims to leverage this information.

The first step of the proposed over-sampling framework
replicates the speech sentences N times, assigning labels by
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(a) USC-IEMOCAP

(b) MSP-IMPROV

Fig. 2. Distribution of consensus and individual labels for the USC-
IEMOCAP and MSP-IMPROV databases. Some of the minority labels
are selected by the individual evaluators, but they are not reflected in
the consensus labels.

randomly sampling without replacement from the labels pro-
vided by the annotators. Figure 1(b) shows the outcome of this
procedure when N = 3, creating 12 samples. We refer to this
step as the individual evaluation over-sampling (IEOS) process. In
this example, we choose N to be equal to the number of indi-
vidual annotations. However, N is an arbitrary number since
the proposed method relies on N random inquiries from the
finite sample space of individual evaluations. The probability of
each outcome is proportional to the frequency of that outcome
among the individual annotations for that sample. If a sample is
consistently labeled with a given class, then the N copies of the
sample will have the same label. If the emotional content of the
sample is ambiguous and the evaluations do not agree, the new
copies will be labeled with different, but relevant classes. This
step preserves the distribution of the emotional classes assigned
to the sentences. Notice that we do not have to replicate all the
individual evaluations, as shown on Figure 1. An alternative
approach is to sample from the individual evaluations until
reaching the target number of synthetic samples (i.e., N ).

Figure 2 shows the distribution of the emotional classes for
the USC-IEMOCAP and MSP-IMPROV databases. The black
bars represent the consensus labels obtained with the majority

(a) USC-IEMOCAP

(b) MSP-IMPROV

Fig. 3. The relative changes in the proportions of the emotional cat-
egories over the total number of samples after using the proposed
IEOS method. The relative changes are estimated with respect to the
proportion observed when using the majority vote rule. The relative
changes in the proportions of minority classes are higher after applying
the proposed IEOS method.

vote rule. The gray bars represent the individual labels assigned
to the sentences. If the IEOS approach is applied to consider
all the individual evaluations, the figure shows that emotional
classes with few sentences would be better represented. Figure
2(a) shows that the increase in samples is more prevalent
in minority classes such as surprise, fear, and disgust. These
classes are less common in daily interactions, so evaluators
converged to more common emotions, discarding these traits
after estimating consensus labels. To explore further the benefits
of the IEOS method on minority classes, we measure the rela-
tive changes in the proportion of the classes when using either
consensus labels (majority vote) or the proposed IEOS method.
For example, if a class account for 3% of the data when using
the consensus labels, and 6% when using the IEOS method,
its relative change is 100%. Figure 3 shows the results of this
analysis. The emotional classes in the x-axis are ordered based
on the popularity of the samples according to the consensus
labels. This figure shows that the emotional classes that benefit
the most from the IEOS framework are the underrepresented
classes. For both databases, the representation of less frequent
categories has increased by considering individual evaluations.
This result validates the hypothesis that annotators tend to
select more common emotions, which make it difficult to reach
agreement in minority emotional classes.

One concern in using the proposed IEOS framework is the
increased overlap between emotional classes as repeated sam-
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ples will have different labels. The overlap between classes will
negatively affect the training of emotional classes. For example,
it is not possible to find a classifier to correctly separate all these
12 examples in Figure 1(b). The second step of the proposed
over-sampling approach addresses this issue by moving the
repeated samples in the feature space toward other sentences
labeled with the target emotion. This step is motivated by the
synthetic minority over-sampling technique (SMOTE) [24], which
generates new synthetic samples by considering real sentences
with similar labels. For this purpose, we rely on the majority
vote labels to be the confident point of the emotional classes.
For a given repeated sample, we find the K nearest neighbor
sentences belonging to the target emotional class. From these K
sentences, we randomly select one of the them. We find the line
between this sentence and the repeated sample in the feature
space. The new location of the repeated sample is determined
by selecting a random point along this segment. The feature
vector of the new sample ssieos is obtained by interpolating the
feature vector of the repeated sample, srepeated , and the feature
vector of the selected neighbor sentence, snn , using Equation 1:

ssieos = α× srepeated + (1 − α) × snn (1)

where α is selected at random between 0 and 1. The vari-
able α determines how to interpolate the synthetic sample.
As our method can generate two or more synthetic samples
with the same emotion, it is important than this parameter is
selected at random for each sample. As opposed to SMOTE,
the replacement step is less vulnerable to over-fitting issues
[45] since the duplicated samples are not necessarily from the
same class. The interpolation step in the SIEOS algorithm will
have similar problems as the interpolation in SMOTE when the
density of the samples is low. Both of them will have higher
confidence when more samples are available since the shift of
the samples is limited by the distance to the selected sentence
within the K nearest neighbor. Figure 1(c) illustrates the effect
of this procedure on the 12 samples created with IEOS. We
refer to this method as the synthetic individual evaluation over-
sampling (SIEOS) approach. Algorithm 1 formally describes the
implementation of the SIEOS method.

4.2 Differences with SMOTE
Although our method is inspired by the SMOTE algorithm,
there are fundamental differences between them. SMOTE is
a general algorithm that is applicable to any classification
problem with labeled data. The proposed SIEOS approach is
suitable for classification problems where a set of (possibly
distinct) labels are available for each sentence and the final label
is obtained with consensus labels. These kinds of problems arise
when the class labels correspond to ambiguous or subjective
concepts such as categorical emotion recognition. Therefore,
in SIEOS a single sentence can be used to synthesize new
samples with conflicting labels if the annotations suggest such
a distribution. In contrast, the over-sampling in SMOTE is
separately done for each class by considering only sentences
from the same class. As we will show in the experimental
section, the SIEOS approach is more effective for categorical
emotion recognition.

Another difference is that over-sampling with SMOTE does
not change the center of the clusters of classes in the feature
space, since it only involves linear transformations on the
features of sentences randomly selected from the same class. In
contrast, the SIEOS approach changes the centers of the clusters
to reflect the disagreements of annotators over related classes
that are interchangeably chosen by evaluators. We estimate the

Algorithm 1 Synthetic individual evaluation over sampling (SIEOS)
for sentence i

1: Input: Number of Synthetic samples per sentence N
2: Number of nearest neighbors K
3: Output: OSfeaturesi [ ][ ]: array for over-sampled features

for sentence i
4: OSlabel i[]: array for over-sampled labels for sentence i
5: define:features[ ][ ] array of features of original sentences
6: define: Si(m) : mth individual evaluation for sentence i
7: for n <= N do
8: Randomly select mth individual evaluation for sentence
i

9: Find K nearest neighbors of sentence i with consensus
label Si(m).

10: Save indices in nnarray
11: Populate(i,nnarray)

1: Populate(i,nnarr) (∗ Function to generate the synthetic
samples. ∗)

2: OSlabel i[n] = Si(m)
3: Choose nn= a random sentence from the K nearest neigh-

bors of sentence i
4: Compute: α = a random number in [0 1]
5: for j <# of features do
6: OSfeaturesi[n][j] = α × features[i][j] + (1 − α) ×

features[nn][j]

7: return (∗ End of Populate. ∗)

mean value of the 88-dimensional feature vector for each emo-
tion in the USC-IEMOCAP database. We measure the average
distance between the center of each emotion before and after
over-sampling using SMOTE and our proposed over-sampling
methods. The average change in the centers of the clusters for
the SMOTE method is relatively small (0.46) compared to the
changes in the centers of the clusters for the IEOS method (3.54)
and the SIEOS method (3.08). Both methods move the center of
the emotional classes by considering the individual evaluations,
including dissident labels that do not agree with the consensus
labels. We believe this disagreement is not merely caused by
human error. Instead, it conveys relevant information to better
describe the emotion content of a recording. While information
from dissident labels is often discarded in conventional ap-
proaches, our methods use this valuable information to shift the
hyperplanes of the classifier improving the performance of the
systems. The experimental evaluation in Section 5 demonstrates
that moving the clusters for each emotion using the SIEOS
approach improves the classification performance.

The next section assesses the performance of multi-class
emotion classifiers trained with the proposed method.

5 EXPERIMENTAL RESULTS

This section evaluates the effect of the proposed SIEOS method
in the classification performance of speech emotion recognizers.
We follow a leave-one-speaker-out (LOSO) cross-validation proce-
dure to select the train, test, and validation sets. For each fold,
we assign sentences from one speaker as the test set. Then, we
randomly select one of the remaining speakers as the validation
set. The sentences from the rest of the speakers form the train
set. We aggregate the results of different folds by adding up the
confusion matrices of the results.

The experimental evaluation relies on fully connected feed
forward deep neural networks (DNNs) with two hidden layers
with utterance-level features as input (Section 3.3). Each hidden
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layer consists of 256 nodes with rectified linear unit (ReLU) as
activation function. This activation function and number of
hidden layers has been shown to be competitive in learning
emotion recognition networks [23]. Similar DNN architectures
have been used in other studies on classification of emotions
with utterance-level features [46], [47], [48], [49]. The last layer
is a Softmax layer, which gives a vector where the elements
correspond to the score of each emotional class. We use Keras
with TensorFlow as backend to implement and train the mod-
els. We rely on adaptive moment estimation (ADAM) [50] for
the optimization of the network parameters. We use different
learning rates (0.01, 0.001, 0.0001), and evaluate the model on
the validation set. The results demonstrated that a learning rate
of 0.001 works better. We train all the models with 50 epochs.

We investigate three conditions: 1. Majority vote (baseline)
2. Individual evaluation over-sampling (IEOS) 3. Synthetic in-
dividual evaluation over-sampling (SIEOS). For the baseline
method using the consensus labels, we remove the sentences
in the training set without agreement. Notice that we have
to discard 801 sentences in the USC-IEMOCAP corpus and
554 sentences in the MSP-IMPROV corpus. For the IEOS and
SIEOS methods, we do not have to remove these sentences,
since the labels of the samples are obtained from the individual
evaluations. This is an important advantage of the IEOS and
SIEOS methods, which can use sentences with ambiguous
emotional content without consensus agreement. For the test
set, we remove speaker turns in which the evaluators do not
reach majority vote agreement for all the conditions, creating
fair comparisons.

We report the results with the F1-score calculated as follows.
First, we estimate the precision and recall rates for each emo-
tional class. Then, we estimate the average precision (P̄ ) and
average recall (R̄) rates across emotional classes. Finally, the
F1-score is computed using P̄ and R̄.

5.1 Performance as a Function of the Number of Samples
Created per Sentence

This section evaluates the classification performance as a func-
tion of N . The SIEOS approach is implemented with K = 20
(i.e., number of nearest neighbor sentences used in the inter-
polation). For the USC-IEMOCAP database, the classification
problem has eight classes where we remove the classes disgust
and other (the corpus has only one sentence labeled as disgust).
In the USC-IEMOCAP database each sentence has at least
three evaluations. Since we are sampling without replacement,
we can only generate three synthetic samples per sentence.
We randomly choose one, two, or three annotations for over-
sampling. Figure 4(a) shows that increasing N consistently
increases the classification performance. To compare the re-
sults of our over-sampling methods with the results of the
baseline approach trained with consensus labels, we conducted
statistical significance tests using one-tail population mean z-
tests, asserting significance at p-value = 0.05. An interesting
observation is that the results are better than the baseline,
even when we create only two replicas per sentence. For the
IEOS method, the improvement over the baseline is statistically
significant for N = 3 (p-value=0.038). For the SIEOS method,
the improvements over the baseline are statistically significant
for N ≥ 2 (p-value=0.042 for N = 2 and p-value=0.029 for
N = 3). We observe that the SIEOS method has a higher F1-
score than the IEOS approach.

We repeat the same experiment using the MSP-IMPROV
corpus. In this corpus, each speaking turn has at least five
evaluations, so we can increase the value of N even more.

(a) The USC-IEMOCAP corpus

(b) The MSP-IMPROV corpus

Fig. 4. F1-score of different methods as a function of the number of
synthetic samples created for each sentence. Even with N = 2, the
over-sampling methods obtain better classification performance than
classifiers trained with consensus labels.

Some sentences have more than ten evaluations. For these
sentences, we randomly choose ten of them and discard the rest.
Therefore, each sentence has between five and ten evaluations.
Figure 4(b) shows the unweighted F1-score for a four-class
classification problem for the MSP-IMPROV database (anger,
happiness, sadness and neutral). The baseline approach consid-
ers the consensus labels, and is represented by the horizontal
dashed line. We implement the IEOS and SIEOS methods by
randomly choosing one, two, three, four, five, or all the individ-
ual annotations (up to 10). Figure 4(b) shows similar patterns
as the results obtained on the USC-IEMOCAP corpus. The
IEOS and SIEOS methods outperform the baseline even with
N = 2. Burmania and Busso [51] studied the effect of adding
extra evaluators in the consensus labels on a portion of the
MSP-IMPROV corpus. An interesting finding was that around
45% of the sentences preserve the labels assigned by the first
annotator. This result suggests an important overlap between
the consensus labels and the labels sampled from the individual
annotations, explaining the competitive performance of the
system trained even with N = 2. For the SIEOS approach,
the improvements are statistically significant when N ≥ 2. For
the IEOS approach, the differences are statistically significant
for N ≥ 4. When we use all the individual evaluations, the
differences are very clear. Figure 4(b) consistently shows better
performance for the SIEOS method over the IEOS method,
indicating that moving the created samples toward their target
classes increases the separation of the classes, and, therefore,
the classification performance.

Each sentence has been evaluated by multiple annotators,
where the consensus labels are estimated with majority vote
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(a) The USC-IEMOCAP corpus

(b) The MSP-IMPROV corpus

Fig. 5. Performance of the classifiers as a function of the number of
nearest neighbor sentences used for the interpolation of the synthetic
samples in the SIEOS approach (K in Algorithm 1).

to obtain prominent emotions, discarding dissident labels. The
experimental evaluation shows that our over-sampling meth-
ods can effectively use these individual evaluations to improve
the performance of the classifiers. Unless stated differently, we
consider five oversampled instances per entry for the MSP-
IMPROV corpus (i.e., N = 5), and three oversampled instances
per entry for the USC-IEMOCAP corpus (i.e., N = 3) for the
rest of the evaluations.

5.2 Analysis of Number of Nearest Neighbor Sentences
This section evaluates the selection of the number of nearest
neighbor sentences used for the interpolation of the synthetic
samples in the SIEOS approach (i.e., parameter K). The se-
lection of K sentences that are near to the target sentence is
implemented to increase the randomness in the selection of
samples to be interpolated. We analyze the sensibility of the
SIEOS approach by implementing the algorithm with different
values of K. We consider the following options: 5, 10, 20, and
30. Figure 5 shows the results for the USC-IEMOCAP and MSP-
IMPROV corpora. The F1-scores are lower when K is set to 5,
which reduces the randomness in the selection of the sentences
used for interpolation. The F1-score improve as we increase
the value for K. The figure shows that for both corpora the
performance of the classifiers are very stable when K is over
10. We set K = 20 in the evaluations discussed in the rest of the
paper.

5.3 Classification Performance per Emotional Category
This section investigates the effect of using the SIEOS frame-
work on the performance of individual emotional categories

(Fig. 6). We are particularly interested on minority classes. First,
we analyze the F1-score for each emotion in the USC-IEMOCAP
database. This corpus has multiples emotional categories, as
explained in Section 3.1, some of them with few sentences
(284 for happiness, 60 for surprise and 8 for fear). Figure
6(a) shows the average F1-score per emotion for the USC-
IEMOCAP database, using the baseline trained with consensus
labels, and the proposed IEOS and SIEOS methods. The color-
coded asterisks denote statistically significant differences be-
tween conditions (one-tailed population mean z-test, asserting
significance at p=0.05). An asterisk over a bar indicates that
the result for a method is significantly higher than the one for
the bar with that color. With the exemption of frustration, one
of the proposed approaches always has a higher F1-score than
the baseline method. For the three minority classes, the SIEOS
provides the highest F1-score rate, although the differences
are not statistically significant. The analysis of the average F1-
scores indicates that the SIEOS framework obtains significantly
better results than the IEOS approach and the baseline approach
(last set of bars in Figure 6(a)). The IEOS framework is also
significantly better than the baseline method. On average, the
IEOS and SIEOS methods provide 8.3% and 9.2% relative im-
provement over the baseline framework. Among the minority
classes, fear does not benefit from the proposed over-sampling
method, suggesting that the method is not beneficial when
there are extremely few examples available from a class (eight
sentences in this case).

We also find the F1-score of each emotional class using
the MSP-IMPROV database. This database is more balanced
without a minority class. Figure 6(b) shows the results. When
compared to the baseline, we observe statistically significant
improvements in F1-score for all the emotional classes when
using the proposed SIEOS method. When using the SIEOS
framework, we observe the best F1-score improvements over
the baseline for the emotions sadness and anger, which are the
classes with fewer samples on the MSP-IMPROV.

5.4 Analysis of Overlap Between Classes

We investigate the overlap between emotional classes gener-
ated by the proposed approach. We use the Bhattacharyya
coefficient [52], which is a metric that has been widely used to
compare two distributions. It measures the amount of overlap
between two statistical populations. For our analysis, lower
Bhattacharyya coefficient is desired since we employ this co-
efficient to compare the distribution across distinct emotional
categories in the feature space. We find the Bhattacharyya
coefficient between every pair of categorical emotions. To ac-
count for the randomness in the algorithm, we implement the
IEOS and SIEOS approaches 20 times. For comparison, we also
implement the SMOTE approach 20 times. Table 1 reports the
mean and standard deviation of the results computed across
emotions and implementations. The results are separately tab-
ulated for the USC-IEMOCAP and MSP-IMPROV databases.
For the USC-IEMOCAP, the overlap according to this measure
is 0.524 for the original sentences. Using the IEOS approach,
the overlap increases to 0.628. With the IEOS approach, a given
sentence is repeated multiple times with different labels (as
assigned by multiple evaluators). Therefore, N samples will
have the same features, but with different labels. This step
clearly increases the overlap between the classes. The SIEOS
method decreases the Bhattacharyya coefficient to 0.553, since
it uses interpolation to move these samples toward their classes,
reducing the overlap between the classes. By moving repeated
samples towards sentences with consensus labels, matching

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAFFC.2019.2901465

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



(a) The USC-IEMOCAP corpus

(b) The MSP-IMPROV corpus

Fig. 6. F1-score obtained for each emotional class (baseline, IEOS
method, SIEOS method). The figure also shows the average results
across emotion. An asterisk denotes that the F1-score value for that
condition is significantly higher (p = 0.05) than the F1-score of the
approach identified by the asterisk’s color.

TABLE 1
Average Bhattacharyya coefficient across pairs of categorical

emotions. The table reports the mean and standard deviation (STD)
across emotions for 20 implementations of the sampling methods.

USC-IEMOCAP (N=3) MSP-IMPROV (N=5)
Mean STD Mean STD

Baseline 0.524 0.000 0.367 0.000
SMOTE 0.495 0.003 0.359 0.003
IEOS 0.628 0.002 0.431 0.002
SIEOS 0.553 0.004 0.401 0.002

the target class (function populate in algorithm 1), the overlap
between emotions is reduced. This analysis confirms the role
of SIEOS in decreasing the overlap between distinct classes.
For comparison, over-sampling with SMOTE reduces the over-
lap between classes to 0.495. SMOTE generates samples by
interpolating sentences with consistent labels, which reduces
the overlap. Similar results are observed in the MSP-IMPROV
corpus.

The SIEOS method introduces more overlap between the
classes, which is not something desirable from a machine-
learning perspective. The key observation to understand the
benefits of the proposed approach is that speech emotion
recognition, or any other task where the ground-truth labels
are coming from perceptual evaluations describing subjective
judgments, imposes specific challenges in classification tasks.

(a) USC-IEMOCAP

(b) MSP-IMPROV

Fig. 7. Effect of balancing emotional classes with synthetic samples.
The figure shows the F1-score by increasing the number of samples per
emotional class. The additional samples come from over-sampling the
data using either SMOTE or the SIEOS approach.

Generally, a classifier has well defined classes. Samples from
different classes may overlap in the feature space, so it may
not be possible to obtain a perfect hyperplane to separate the
classes. However, we know where each sample belongs. In
speech emotion recognition, the emotional content in conversa-
tional speech is often ambiguous with mixed emotion [53], [54],
[55], [56], [57]. A sentence may convey more than one emotion,
where one person may perceive “anger”, while another may
perceive “frustration”. We argue that both judgments may be
right as speech may convey traits of both emotions. Notice that
the overlap is intrinsically related to the labels. This problem
leads to the question on how to train a classifier for speech
emotion recognition. In this paper, we propose an oversampling
framework that considers the evaluations provided by multiple
raters, before estimating the consensus label. As a result, the for-
mulation captures the emotional traits that are not represented
by the consensus labels, which leads to clear improvement in
classification, even with the increased overlap between classes.

5.5 Comparison to SMOTE over-sampling
This section compares the proposed approaches with SMOTE,
which is the most popular over-sampling method. As discussed
earlier, many of the emotion databases have unbalanced emo-
tional content. Therefore, SMOTE has been successfully used to
balance the size of the classes in the training set, improving the
overall classification performance.

The first evaluation increases the number of samples of the
minority classes until reaching a target number of samples
per class (200, 500, 1,000, 2,000, and 3,000). We do not create
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synthetic samples for a class that has more sentences than
the target number of sentences. As a result, all the categori-
cal emotions include at least the minimum target size in the
over-sampled training set. This approach is different from the
approach presented in previous sections where a fixed number
of samples is synthesized per sentence (i.e., N ). For this evalua-
tion, we collect all the individual annotations selecting a given
emotional class. A sentence can be represented multiple times
if several raters perceived and annotated this class. From this
pool of evaluations, we randomly select the required number
of sentences with replacement. We conduct this analysis on
the USC-IEMOCAP and MSP-IMPROV databases. We follow
the standard procedure for SMOTE [24]. Figure 7 shows the
F1-score of emotion classifiers trained with the over-sampled
training set created with SMOTE and the SIEOS method. For
comparison, the figure also includes the baseline results using
the original unbalanced training set considering the consensus
labels (horizontal dashed line). The x-axis in the figures shows
the minimum number of samples for each categorical class after
over-sampling. The results show that the approaches with over-
sampling improve the F1-score performance over the baseline,
highlighting the importance of data augmentation in speech
emotion recognition. When we compare SMOTE and the SIEOS
framework, we can clearly observe improvements with our
proposed approach on both corpora. The key benefit of the
SIEOS framework is the use of individual evaluations in the
over-sampling process. The results indicate the clear benefits of
this simple, but powerful approach.

The second evaluation explores the benefit of combining
SMOTE with the proposed over-sampling frameworks. Table 2
presents the results for the USC-IEMOCAP corpus, and Table 3
presents the results for the MSP-IMPROV corpus. Tables 2 and 3
list the results in terms of average precision, average recall and
F1-score. We provide the 95% confidence interval for a pop-
ulation proportion. For both tables, the first row presents the
results for the baseline method trained with consensus labels.
The second and third rows present the results for the IEOS and
SIEOS methods, creating either three (USC-IEMOCAP corpus)
or five (MSP-IMPROV corpus) synthetic samples per sentence.
The fourth row presents the results for SMOTE. Tables 2 and
3 show that the baseline using the consensus labels give the
worst F1-scores. Using over-sampling consistently increases
the classification performance over the baseline. The absolute
improvements obtained with the SIEOS method over the base-
line are 5.4% for the USC-IEMOCAP corpus and 5.2% for the
MSP-IMPROV corpus. Both tables demonstrate the superior
performance of the IEOS and SIEOS methods over SMOTE,
showing improvements between 1.2% to 2.7%.

The last two rows of Tables 2 and 3 show the results
when we combine the proposed approaches with SMOTE. After
generating N samples per sentence, we balance the corpus with
SMOTE by making sure that the minimum number of sentences
per emotional class is either 3,000 for the MSP-IMPROV corpus,
or 1,000 for the USC-IEMOCAP corpus. The last two rows of
Tables 2 and 3 show that combining SMOTE after applying
the proposed over-sampling approach does not produce any
additional gain in classification performance, suggesting that
the SIEOS framework is enough to augment the training set.

6 CONCLUSIONS AND FUTURE WORK

This study introduced an over-sampling method for machine-
learning problems where the ground truth is obtained by
estimating consensus labels from individual annotations. The
formulation creates repeated samples for each sentence by

TABLE 2
Classification performance of the proposed over-sampling methods on

the USC-IEMOCAP database. The table also lists the results for
SMOTE, and the combination of the IEOS and SIEOS methods with

SMOTE.

Recall [%] Precision [%] F1-score [%]
Baseline 29.1±1.2 30.5±1.2 29.7±1.2
IEOS (N=3) 32.4±1.2 34.1±1.2 33.6±1.2
SIEOS (N=3) 34.6±1.2 36.9±1.3 35.1±1.2
SMOTE 31.1±1.2 34.2±1.2 32.4±1.2
IEOS (N=3) + SMOTE 31.1±1.2 36.9±1.3 33.2±1.2
SIEOS (N=3) + SMOTE 31.7±1.2 39.1±1.3 34.6±1.2

TABLE 3
Classification performance of the proposed over-sampling methods on
the MSP-IMPROV database. The table also lists the results for SMOTE,

and the combination of the IEOS and SIEOS methods with SMOTE.

Recall [%] Precision [%] F1-score [%]
Baseline 43.2±1.1 48.5±1.1 45.7±1.1
IEOS (N=5) 47.0±1.1 53.5±1.1 50.1±1.1
SIEOS (N=5) 47.7±1.1 54.6±1.1 50.9±1.1
SMOTE 45.1±1.1 52.4±1.1 48.3±1.1
IEOS (N=5) + SMOTE 46.2±1.1 58.2±1.0 51.6±1.1
SIEOS (N=5) + SMOTE 45.9±1.1 56.8±1.1 50.8±1.1

sampling the labels assigned by individual evaluators. The
new samples are then transformed in the feature space by
randomly moving their values close to real sentences with
the target emotion. This is a simple, but powerful method to
leverage individual evaluations, which are commonly ignored
after obtaining consensus labels. The study evaluated the pro-
posed approach for speech emotion recognition of categorical
classes using the USC-IEMOCAP and MSP-IMPROV corpora.
The experimental results showed that using this over-sampling
method significantly improves the classification performance.
The evaluation shows that the proposed framework is bet-
ter than SMOTE, which is the most common over-sampling
method. Applying SMOTE after creating N samples per sen-
tence using the proposed approach does not lead to significant
improvements in classification performance, indicating that the
proposed over-sampling approach is enough to augment the
training set.

This paper shows the benefits of considering individual
annotations in speech emotion recognition, which opens mul-
tiple research directions. While the formulation assumes that
the reliability of all the annotators is similar, some evaluators
are more reliable than others. Therefore, it is reasonable to
investigate the trade-off between the quality and quantity of
the annotations [58]. For example, we can prioritize annota-
tions from evaluators who are considered reliable. Another
open question is to explore better machine-learning methods to
handle overlap between classes. A drawback of our approach
is the increased overlap between the classes, so it is important
to find robust training methods for this case. Finally, we will
explore the performance of the proposed approach using more
complex DNNs and with other feature sets.
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