
1

Curriculum Learning for Speech Emotion
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Abstract—This study introduces a method to design a cur-
riculum for machine-learning to maximize the efficiency during
the training process of deep neural networks (DNNs) for speech
emotion recognition. Previous studies in other machine-learning
problems have shown the benefits of training a classifier fol-
lowing a curriculum where samples are gradually presented in
increasing level of difficulty. For speech emotion recognition,
the challenge is to establish a natural order of difficulty in the
training set to create the curriculum. We address this problem
by assuming that ambiguous samples for humans are also
ambiguous for computers. Speech samples are often annotated
by multiple evaluators to account for differences in emotion
perception across individuals. While some sentences with clear
emotional content are consistently annotated, sentences with more
ambiguous emotional content present important disagreement
between individual evaluations. We propose to use the disagree-
ment between evaluators as a measure of difficulty for the
classification task. We propose metrics that quantify the inter-
evaluation agreement to define the curriculum for regression
problems and binary and multi-class classification problems.
The experimental results consistently show that relying on a
curriculum based on agreement between human judgments leads
to statistically significant improvements over baselines trained
without a curriculum.

Index Terms—Curriculum learning, speech emotion recogni-
tion, inter-evaluator agreement

I. INTRODUCTION

EMOTION recognition can play an important role in
advanced human computer interaction (HCI) applica-

tions that are more aware of the users. Recently, there has
been a number of studies showing the feasibility of emotion
recognition in different applications, opening novel research
directions. For example, a robot capable of recognizing and ex-
pressing facial expressions can more effectively communicate
and interact with humans [1]. Emotion recognition systems
have also been used in designing interactive games [2], [3]
and tutoring systems [4], [5] to teach social interactions to
children with autism spectrum disorders [6].

While previous studies have made important advances,
emotion recognition from speech still faces many challenges.
The most important challenges are generalizing the models
across datasets [7]–[10], accounting for individual differences
[11]–[14], dealing with environmental conditions [15] and
recognizing subtle expressions [16], [17].

Recently deep learning techniques have enabled advances
in many areas of speech processing. A barrier of using deep
learning in speech emotion recognition (SER) is the lack of
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large training datasets. While tasks such as automatic speech
recognition (ASR) have access to datasets with several hours
of speech samples collected from multiple speakers, most
affective datasets contain only tens or hundreds of subjects
displaying a small range of emotions. The limited resources
make it extremely difficult to train models that generalize well
within and across datasets. Therefore, it is important to utilize
the limited available training resources in the most efficient
way.

Inspired by language learning in children, Elman [18]
demonstrated that a neural network is able to better learn a task
when the training data is sequentially presented from simple
to complex. When the order is random, the network may fail
to converge to an optimal set of parameters. This training
approach is referred to as curriculum learning and has been
successfully used in word representations in natural language
processing [19], working memory based problem solving tasks
[20], controlling robots [21], [22], and executing computer
programs [23]. More recently, Bengio et al. [24] demonstrated
that curriculum learning results in better generalization and
faster learning on synthetic vision and word representation
learning tasks. Interestingly, this approach has not been used
on SER. We hypothesize that curriculum learning can be
effectively employed to deal with the limited training resources
available in this area. We also hypothesize that using a
curriculum leads to models that learn more general emotion
cues before learning more subtle speaker dependent cues,
improving the generalization of the models. For these reasons,
this work explores curriculum learning for SER. Emotion
recognition has attributes which make it a good candidate
for applying curriculum learning training schemes. The main
evidences are the complex nature of the problem and the way
we learn to perceive emotions, which happens gradually from
infantry to adulthood.

This study consistently demonstrates that prioritizing less
difficult samples at the beginning of the training process of a
deep neural network (DNN) leads to significant improvements
for SER systems. We suggest different methods to detect chal-
lenging examples which are only used in the more advanced
phases of the training process. By adjusting the learning rate of
the model in decreasing order, we reduce the influence of dif-
ficult samples in setting the parameters of the system. The key
hypothesis to build the proposed curriculum is that ambiguous
samples for humans are also ambiguous for computers. We
have observed in our previous work that classifiers trained and
tested with samples consistently annotated by human evalua-
tors, achieved higher accuracies than classifiers training with
more ambiguous samples [25]. Han et al. [26] observed that
emotion prediction can be improved by estimating at the same
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time the inter-rater agreement. These observations suggest that
the level of difficulty for each sentence can be estimated
by considering the inter-evaluators’ agreement. The level of
uncertainty in perceptual evaluations can be used as a measure
of difficulty, since an easy task for human is often an easy
task for computer. We propose two different implementations
for this idea using individual annotations available for each
sentence. We rely on the reliability of the annotations since
SER is a problem known to have high level of uncertainty
for both human and machine. The third metric measures the
reliability of automatic methods, which is used as a baseline.
We exhaustively evaluate this approach by considering three
different formulations for SER. For attribute-based emotional
descriptors (e.g., arousal, valence and dominance), we consider
regression models to predict the label values. We also consider
binary classification after dichotomizing the classes into low
versus high values (e.g., low valence versus high valence). For
categorical emotions (e.g., happiness, sadness, and anger), we
consider a classification problem. We observe improvement
in the performance in all three problems when the training
process follows the right curriculum, compared to the approach
of training with all the samples in one pass. We observe that
the best curriculum is based on the item difficulty derived with
the minimax conditional entropy criterion suggested by Zhou
et al. [27], [28].

The main contributions of this work are two folds. First,
to the best of our knowledge, this is the first study on
SER using curriculum learning. Second, we propose a novel
method to estimate the difficulty of the training examples using
individual evaluations. We derived different metrics to quantify
the disagreement between evaluators, proposing alternative
curriculums for each of the machine-learning formulations
considered in this study. The use of curriculum learning leads
to consistent performance improvements, demonstrating the
benefits of the proposed approach.

The rest of this paper is structured as follows. Section II
reviews previous studies on SER that are related to this study.
The section also discusses the implementations of curriculum
learning in other machine learning applications. Section III
describes our proposed method to apply curriculum learning
to SER. Section IV presents the database, features and imple-
mentation details used in the evaluation. Section V includes
experiments that consistently show the benefit of using the
proposed curriculums for this task. Section VI concludes this
study, giving new directions for future research in this area.

II. BACKGROUND

This section reviews studies on SER and the process of
annotating emotional labels, which provide the information
needed to design the proposed curriculum learning framework
(Sec. II-A). The section also discusses the general idea of
curriculum learning and how it has been applied to different
problems in previous studies (Sec. II-B). The section further
reviews methods to estimate the difficulty of the tasks without
knowing the ground truth for the tasks using minmax condi-
tional entropy framework (Sec. II-C). We apply this method
to estimate the difficulty of recognizing emotions conveyed in
each speech sample.

A. Speech Emotion Recognition

The problem of detecting human emotions in speech, like
any supervised machine-learning problem, relies on training
examples. Early attempts for collecting emotional databases
relied on actors to collect expressive behaviors with predefined
emotional category [29]–[31]. This approach led to satisfactory
results when testing under the same database, but failed to
perform well under naturalistic situations [32]. In everyday
spontaneous conversations, emotions are subtly expressed,
creating expressive displays that are not well represented
by portrayed behaviors provided by actors, especially if the
recordings correspond to read sentences [32], [33]. Therefore,
the classifiers trained with acted corpora do not generalize
well in real life situations. To address this issue, researchers
are collecting speech samples under more naturalistic con-
ditions, either by indirectly eliciting target emotions [25],
[34] or recording spontaneous speech [35], [36]. In these
scenarios, the emotional content of the speech samples are not
determined, and emotional labels need to be assigned using
perceptual evaluations [37], [38].

When annotators are asked to answer questions about their
perceived emotion, they often provide conflicting answers.
There are several reasons for the disagreement, including pres-
ence of subtle emotions, presence of multiple valid emotions
(e.g., sarcasm), evaluators’ reliability, and inadequate question-
naires with options that do not properly describe the perceived
emotion. Recent studies have even leveraged the disagreement
between evaluators to train more robust classifiers using soft
labels [39], [40]. In our previous work, we demonstrated
that classifiers trained with more ambiguous samples achieved
lower classification performance that classifiers trained with
samples that are consistently evaluated by raters [25]. This
result suggested that ambiguous samples for evaluators are
also ambiguous samples for speech emotion classifiers. Lee
et al. [41], [42] proposed to learn categorical emotions by
using a hierarchical framework, where easy problems are
solved before resolving more difficult problems. They obtained
improved performance over classifiers without this hierarchical
approach. These studies suggest that curriculum learning can
be an appropriate framework for SER using more effectively
the limited size of existing emotional databases.

B. Curriculum Learning

Most supervised machine learning methods take a one-
pass learning approach, where all the training data is used
to build the models. Studies have argued that this is not
the best approach, suggesting that a classifier should learn
basic patterns from clear examples, leaving harder examples
for later training stages [18]. The idea of learning simple
patterns before complex patterns is usually called curriculum
learning. This idea is implemented during the training process
by first presenting examples that can be easily recognized,
after determining the difficulty level of the samples.

Bengio et al. [24] studied different approaches to implement
this idea, showing that a curriculum that introduces the training
data from easy to hard can lead to better local minima when
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training a classifier with a non-convex criterion, which is com-
monly the case when training DNNs. This training approach
results in better generalization and speed-up the convergence.
Defining the training objective by giving higher weight to the
easier samples is equivalent to solving a smoothed version of
the target criterion. The easiest optimization problem C0(✓)
shares the same parameters (✓) as the target problem C1(✓),
capturing its coarse structure. The parameter � for the inter-
mediate problems of the curriculum, C�, has to monotonically
increase based on the difficulty of the samples from 0 in
the easiest problem (C0) to 1 in the target problem (C1).
A training example z receives a weight to manipulate the
difficulty of a problem. Designing a curriculum requires to
adjust the weight parameter W�(z) such that the difficulty
of C� monotonically increases with �. Bengio et al. [24]
considered discrete numbers of � and also discrete weights
(0 or 1) for the training examples (z) at each step. As the
value of � increases by changing W�(z) = 0 to W�+✏(z) = 1,
they gradually introduced more difficult samples to the training
pool, therefore, increasing the overall difficulty of the problem.
They showed the effectiveness of this approach on different
problems by training DNNs, comparing the results with a
framework using the common one-pass learning approach.

If a natural order to quantify the difficulty of the task
is available, the design of the curriculum becomes straight-
forward. In shape recognition of objects, Bengio et al. [24]
suggested to start with basic shapes. They increased the
difficulty of the task by varying the object position, size,
and orientation. They also changed the gray levels of the
foreground and background in the image. In language model-
ing, they predicted the most likely word given the previous
words in a sentence in grammatically correct English. For
this problem, they controlled the difficulty of the training
samples by controlling for the vocabulary size [24]. When
quantifying the difficulty of the training set is not clear, studies
have proposed alternative methods. An intuitive approach for
supervised task is to train a classifier using the conventional
one-pass learning approach, evaluating the models on the
training set. A sample is considered difficult if it falls on the
incorrect side of the classifier’s hyperplane [43]. The distance
of the sample to the hyperplane can also be informative, where
samples located close to the hyperplane in the feature space
are considered more difficult examples than samples that are
far from the hyperplane. Gui et al. [44] use this method as a
baseline to build a curriculum for facial expression analysis.
They compared this method to a curriculum built by relying
on the intensity of the expressed emotions. In language model,
this model-driven approach to build the curriculum can be
implemented by assigning the difficulty level based on whether
the model is able to predict the next word [24]. These methods
are vulnerable to over-fitting, since the difficulty of the samples
is obtained by testing the training examples with a classifier
trained on the same data.

There are few studies that have considered curriculum
learning in speech tasks. Braun et al. [45] used curriculum
learning to improve the noise robustness of the automatic
speech recognition by gradually adding samples with higher
signal-to-noise ratio (SNR). Ranjan and Hansen [46] used

curriculum learning for speaker recognition. They created the
curriculum by adding audio from different channels according
to their noise level. In their applications, the measure of
difficulty is explicit, since higher SNR directly increases the
difficulty of the speech tasks. As an alternative to curriculum
learning, Zhang et al. [47] exploited the difficulty to boost the
learning process in SER. They used the reconstruction error
of the features. This information is then provided to another
learning stage, which is expected to focus on more difficult
regions. Their proposed approach requires time-continuous
annotation of the input samples. Our approach creates the
curriculum based on the uncertainty in the annotations, which
is a more appropriate approach for SER.

Instead of relying on the performance of previously trained
classifiers to extract the difficulty information, this study
proposes to rely on the labels provided by human annotators by
measuring their inter-evaluator agreement. The motivation be-
hind this framework is that, in recognizing emotions, humans
clearly outperform existing artificial intelligence solutions,
and, therefore, it is reasonable to assume that a curriculum
based on a metric of reliability across evaluators may provide
a suitable criterion for this task. The challenge is that, at
the individual level, we do not have access to the confidence
level of human annotators, unless we explicitly ask them to
annotate their certainty level in their perceptual judgments.
Therefore, we rely on the implementation of the minmax
conditional entropy method proposed by Zhou et al. [27],
[28] to indirectly estimate the level of difficulty of a sample,
creating an appealing curriculum for SER.

C. Minmax Method for Crowdsourced Labels

The proposed criteria to define curriculum is based on
the minmax method. Recognizing emotions from speech is
a subjective task where different evaluators often disagree on
the perceived emotion [48]. Therefore, researchers tend to rely
on ratings provided by evaluations with different reliability,
aggregating the results to achieve consensus labels for the train
set. If the reliability of all the raters are identical, the straight-
forward approach to find consensus judgment from multiple
dissident annotations is to find the average for numerical labels
or use the majority vote rule for categorical labels. In case
the individual’s reliability is known, we can rely on weighted
majority consensus by giving higher weights to the annotations
from reliable raters. In practice, the reliability of an individual
worker is unknown. This problem is particularly important for
evaluations conducted using crowdsourcing. When ratings are
collected through crowdsourcing evaluations, some workers
are accurate, while others are less reliable. Some raters are
only interested in the payments, limiting their effort as much
as possible, providing very noisy annotations.

To correct the bias of unreliable raters in the overall
decision, Dawid and Skene [49] introduced an expectation
maximization (EM) algorithm to simultaneously estimate the
bias of annotators and the label classes in an iterative process.
A key part of the Dawid and Skene method is to estimate
a latent probabilistic confusion matrix for generating labels
for each worker. The off-diagonal elements of the matrix
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represent the probabilities that the worker mislabels an item
from one class as another. The diagonal elements correspond
to his/her accuracy for each class. The assumption is that the
performance of a worker characterized by his/her confusion
matrix stays the same no matter which tasks they are assigned.
This assumption is not accurate in many labeling tasks, where
some items are more difficult to label than others. For example,
a worker is more likely to mislabel a difficult item than an
easy one. Moreover, an item may be easily mislabeled with
another class due to the ambiguity in the sample. Therefore,
a fair evaluation of the raters should separately compensate
for the difficulty of each task. Zhou et al. [28] developed a
minimax conditional entropy method to jointly infer the task
difficulty, raters’ bias, and the labels of the samples. Our work
uses the difficulty measure found in this minmax entropy (ME)
approach to design the curriculum for SER. This method is
explained in more details in Section III-C3.

III. METHODOLOGY

This section discusses the motivation for using curriculum
learning in SER problems (Sec. III-A). It introduces three
formulation for SER used to evaluate the proposed curriculum
policies (Sec. III-B). The section also describes the alternative
policies for generating the difficulty measure from crowd-
sourcing labels to build the curriculum (Sec. III-C).

A. Motivation
A candidate problem for curriculum learning should rely on

non-convex optimization [24]. Emotion recognition is a good
candidate because of its complex nature [50]. A person takes
years to master the essential skills to recognize emotion [51].
Infants start with limited capabilities to recognize emotions,
developing with time more sophisticated representations of the
structure of emotions [52]. Due to the gradual increase of
expertise in emotion recognition, psychologists measure the
abilities to perceive affects as an important indicator of human
emotional intelligence at different ages [53]. This step-by-step
nature of the process of acquiring the capability to perceive
emotions suggests that curriculum learning can be an effective
method for training speech emotion classifiers.

The first step to establish a curriculum for learning emotions
by machines is to quantify the difficulty of the training
examples. If the utterances are not explicitly annotated with the
difficulty of the emotional content conveyed on the sentences,
the difficulty has to be indirectly estimated. In many tasks,
the true labels exist (e.g., transcriptions in speech, presence or
absence of an object in an image), so the difficulty can be set
according to the proportion of raters providing a wrong answer.
Such a ground-truth is not available in spontaneous emotional
sentences, as the perception of emotion varies across listeners.
During the annotation of categorical emotions, evaluators are
commonly asked to choose the most relevant emotional classes
for a given speech sample. However, some sentences may
convey more than a single emotional class (e.g., frustration and
anger) [39]. For attribute-based annotations, evaluators may
also disagree when assigning absolute scores to the emotional
content of the sentences. This work exploits different policies

to build a curriculum for the application of SER. We compare
this approach with the one-pass method where all the training
samples are equally treated (uniform policy) without curricu-
lum. The results confirm our hypothesis, giving statistically
significant differences in the classification results.

B. Formulation of Machine Learning Problems

Before we introduce the proposed curriculum policies, it is
important to define the machine-learning problems considered
in this study, as their implementation are slightly different
across problems. We define three machine-learning problems
to evaluate the role of curriculum learning in SER: regression
prediction of emotional attributes, binary classification of
emotional attributes, and classification of emotional categories.

1) Regression of Dimensional Emotions: The first task is
to predict the emotional dimension scores for the attributes
arousal (calm versus active), valence (negative versus positive)
and dominance (weak versus strong), using the training set
(one regressor per emotional attribute). Each sentence is
annotated by multiple annotators, where the gold-standard
is the average across the annotations at the utterance level.
We use the concordance correlation coefficient (CCC) metric
to measure the performance of the regressors on the testing
set. CCC is a metric of agreement between two interval
variables by considering the Pearson correlation and difference
between them [54]. We employ this metric to compare the
true and predicted emotional attribute values. This metric has
been previously used in related studies [55], including the
audio/visual emotion challenge (AVEC) in 2015 [56].

2) Binary Classification of Dimensional Emotions: The
second problem is a binary classification task where we split
the samples into two classes based on their attribute values
(e.g., low valence versus high valence). We use their median
value such that the classes are balanced. For the test set, we
use the same threshold derived from the training set so the
classes are not necessarily balanced (Section IV-A introduces
the actual partitions used in the evaluation). Although this
formulation introduces artificial classes (see discussion on
Mariooryad and Busso about dichotomizing continuous labels
[57]), this approach is commonly used in studies on emotion
recognition [58]–[60]. The performance of the classification
problem is measured using the F1-score metric, which com-
bines the mean precision and recall rates for low and high
classes.

3) Classification of Categorical Emotions: The third prob-
lem corresponds to a classification task, where we recognize
the categorical class assigned to each sample. The labels
for training and testing the classifiers are assigned using the
majority vote rule by considering all individual annotations
provided during the evaluation (e.g., multiple evaluators are
asked to annotate each sentence). Samples without agreement
due to tie between two or more classes are not used for
training or testing the system (i.e., the samples are removed
from the corresponding sets). The classes are not balanced and
each class is equally important for our problem. Therefore,
we separately estimate the precision and recall rates for each
of the classes. We use the average precision and recall rates
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across emotional classes to estimate the F1-score. Therefore,
this metric equally weights each class

C. Curriculum Policies for Emotional Speech

The task difficulty for each sample depends on the sub-
jective evaluations conducted by multiple annotators and the
machine-learning tasks. This section focuses on explaining the
proposed curriculum policies for the formulations for SER
described in Section III-B. We suggest three general criteria to
design the curriculum for training the classifiers: Criterion 1
is a basic curriculum that relies on the results of a pre-trained
model. Criterion 2 creates the curriculum by considering
the disagreement between evaluators, assuming that all the
evaluators have similar skills to complete the task. Criterion
3 also considers the disagreement between evaluators, taking
into account the reliability of the annotators (e.g., annotators
are not equally good to complete the task).

1) Criterion 1: Error of Predicted Label: The first criterion
uses pre-trained models to determine the difficulty order in the
curriculum. First, we train a classifier using all the samples
available for training. The models are tested on the same
training set. Then, we compare the predicted class with the
actual label, defining specific rules to quantify the difficulty
of sample i for each machine learning problem, denoted by
di.

For regression problems, the difficulty of a sample is defined
using Equation 1 by estimating the distance between the
predicted value (y0i) and the ground-truth (yi). The easiest
training samples have di = 0, where the pre-trained regression
model successfully predicts the actual value without error.

di = |yi � y
0
i| (1)

For binary (emotional attributes) and multi-class (categori-
cal emotions) tasks, we define the difficulty of a sentence based
on the classification results and the confidence of the classifier.
For training sample i with true label yi and feature vector xi,
the pre-trained classifier predict the label y0i. For the samples
that are correctly classified (i.e., yi = y

0
i), the difficulty is

defined as the confidence of the classifier on the predicted
classes (with negative sign). For samples that are incorrectly
classified (i.e., yi 6= y

0
i), we consider the confidence in the

incorrect class as the difficulty metric (Eq. 2).

di =

(
�P (yi = y

0
i|xi), if yi = y

0
i

P (yi = y
0
i|xi), if yi 6= y

0
i

(2)

With this measure, an easy sample has a smaller di than a
more difficult sample. The level of confidence P is inferred
from the classifier’s output. For a DNN with softmax function
in the output layer, the maximal neuronal response of the
softmax layer can be used as a measure of confidence [61].

The metric di for regression (Eq. 1) and classification
(Eq. 2) considers the consensus label, which is generated by
aggregating the answers from all the evaluators. The variations
between individual evaluations have no effect on the difficulty
measure, and, therefore, the curriculum.

2) Criterion 2: Disagreement Between Annotators: The
second criterion relies on finding the level of disagreement
between annotators for each sentence. Intuitively, annotators
will have higher agreement on samples with clear emotional
content (i.e., easy samples), and lower agreement for more
emotionally ambiguous samples (i.e., difficult examples). For
regression problem, a metric of disagreement across evaluators
is the variance of the scores provided to a sample. Therefore,
di is defined as:

di =
1

Ni

NX

j=1

(yij � ȳi)
2 (3)

where yij is the label assigned by annotator j for sample i, ȳi
is the average across all the annotations available for sample
i, and Ni is the number of annotations available for sample i.

For categorical emotions, di quantifies how popular is
the emotional class with more votes by finding the ratio
between annotators selecting that class and the total number
of annotators:

di =
1

Ni

NX

j=1

[yij = ŷi] (4)

where ŷi is the consensus label for sample i using the
majority vote rule. In the binary problems for attribute-based
annotations, the dichotomized labels are obtained by splitting
the average scores using median split. We also use Equation
4 to estimate di.

3) Criterion 3: Minmax Conditional Entropy Inference:
The third criterion for curriculum learning considers the dis-
agreement across evaluators by modeling the level of expertise
of the raters. The previous criterion assumes that all the anno-
tators are equally reliable (Sec. III-C2). In reality, annotators
have different level of expertise. For example, some raters
are unfamiliar with the concept of emotional attributes, easily
distracted, or inconsistent with their judgments. Therefore, we
should consider the expertise of the raters to better determine
whether the disagreement in the emotional labels is due to
poor raters or the difficulty of the samples. A fair assess-
ment process should jointly estimate the task difficulty and
annotator’s skills. The item response theory (IRT) [62] is a
method to model the probability of a correct answer to a
given item by a person with a specific ability level. It uses
latent characterization of individuals and items as predictors of
observed responses. This model relies on item discrimination,
item difficulty, and the probability that an individual with very
low ability correctly answers a question. Since the true labels
of the items are not available in our case, the most likely
correct response needs to be estimated in addition to the item
difficulty and the ability of the workers.

To address this problem, Zhou et al. [27], [28] employed
a minmax conditional entropy method subject to constraints
to encode the observation for ordinal [27] and categorical
[28] labels. In their formulation, the objective is to aggregate
crowdsourced labels for a set of items annotated by a group
of workers. The input is the observed label ỹij which is
the label selected for item i by annotator j. The goal is to
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estimate the unobserved true labels yi from the noisy workers’
labels (i.e., estimating the probability of the item belonging to
each class Q(Yi = c) given the set of observed labels ỹij).
P (Ỹij = k|Yi = c) denotes the probability that worker j

annotates the item i with label k while the true label is c.
They proposed to jointly estimate the distributions of P and
Q by minimizing the entropy of the observed workers’ labels
conditioned on the true labels.

min
Q

max
P

H(Ỹ |Y ) (5)

The study solved this problem by converting this formu-
lation into the dual form. They introduced two Lagrange
multipliers �j(c, k) and ⌧i(c, k). Intuitively, �j(c, k) is the
measure of ability of worker j and ⌧i(c, k) is the intrinsic
difficulty of item i. The variable [⌧i] is a confusion matrix of
item i, where its (c, k)� th entry measures how likely item i

in class c is labeled as class k by a randomly chosen worker
[27], [28].

The minmax formulation by Zhou et al. [27], [28] provides
a principled framework to estimate the difficulty of each sen-
tence. We propose to use the difficulty measure [⌧i] to design
the curriculum. The measure of difficulty di is estimated with
the ratio between the trace of [⌧i] and the sum of all the
elements in the matrix.

di =

P
k
⌧i(k, k)

P
c

P
k
⌧i(c, k)

(6)

The regularized minmax conditional entropy formulation
proposed by Zhou et al. [27], [28] finds the item confusion
matrix [⌧i] for both ordinal [27] and categorical [28] labels.
After estimating the corresponding [⌧i], we find the difficulty
metric using Equation 6 for regression, binary classification
and multi-class classification problems.

IV. EXPERIMENTAL EVALUATION

This section describes the experiments conducted to assess
the performance of SER using the proposed curriculum learn-
ing schemes. This section introduces the database and the
feature set used in the experiments (Sec. IV-A). The section
also describes acoustic features (Sec. IV-B) and architecture
of the classifier used in the evaluation (Sec. IV-C).

A. The MSP-Podcast Database
This study relies on the MSP-Podcast corpus collected at

the University of Texas at Dallas [63]. The database includes
a large set of speech segments from podcast recordings
available in audio sharing websites. The podcasts are selected
from various topics including politics, sports, talk shows, and
movies, including a broad range of emotions. The podcasts are
segmented into speech turns using a speaker diarization tool.
We implement an automatic process that selects only speech
segments with one speaker, without noise (SNR value less than
20dB), background music, or phone quality audio (4 KHz cut-
off frequency). The duration of the obtained segments from
the audio file are between 2.75s and 11s (including pauses).

Following the ideas described in Mariooryad et al. [64],
we use different machine learning formulations to retrieve
segments from the pool of available segments conveying target
emotion behaviors. Then, these segments are annotated with
emotional labels. The data collection process is an ongoing
effort, where the current study uses version 1.0 of the corpus.
This set includes 20,045 speech segments (34 hrs, 15 min). We
have manually annotated the speaker identity of 244 speakers
(16,026 segments). We use segments from 50 speakers as our
test set (6,069 segments), and data from 15 speakers as our
development set (2,226 segments). We use the development set
to optimize the hyper-parameters of the network and training
process. The train set includes the rest of the corpus (11,750
segments). This data partition attempts to create speaker
independent datasets for train, test, and development sets.

The speech segments are annotated with emotional labels
using an improved version of the crowdsourcing method
introduced by Burmania et al. [38]. Within the perceptual
evaluation, the raters are asked to choose emotional attributes
(arousal, valence and dominance) using a seven-point Likert
scale. Then, they select the primary emotion from anger, sad-
ness, happiness, surprised, fear, disgust, contempt, and neutral.
They can also choose other if none of the previous labels are
suitable. For attribute-based annotations, we measure the inter-
evaluator agreement using the Krippendorffs alpha coefficient
since the labels are interval and not categorical. For arousal,
valence and dominance, the inter-evaluator agreements are
↵aro = 0.431, ↵val = 0.447 and ↵dom = 0.391, respectively.
For the primary emotions, the inter-evaluator agreement is
measured using the Fleiss kappa, which is  = 0.218. The
current version of the corpus is not balanced across emotional
classes, with many happy and neutral sentences and very few
fear sentences. Therefore, we remove the label fear from the
target emotion classes and consider it as if the raters had
selected other as the perceived emotion. While not used in this
study, the annotation also includes secondary emotions where
annotators choose all the emotions relevant to the speech
segment from the list provided in the questionnaire. The list
of secondary emotions includes all the primary emotions, in
addition to amused, frustrated, depressed, concerned, disap-
pointed, excited, confused, and annoyed. Each speech segment
is annotated by at least five annotators.

B. Features

All the emotion recognition problems are implemented with
the feature set proposed for the computational paralinguistics
challenge (ComParE) at Interspeech 2013 [65]. The feature
set includes low-level descriptors (LLDs) such as fundamental
frequency and Mel-frequency cepstral coefficients (MFCCs).
These frame-based features are used to estimate statistics over
a speech segment (e.g., mean of the fundamental frequency).
The approach creates a 6,373 dimensional feature vector per
speech segment, regardless of its length. The features are
extracted with the open-source OpenSMILE toolkit [66]. The
work by Eyben [67] provides more information about this
toolkit and ComParE feature set.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2019.2898816

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

C. Implementation of Machine-Learning Frameworks

The evaluation of the curriculum learning uses a DNN
with the same architecture across the three machine-learning
problems considered in this study (Sec. III-B). The only
difference is the output layer, which is implemented according
to the problem. The architecture is a fully connected feed
forward neural network with two hidden layers, each of them
implemented with 1,024 nodes. In our previous work, we
have studied different configurations for deep models for
SER problems, increasing the number of layers or number
of nodes per layer [68]. The model with two layers with
1,024 nodes provided very competitive results. The activation
function corresponds to a rectified linear unit (ReLU). The
input corresponds to the 6,373 dimensional segment-label
feature vector described in Section IV-B. The output layer is
added on top of the second hidden layer. The output layer is
the identity activation function for the regression problems,
and the softmax layer for binary and multi-class classification
tasks. The regression network is trained by maximizing the
CCC. The binary and multi-class networks are trained to min-
imize the cross-entropy cost function. The softmax layer gives
a vector with a score for each emotional class. The evaluation
uses Keras with TensorFlow as backend to implement and train
the models. We rely on adaptive moment estimation (ADAM)
[69] for the optimization of the parameters of the network. We
use mini-batches of size 256.

Based on the measure of difficulty, we divide the training
set into five bins, where the first bin contains the easiest
samples. The training process starts with the easiest bin and
continue by adding more difficult bins to the training set.
After adding each bin to the training set, the network is
trained until the performance on the development set stops
increasing for three consecutive epochs. We find the optimal
learning rate for each bin by maximizing the performance on
the development set. In our search, we consider the following
values for the learning rates: 1 ⇥ 10�1, 5 ⇥ 10�2, 1 ⇥ 10�2,
5⇥ 10�3, 1⇥ 10�3, 5⇥ 10�4,1⇥ 10�4, 5⇥ 10�5, 1⇥ 10�5,
5⇥10�6, and 1⇥10�6. We start with bin 1, finding the optimal
learning rate by considering only the performance using the
training samples on bin 1. The learning rate for bin 1 does
not change during the rest of the search. Next, we add the
training samples of bin 2, finding the optimal learning rate
for bin 1 and 2. This process is repeated until we find the
optimal learning rates for all the five sets. Although this search
does not guarantee an optimal solution, we choose this method
since it can be efficiently implemented. We separately repeat
this process for every machine learning problem, including
every curriculum considered in this paper. In most cases, we
observe that the optimal combination of learning rates with
this approach monotonically decreases from the first set (only
bin 1) to the last training set (all bins). For example for the
categorical emotion classification task, with Criterion 3, the
optimal learning rates are: 1 ⇥ 10�3 (bin 1), 1 ⇥ 10�3 (bins
1-2), 5⇥ 10�4 (bins 1-3), 1⇥ 10�4 (bins 1-4), and 5⇥ 10�5

(bins 1-5).
We consider two baseline frameworks to evaluate the pro-

posed curriculum learning approaches. The first approach does

TABLE I
RESULTS OF REGRESSION MODELS FOR AROUSAL (Aro), VALENCE ( Val),

AND DOMINANCE (Dom).THE ASTERISK [⇤] AND CIRCLE [�] INDICATE
THE APPROACH OUTPERFORMS THE BASELINES w/o curriculum AND with

random curriculum, RESPECTIVELY. WE ASSERT SIGNIFICANCE AT
p-VALUE 0.05.

Aro. Val. Dom.
[CCC] [CCC] [CCC]

w/o curriculum 0.724 0.298 0.690
With random curriculum 0.729 0.293 0.686
Criterion 1-Error of predicted label 0.725 0.313� 0.694
Criterion 2-Disagreement between annotators 0.730⇤ 0.320⇤� 0.696�
Criterion 3-Minmax entropy 0.745⇤� 0.325⇤� 0.705⇤�

not consider any curriculum, training the models with all the
data. The learning rate and number of training epochs for this
framework is independently optimized for each problem using
the development set. The second baseline uses a curriculum
where the bins are created at random. This baseline is also
implemented by optimizing its learning rates for this task on
the development set.

V. RESULTS

This section describes the results obtained on the three
machine-learning problems for emotion recognition (regres-
sion, binary classification, and multi-class classification). We
train the DNNs over 10 trials, using different random ini-
tializations. We report the average results, evaluating the
performance metric using the one-tail, population mean t-test
over the 10 trials. We assert statistical significance at p-value
0.05. We denote with an asterisk (⇤) when a model trained
with curriculum learning is statistically better than the baseline
model trained without a curriculum, and with a circle (�) when
a model trained with curriculum learning is statistically better
than the baseline trained with a random curriculum (see Tables
I, II and III).

A. Regression of Emotional Attributes
The first experimental evaluation demonstrates the role of

curriculum learning on predicting emotional attributes with
regression models. The performance is computed with CCC.

Table I shows the average CCC values for arousal, valence
and dominance across the 10 trials. The results show that
the condition with the highest CCC values corresponds to the
regression models trained with curriculum learning using the
criterion 3 (i.e., minmax entropy). The results are statistically
better than both baseline methods. The table also shows that
randomly selecting the training bins does not lead to significant
improvements. Criterion 1 is less effective than criteria 2 and
3. These results demonstrate the importance of quantifying the
disagreement between evaluators to assess the difficulty of the
samples. We can effectively achieve this goal by considering
individual evaluations assigned to the samples.

Figure 1 shows the CCC values for the regression models
for emotional attributes by following different curriculum
policies. The figure shows that the performance increases as
we effectively add more difficult samples in the training set.
The criterion 3 based on the minmax entropy framework
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(a) Arousal (b) Valence (c) Dominance

Fig. 1. Intermediate results for regression models. The results are obtained on the test set at different steps of the training process using curriculum learning.
More difficult samples are added at each step. The dashed lines indicate the performance of regression models trained without curriculum learning.

TABLE II
RESULTS OF BINARY CLASSIFICATION FOR AROUSAL (Aro), VALENCE

(Val), AND DOMINANCE (Dom).THE ASTERISK [⇤] AND CIRCLE [�]
INDICATE THE APPROACH OUTPERFORMS THE BASELINES w/o curriculum
AND with random curriculum, RESPECTIVELY. WE ASSERT SIGNIFICANCE

AT p-VALUE 0.05.

Aro. Val. Dom.
[F1-score] [F1-score] [F1-score]

w/o curriculum 0.778 0.592 0.685
With random curriculum 0.771 0.591 0.685
Criterion 1-Error of predicted label 0.785 0.606⇤� 0.684
Criterion 2-Disagreement between annotators 0.789⇤� 0.616⇤� 0.695⇤�

Criterion 3-Minmax entropy 0.791⇤� 0.616⇤� 0.696⇤�

achieves the highest performance for arousal, valence, and
dominance. The performance for this approach is consistently
better than a system trained without curriculum learning.

B. Binary Classification of Emotional Attributes
We also evaluate the role of curriculum learning on binary

classification of emotional attributes (e.g., low arousal versus
high arousal). The test set is divided into two classes for high
and low values of a given attribute based on the median split
obtained on the training set. This method makes the test set
almost balanced.

Table II lists the average F1-score for arousal, valence,
and dominance across the 10 trails. The table demonstrates
that using curriculum learning with criteria 2 and 3 achieves
statistically significant improvements over a model trained
without curriculum learning or with randomly selected bins.
However, the best performance is also obtained with criterion
3, which uses the policy based on the minmax entropy
framework. Criterion 1 is only effective for valence, showing
that quantifying the difficulty of the samples based on pre-
trained models is not the best approach for SER.

Figure 2 shows the F1-score values for attribute based
binary classification tasks following the three different curricu-
lum policies. It also shows the performance of a model trained
without a curriculum and with a curriculum using randomly
selected bins. Similar to the results with regression problems,
criterion 3 achieves the best performance for arousal, valence,
and dominance, obtaining important improvements over the
baselines.

TABLE III
PERFORMANCE OF CATEGORICAL EMOTION CLASSIFICATION. THE

ASTERISK [⇤] AND CIRCLE [�] INDICATE THE APPROACH OUTPERFORMS
THE BASELINES w/o curriculum AND with random curriculum,

RESPECTIVELY. WE ASSERT SIGNIFICANCE AT p-VALUE 0.05.

F1-score [%]
w/o curriculum 39.7
With random curriculum 39.8
Criterion 1-Error of predicted label 40.8
Criterion 2-Disagreement between annotators 41.5⇤�
Criterion 3-Minmax entropy 42.1⇤�

C. Multi-class Categorical Emotion Classification

The third problem involves the classification of categorical
emotions. The evaluation consider the following five classes:
happiness, anger, sadness, disgust, and neutral state. The
ground truth labels for the test set are generated by finding
the majority vote between all the annotators. Samples that do
not reach agreement with this rule are discarded from this
evaluation.

Table III shows the average F1-score of the five class
categorical emotion classification across the 10 trails. The
results are consistent with the findings presented for regression
and binary classification problems. Curriculum learning using
policies that quantify the agreement between evaluators (crite-
ria 2 and 3) provides statistically significant improvement over
the baseline methods. For criterion 3, the use of curriculum
learning leads to an absolute improvement of 2.4% over a
model trained without curriculum learning. This gain corre-
sponds to a 6% relative improvement over the baseline, which
is obtained by just changing the order in which the samples
are introduced during the training process.

Figure 3 shows the F1-score curve for the classification
of categorical emotions by following different curriculum
policies. It is clear that criterion 3 based on the minmax
entropy framework also achieves the best performance for this
task. The use of criteria 2 and 3 leads to statistically significant
improvements over the baselines. We also observe that for
criterion 3, the last bin does not improve the performance,
suggesting that the aggregation and learning method used in
this study cannot benefit from the information obtained from
these more challenging sentences.
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(a) Arousal (b) Valence (c) Dominance

Fig. 2. Intermediate results for binary classification. The results are obtained on the test set at different steps of the training process using curriculum learning.
More difficult samples are added at each step. The dashed lines indicate the performance of binary classifiers trained without curriculum learning.

Fig. 3. Intermediate results for categorical emotions. The results are obtained
on the test set at different steps of the training process using curriculum
learning. More difficult samples are added at each step. The dashed line
indicates the performance of a classifier trained without curriculum learning.

D. Analysis of Feature Representation

This section visualizes how the difficulty measures used to
build the proposed curriculum is reflected on the features.
This analysis is applicable to classification problems, where
we only consider binary classification of emotional attributes.
The analysis relies on the t-SNE method proposed by Van Der
Maaten and Hinton [70], which is a useful tool to visualize
high dimensional data. This toolkit is used to reduce the
dimension of the features from 6,373 to 2. We expect that
the difficulty measure used to build the curriculum is reflected
in the feature representation, where the different classes in
the first bin (i.e., the easiest samples) are better separated
than the classes in other bins (i.e., more difficult samples).
This feature visualization provides another venue to evaluate
the proposed criteria for curriculum learning. The analysis
considers criterion 1 (error of predicted error) and criterion 3
(minmax entropy), which provided the worse and best policies
for curriculum learning in previous sections.

We report the results for arousal in the binary classification
problem. Figure 4 shows the feature representation for arousal,
where each point is associated with one sentence. The color
of the points represents the category of the sentence (low
arousal versus high arousal). Figures 4(a), 4(b), and 4(c) show

the results when using criterion 1 for bin 1 (easy), bin 3
(medium difficulty) and bin 5 (hard), respectively. The classes
for the easy samples have a clear separation. Figure 4(c) shows
that the overlap between classes increases in bin 5, which
has the most difficult examples. The correlation between task
difficulty and ambiguity in the feature domain was expected
since the difficulty is derived from the prediction of pre-
trained classifiers, which directly rely on the discrimination of
the features. This connection is not assumed in the minmax
entropy framework (criterion 3), which relies on the disagree-
ment between evaluators. Figures 4(d), 4(e), and 4(f) show
the results using criterion 3 for bin 1 (easy), bin 3 (medium
difficulty) and bin 5 (hard), respectively. It is interesting to
observe similar trends, even when the difficulty metric is not
derived from pre-trained classifiers.

VI. CONCLUSIONS

This study proposed the use of curriculum learning for
speech emotion recognition. Since the policies to determine
the difficulty of emotional sentences are not straightforward,
as in other problems, the study explored different methods
to design the curriculum. The study proposed to quantify the
difficulty level of the sentences by relying on results from pre-
trained models on the training set, or by considering inter-
evaluator agreement metrics under the assumption that am-
biguous sentences for human are also ambiguous for machines.
The experimental evaluation considered three formulations
of SER: regression of emotional attributes, binary classifica-
tion of emotional attributes, and classification of emotional
categories. The results demonstrated the benefits of using
curriculum learning in SER, showing consistent improvements
over baselines trained with randomly selected bins or without
curriculum learning. The most successful policy for building
the curriculum considers the agreement level of the annotations
by estimating the expertise of the labelers. This approach relies
on the minmax entropy framework that learns a latent variable
describing the difficulty of the speech samples evaluated by
the raters. The machine-learning models trained with this cur-
riculum achieved significant improvements over the baseline
methods.
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(a) Arousal - Criterion 1 - bin 1 (b) Arousal - Criterion 1 - bin 3 (c) Arousal - Criterion 1 - bin 5

(d) Arousal - Criterion 3 - bin 1 (e) Arousal - Criterion 3 - bin 3 (f) Arousal - Criterion 3 - bin 5

Fig. 4. Visualization using the t-SNE toolkit of acoustic features for arousal in binary classification tasks for bin 1 (easy), bin 2 (medium difficulty), and bin
3 (hard). The top figures correspond to criterion 1 (i.e., error of predicted labels) and the bottom figures correspond to criterion 3 (i.e., minmax entropy).

As a future direction of the curriculum learning framework
proposed in this study, we will use the difficulty measure to
find training examples that negatively affect the performance
of the models. Abdelwahab and Busso [71] showed that
selecting a subset of the data for supervised adaptation of
speech emotional models led to improvements over results
obtained when the entire adaptation set was used. By remov-
ing these samples, we expect to increase the classification
performance, since these examples can be too difficult to
learn due to unreliable or incorrect labels. Likewise, there are
important parameters that we have not investigated, including
the optimum number of difficulty bins, and the optimum
number of epochs. Adjusting these parameters may lead to
further improvements in classification performance. Finally,
we will explore whether curriculum learning is still effective
as the size of the training set increases. The collection of the
MSP-Podcast is an ongoing effort in our laboratory, which will
allow us to evaluate the approach in the future with a larger
training set.
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