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Abstract

Deep clustering is a popular unsupervised technique for feature representa-
tion learning. We recently proposed the chunk-based DeepEmoCluster frame-
work for speech emotion recognition (SER) to adopt the concept of deep clus-
tering as a novel semi-supervised learning (SSL) framework, which achieved
improved recognition performances over conventional reconstruction-based
approaches. However, the vanilla DeepEmoCluster lacks critical sentence-
level temporal information that is useful for SER tasks. This study builds
upon the DeepEmoCluster framework, creating a powerful SSL approach that
leverages temporal information within a sentence. We propose two sentence-
level temporal modeling alternatives using either the temporal-net or the
triplet loss function, resulting in a novel temporal-enhanced DeepEmoCluster
framework to capture essential temporal information. The key contribution
to achieving this goal is the proposed sentence-level uniform sampling strat-
egy, which preserves the original temporal order of the data for the cluster-
ing process. An extra network module (e.g., gated recurrent unit) is utilized
for the temporal-net option to encode temporal information across the data
chunks. Alternatively, we can impose additional temporal constraints by us-
ing the triplet loss function while training the DeepEmoCluster framework,
which does not increase model complexity. Our experimental results based on
the MSP-Podcast corpus demonstrate that the proposed temporal-enhanced
framework significantly outperforms the vanilla DeepEmoCluster framework
and other existing SSL approaches in regression tasks for the emotional at-
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tributes arousal, dominance, and valence. The improvements are observed in
fully-supervised learning or SSL implementations. Further analyses validate
the effectiveness of the proposed temporal modeling, showing (1) high tem-
poral consistency in the cluster assignment, and (2) well-separated emotional
patterns in the generated clusters.

Keywords: Deep clustering, Temporal modeling, Semi-supervised learning,
Speech emotion recognition

1. Introduction

Advances in speech emotion recognition (SER) have opened new oppor-
tunities in human computer interaction (HCI), education, surveillance, and
healthcare. To facilitate the deployment of SER solutions, the models need
to be robust to new domains (Lee et al., 2021). Recently, deep learning (DL)-
based SER models such as transformers (Tarantino et al., 2019; Goncalves
and Busso, 2022; Wagner et al., 2023) or long short-term memory (LSTM)
(Tao and Liu, 2018) have obtained state-of-the-art recognition performances
compared to traditional two-step modeling approaches using handcrafted
high-level descriptors (HLDs) features (Lin and Wei, 2005; Lee et al., 2011;
Lotfian and Busso, 2018, 2019b). By jointly learning the feature extractor
and the emotion classifier or regressor, the resulting approach typically leads
to more powerful and discriminative feature representations for SER. A suffi-
cient amount of data is the key to efficiently training a DL model. However,
it is expensive to collect a large and high-quality human-labeled dataset.
Therefore, developing new strategies to utilize unlabeled data while training
DL models has become an important research direction.

Various studies have recently proposed leveraging self-supervised learning
schemes for universal audio representations. The pre-defined self-supervision
paradigm predicts the temporal relation of speech signals (e.g., predicting
future frames from past frames (Schneider et al., 2019), or completing the
masked frame clusters (Hsu et al., 2021)), which enables the model to take
into consideration the overall audio sequence structure without requiring any
human labels. This goal can be achieved by encouraging the models to opti-
mize the triplet loss function (e.g., TRILL (Shor et al., 2020)), or a contrastive
loss function (e.g., COLA (Saeed et al., 2021) and Wav2Vec (Baevski et al.,
2020)). These strategies aim to increase the similarity of the learned repre-
sentations if they have closer temporal relations. These models are easy to
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pre-train on a large corpus (or multi-corpus setting (Baevski et al., 2020))
since they do not need supervision labels. These approaches result in robust
general-purpose deep features that can be used for different speech tasks. The
conventional approach to utilize deep features is to fine-tune these feature
representations for the different downstream supervision tasks, such as auto-
matic speech recognition (ASR) (Baevski et al., 2020), speaker identification
(Saeed et al., 2021) or SER (Chou et al., 2022; Pepino et al., 2021)(Chen and
Rudnicky, 2023). The use of deep features further improves the performances
of DL-based models.

Unlike self-supervised learning, semi-supervised learning (SSL) relies on
partial human knowledge (i.e., labeled data) to explore complementary task-
specific information from an unlabeled data set to improve the model per-
formance (Chapelle et al., 2006). In the SER field, one of the common
approaches is self-labeled training (Triguero et al., 2015) or pseudo-labeling
(Choi and Song, 2020; Zhu and Sato, 2021). A trained emotion classifier is
used to recognize pseudo-labels with high confidence (i.e., low entropy) on the
unlabeled data. The extra pseudo-labeled data is then added to the training
set to retrain the classifier (Yarowsky, 1995; Zhu and Sato, 2021). How-
ever, this method might suffer from the problem of performance degradation
due to mislabeled training samples produced by the pseudo-labeling process.
An additional label correction framework is required to alleviate the error
accumulation in the pseudo-labeling process (Zhang et al., 2018). Another
conventional approach relies on a reconstruction-based network consisting of
an encoder-decoder structure such as autoencoder (AE) (Deng et al., 2018),
variational autoencoder (VAE) (Latif et al., 2018) or ladder networks (Lad-
derNet) (Parthasarathy and Busso, 2020). These networks are trained to
learn the bottleneck hidden embedding that can simultaneously reconstruct
the input data and predict emotions, preserving emotional-relevant informa-
tion with compact latent representation. Since the reconstruction process is
unsupervised (i.e., reconstructing the input data itself), the model can adopt
unlabeled data in the training process to extract additional prior knowledge
of the data distribution. This method exploits unlabeled data without in-
troducing potentially misleading emotion labels, which effectively improves
recognition performances with reduced risks. However, reconstruction-based
methods do not have strong geometric meaning when learning the latent rep-
resentation, which might limit the intelligibility of the learned embeddings
(e.g., why does a reconstruction task facilitate the SER task?). Also, a recon-
struction task can be a simple SSL problem when the train set with labeled
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data is large enough, limiting the contributions of the unlabeled data.
Deep clustering is a popular unsupervised technique for the feature repre-

sentation learning of image classification (Caron et al., 2018; Guo et al., 2017).
The training process is typically alternated between the update of network
parameters and clustering assignments, leading to competitive performances
compared to supervised learning approaches (Caron et al., 2018). Inspired by
this concept, we proposed in our preliminary work a semi-supervised Deep-
EmoCluster framework to learn deep clustering features for SER tasks (Lin
et al., 2021). The DeepEmoCluster model predicts the emotional task and
K-means clustering classes at the same time, constraining the model to max-
imize the separation between clusters according to emotions. Similar to the
AE (Deng et al., 2018) or VAE (Latif et al., 2018) approaches, DeepEmoClus-
ter exploits the unlabeled data without directly introducing pseudo-emotion
labels. Specifically, it leverages the cluster assignments obtained by the K-
means classifier as the training target (i.e., pseudo-clustering labels) to per-
form cluster classification, which leads to better recognition performances
than other existing reconstruction-based SSL frameworks in SER (Lin et al.,
2021). In contrast to AE or VAE, the framework does not require a de-
coder. However, the original DeepEmoCluster framework learns the feature
representation based on chunk-level data (i.e., the sentence is split into small
segments referred to as chunks). The approach treats each data chunk as
an independent training sample, which neglects the sentence-level temporal
structure across consecutive chunks during the clustering process. Temporal
modeling is a challenging but critical task when dealing with sequential data
such as speech. Therefore, temporal modeling is essential to SER (Lin and
Busso, 2022). Various studies have shown superior recognition performances
if the model properly captures temporal information (Han et al., 2018; Lin
and Busso, 2022; Kim et al., 2017; Ouyang et al., 2017).

This study builds upon the original DeepEmoCluster model, address-
ing in a principled manner its lack of temporal modeling capability. The
novel formulation results in a temporal-enhanced DeepEmoCluster frame-
work. Specifically, the approach modifies the sampling strategy to preserve
complete sentence-level temporal information for the training process. This
strategy allows us to introduce a temporal-net or triplet loss function, in
addition to the original DeepEmoCluster model, for capturing the tempo-
ral relation across data chunks in a sentence. The temporal-net solution
includes an additional network module (e.g., gated recurrent unit) for pro-
cessing cross-chunk temporal information in the sentence. The triplet loss
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function regularizes the model to increase the similarity of chunk-level repre-
sentations that are closer in the temporal dimension without compromising
extra model complexity during inferences.

We evaluate the proposed temporal-enhanced DeepEmoCluster frame-
work with the MSP-Podcast corpus (Lotfian and Busso, 2019a), where the
goal is to predict the emotional attributes for arousal, dominance, and va-
lence. Our experimental results show that the proposed framework signif-
icantly outperforms the vanilla DeepEmoCluster and other reconstruction-
based SSL baselines for all emotional attributes. If different temporal-net
options are considered, we achieve the best concordance correlation coeffi-
cient (CCC) performances for arousal (0.5726), valence (0.1674), and dom-
inance (0.4837) using mel-spectrogram as the inputs. We include analyses
to understand the properties of the proposed temporal-enhanced DeepEmo-
Cluster framework. First, we study the clusters. The analysis indicates
that our proposed approach obtains high consistency in the clustering as-
signments for temporally close data chunks, which validates the effectiveness
of the temporal modeling. Second, we obtain t-SNE (van der Maaten and
Hinton, 2008) plots of the model embeddings. The results illustrate that the
clusters are learned and grouped by considering the emotional information in
the sentences (e.g., high, middle, and low arousal), improving the emotional
dependency in the generated clusters. We also analyze the hyper-parameters
of the framework to justify the choice of parameters used in the study. In
summary, the main contributions of this study are:

• We propose a novel semi-supervised temporal-enhanced DeepEmoCluster
framework, which achieves the best emotion attribute recognition perfor-
mances among other existing SSL frameworks in SER.
• We find that the effectiveness of the temporal modeling approach can lead
to high temporal consistency and well-separable emotional clusters, which
lead to better SER performance.

The rest of the paper is organized as follows. Section 2 describes the
research studies that are relevant to this work. Section 3 presents the
proposed methodology, providing detailed explanations of the temporal-
enhanced DeepEmoCluster framework. Section 4 describes the experimental
settings, including the speech-emotional database, acoustic features, baseline
models, and implementation details used to train and evaluate our approach.
Section 5 discusses the experimental results and analysis, including the com-
prehensive performance comparison, the temporal consistency, the t-SNE
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analysis, and the hyper-parameter analysis. Finally, Section 6 presents the
concluding remarks and future research directions opened by this study.

2. Related Work

The temporal-enhanced DeepEmoCluster is a novel semi-supervised SER
modeling framework that combines the techniques of deep clustering and
temporal modeling. This section discusses previous studies proposed in the
SER field working on clustering approaches (Sec. 2.1) and temporal modeling
(Sec. 2.2), respectively.

2.1. Clustering Approaches in SER

In the SER field, the clustering technique is typically applied as a data
preprocessing step to identify keyframes (or keysegment) when using convolu-
tional neural networks (CNNs) or LSTM (Hajarolasvadi and Demirel, 2019;
Mustaqeem et al., 2020). The K-means clustering algorithm is adopted for
grouping similar feature frames, where the representative frame (keyframe) is
determined by the distance to the cluster centroids (Mustaqeem et al., 2020).
This approach can effectively remove redundant frames in the utterance (i.e.,
frames having similar acoustic contents due to the overlaps between the anal-
ysis windows), which significantly reduces the computational cost while still
preserving the model performance (Hajarolasvadi and Demirel, 2019). Some
studies implicitly learn the feature clusters by combining different network
modules. Jalal et al. (2019) proposed a framework that utilizes convolution
capsules (Sabour et al., 2017) to summarize different temporal information
after a feature encoding layer implemented with bidirectional long short-term
memory (Bi-LSTM). Their t-SNE analysis demonstrated that the distinct
temporal features (or clusters) are learned by different capsules, leading to
improvements in SER performance.

In contrast to conventional clustering techniques, deep clustering feature
representation learning explicitly treats the clustering assignments as the
classification target of a self-supervision task (Caron et al., 2018; Van Gans-
beke et al., 2020; Asano et al., 2020; Lin et al., 2021; Hsu et al., 2021). The
training of the clustering task (i.e., pseudo-label assignment) and the main
classification task (i.e., update of model parameters) are alternating until
the model converges. The major challenge of the framework is to prevent
the model from learning the trivial solution of assigning all samples to a sin-
gle cluster. This issue is prevented with ad-hoc techniques such as entropy
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regularization (Van Gansbeke et al., 2020; Asano et al., 2020) or uniform
sampling (Caron et al., 2018). The entropy regularization encourages the
model to maximize an additional entropy term in the loss function, which
aims to spread the predictions of cluster assignment uniformly across the
classes. The uniform sampling strategy balances the label distribution over
classes (i.e., cluster assignments) by upsampling and downsampling the data
points contained in the clusters with fewer and more samples, respectively.
This approach is equivalent to weighting the contribution of the loss function
based on the inverse size of each cluster set. The DeepEmoCluster framework
(Lin et al., 2021) adopted a similar deep clustering approach implemented
with a uniform sampling strategy, forming a semi-supervised framework to
learn an emotional cluster representation for speech. However, the uniform
sampling strategy of the DeepEmoCluster framework is based on chunk-level
data, which does not preserve the temporal order of the chunks in the sen-
tence. In fact, data chunks are randomly sampled without considering their
original temporal order in the sentence, which makes the introduction of an
additional sentence-level temporal modeling module infeasible. To overcome
this issue, we modify the sampling strategy to preserve the temporal order of
the data chunks in the sentence to capture and model sentence-level temporal
information, extending the framework to temporal-enhanced DeepEmoClus-
ter. We describe the sampling process in Section 3.3.

2.2. Temporal Modeling in SER

Emotion is not uniformly conveyed across time (Lin and Busso, 2023;
Busso and Narayanan, 2006; Lotfian and Busso, 2019b). Therefore, SER
needs to capture and summarize dynamic changes in the emotions conveyed
in the acoustic frames across time. Conventionally, this goal can be achieved
with a recurrent neural network (RNN)-based model (e.g., LSTM) using an
attention mechanism, where the recurrent units encode temporal informa-
tion, and the jointly trainable attention weights help the model to emphasize
or omit frames depending on their emotional contents (Mirsamadi et al.,
2017; Huang and Narayanan, 2017). However, frame-level features contain
redundant information and typically result in long sequence input (e.g., a
few seconds of a sentence create hundreds of frames). Long sequences cause
degeneration of RNN-based models due to the vanishing gradient problem
(Trinh et al., 2018). They also impose an increase in the computational com-
plexity of the model while using transformer-based models (Kitaev et al.,
2020). To resolve the problem, Lin and Busso (2022, 2020) proposed a
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framework to split sentences into a fixed number of data chunks with the
same duration, performing chunk-level attention instead of frame-level at-
tention. This approach significantly reduces the complexity of the attention
models and improves overall SER performance. Various similar approaches
have also been proposed to avoid directly modeling long sequence inputs
by splitting a sentence into smaller data chunks (or segments) for building
chunk-level models (Tarantino et al., 2019; Sahoo et al., 2019). During the
training stage, data chunks are regarded as independent training samples
sharing the same sentence-level label (Han et al., 2014). After the training,
the model relies on statistical decision pooling such as majority voting rule
or mean pooling layer to aggregate the final sentence-level prediction (Bitouk
et al., 2010). The proposed temporal-enhanced DeepEmoCluster framework
follows the same chunk-level modeling scheme, capturing sentence-level tem-
poral information with either the temporal-net or triplet loss function.

3. Proposed Methodology

Our approach builds upon the vanilla DeepEmoCluster framework pre-
sented in our preliminary study (Lin et al., 2021), enabling the model to
capture in a principled way temporal information. This section describes the
preparation of data chunks used in this study (Sec. 3.1), and the original
DeepEmoCluster framework (Sec. 3.2). Then, we present the two major
contributions proposed in this study to build the temporal-enhanced Deep-
EmoCluster: 1) the uniform sampling strategy to prevent the trivial cluster-
ing solution while preserving the sentence-level temporal order between data
chunks (Sec. 3.3), and 2) the model constraints using either the temporal-net
or the triplet loss function to capture the sentence-level temporal information
(Sec. 3.4).

3.1. Dynamic Chunk-Based Segmentation

The input of the DeepEmoCluster framework is the data chunks split by
using the dynamic chunk segmentation approach proposed by Lin and Busso
(2022). We illustrate the segmentation process in Figure 1(a). This approach
segments a sentence-level data X with an arbitrary length into a fixed number
of data chunks {x1, x2, . . . , xC} with the same size, regardless of its duration.
The variable C is the number of chunks, and wc is the duration of the chunks.
This goal is achieved by dynamically adjusting the shifting size ∆ci between
data chunks according to their sentence duration. Equation 1 provides the
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Algorithm 1: The complete training procedure for the semi-
supervised DeepEmoCluster model.

1 Initialize:
2 Φ(·): the feature extractor
3 fcltr(·): the cluster classifier
4 femo(·): the emotion regressor
5 xiU : i-th batch data chunks from the unlabeled set U
6 xiL: i-th batch data chunks from the labeled set L
7 yemo,iL: i-th batch emotion labels from set L
8 Main:
9 for epoch = 1, 2, . . . , E do

10 % pseudo-labeling for U
11 hiU = Φ(xiU), ∀ i
12 ycltr,iU ← Kmeans(hiU), ∀ i

13 % Stage I: self-supervised path
14 for i = 1, 2, . . . I do
15 ŷcltr,iU = fcltr(Φ(xiU))
16 J = CE(ŷcltr,iU , ycltr,iU)
17 update Φ(·) and fcltr(·) by J
18 end

19 % pseudo-labeling for L
20 hiL = Φ(xiL), ∀ i
21 ycltr,iL ← Kmeans(hiL), ∀ i

22 % Stage II: jointly optimized path
23 for i = 1, 2, . . . I do
24 ŷcltr,iL = fcltr(Φ(xiL))
25 ŷemo,iL = femo(Φ(xiL))
26 J = CE(ŷcltr,iL, ycltr,iL) +
27 [1 - CCC(ŷemo,iL, yemo,iL)]
28 update Φ(·) , fcltr(·) and femo(·) by J
29 end

30 end

key formula for this segmentation. The shifting size ∆ci is a function of
the sentence duration Ti, where the overlap between consecutive chunks is
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smaller for longer sentences. The number C is determined by Equation 2,
which requires two predefined parameters: Tmax, maximum duration of a
sentence in the dataset, and wc, the desired chunk window length.

∆ci =
Ti − wc

C − 1
(1)

C =

⌈
Tmax

wc

⌉
(2)

3.2. The DeepEmoCluster Framework

The DeepEmoCluster framework uses the classification of assignments of
data-generated clusters as an auxiliary task. The model consists of three sub-
network modules, illustrated in Figure 1(b): feature encoder, cluster classifi-
cation, and emotion regression. The feature encoder Φ(·) maps the input data
xi into the hidden representation hi, which is the input of the cluster classi-
fication and emotion regression blocks. The cluster classifier fcltr(·), where
cltr stands for cluster , predicts the clustering assignments where the labels
are directly obtained from the data. The emotion regressor femo(·), where
emo stands for emotion, predicts the score of the emotional attributes (i.e.,
arousal, dominance, and valence). The DeepEmoCluster framework trains
the model by alternating between the clustering and classification processes.
Algorithm 1 shows the complete training process for the DeepEmoCluster
framework. In every training epoch, the K-means clustering algorithm is first
implemented using the hidden outputs of Φ(·) (i.e., feature encoder) to de-
termine the pseudo-labels for the cluster classifier. Then, the model is jointly
trained to optimize a multitask loss function that combines the cross-entropy
(CE) loss for the cluster classifier (Jcltr = CE), and the concordance correla-
tion coefficient (CCC) function for the emotion regressor (Jemo = 1−CCC).
Equation 3 shows the loss function. For the data without emotion labels
(i.e., unlabeled set U), the model only optimizes the CE loss and freezes the
update of the emotion regressor weights (femo(·)). The iteration between
unsupervised and supervised stages results in an SSL framework.

J = Jcltr + Jemo = CE + (1− CCC) (3)

The DeepEmoCluster framework utilizes the chunk-level modeling scheme

10



0 𝑻𝒊 (𝒔𝒆𝒄)
∆𝒄𝒊 𝒘𝒄

● ● ●

● ● ●

C

𝒙𝟏 𝒙𝟐 𝒙𝑪

X

(a) Segmentation of Data Chunks

𝒙𝒊

Inputs

𝒉𝒊

Feature Encoder

𝚽(∙)

K-Means

Pseudo-

labels

Classification

𝒇𝒄𝒍𝒕𝒓(∙)

Cluster Classifier

Emotion Regressor

∎
∎

∎∎
∎

∎
∎∎

𝒇𝒆𝒎𝒐(∙)

(b) Vanilla DeepEmoCluster Framework

Figure 1: The vanilla DeepEmoCluster framework proposed in Lin et al. (2021), which
adopts a dynamic chunk segmentation approach to split the data into chunks, which are
used as the input of the model.

(Sec. 3.1) to train the model. In our original implementation presented in our
preliminary study (Lin and Busso, 2022), the DeepEmoCluster framework
treated each data chunk as an independent training sample that shares the
same sentence-level label assigned to the sentence. The results of the chunk-
level predictions were then aggregated to obtain a sentence-level prediction
using the mean pooling operation. We refer to this model as the vanilla
DeepEmoCluster framework.

Since the vanilla DeepEmoCluster framework treats the data chunks as
independent training samples, its uniform sampling strategy is straightfor-
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ward. Assume the training set contains N sentences, each sentence is split
into C data chunks resulting in a total of N × C samples for training the
chunk-level model. Then, we create cluster sets with the chunks assigned to
the same clustering group. We randomly sample a fixed size of N×C

Q
data

points for each cluster, where Q represents the total number of clusters. If the
cluster set does not have enough data points, we sample with replacement to
reach the target size (i.e., upsampling). This sampling approach guarantees
a balanced class distribution during training, preventing the model from con-
verging to a trivial solution that assigns all samples to a few clusters (Caron
et al., 2018). However, the random sampling process loses the temporal order
between data chunks, making the framework unable to capture sentence-level
temporal information.

3.3. Sentence-level Uniform Sampling

This study modifies the sampling strategy to preserve the sentence-level
temporal order, while still keeping a balanced cluster class distribution. The
proposed sampling approach is implemented at the sentence level instead
of at the chunk-level. The key idea is to assign each sentence a sampling
weight. First, we compute a weight for each chunk, which is derived from
the chunk-level cluster distribution. We use the inverse size of each cluster
set as the weight of the cluster. For instance, if a cluster set has a smaller size
(i.e., minority class), the sample weight of the data chunks coming from this
cluster set is larger (i.e., upsampling). Then, the weights across the chunks
of a sentence are aggregated. The sentence-level sampling weight is simply
the summation of these chunk-level weights for the sentence, following the
clustering assignments. This sentence-level sampling approach preserves the
temporal order of the data chunks since the sentence always has the C chunks
in order (see the input block for the model in Fig. 2). It also balances the class
distribution with the aforementioned cluster weighting approach. Notice that
the approach does not guarantee having a strictly uniform distribution across
classes due to the stochastic nature of the sampling process. However, studies
have shown that a moderately relaxed non-uniform class distribution is closer
to practical scenarios and does not result in non-trivial clustering solutions
(Asano et al., 2020).

3.4. Temporal Modeling for Deep Clustering Framework

With the sentence-level sampling strategy, we obtain the full C data
chunks of the sentence, arranged by their temporal orders. Therefore, we
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Figure 2: The two proposed sentence-level temporal modeling approaches to achieve the
temporal-enhanced DeepEmoCluster framework. Both methods rely on the modified
sentence-level uniform sampling strategy (Sec. 3.3) to incorporate either an additional
temporal-net module or the triplet loss function in the training pipeline.

can perform additional temporal modeling across data chunks in the deep
clustering process. We explore two approaches to encode temporal informa-
tion in the DeepEmoCluster model.
Temporal-Net DeepEmoCluster (Fig. 2(a)): We can directly add an
extra network module to capture the temporal information. More specifically,
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the feature encoder Φ(·) extracts the chunk-level representations hi of the in-
put data chunks xi (Eq. 4). Then, we introduce the temporal-net Ψ(·) to
encode the temporal information across these C consecutive representations,
resulting in the hidden outputs zi (Eq. 5) for the upcoming cluster classifier
fcltr(·) and emotion regressor femo(·). There are various options to implement
the temporal-net, since the goal of the model is to just process cross-chunk
information. One option is the gated recurrent unit (GRU), which dynami-
cally tracks temporal changes with recurrent connections. Another option is
the 2D-CNN, which extracts spatial-temporal features. We can also imple-
ment this network with the transformer architecture, which uses positional
encoding to specify the temporal order of the sequence for self-attention mod-
eling. We explore these three options to implement the temporal-net. We
refer to these networks as Temp-GRU, Temp-CNN, and Temp-Trans, respec-
tively. Notice that the complexity of temporal-net does not need to be large,
since the feature encoder Φ(·) has summarized the frame-level features into
chunk-level representations, which significantly reduces the temporal length
(i.e., one representation per chunk, instead of one representation per frame).
We describe the detailed temporal-net architectures in Section 4.3.

hi = Φ(xi), i = 1, 2, . . . , C (4)

{z1, z2, . . . , zC} = Ψ({h1, h2, . . . , hC}) (5)

Triplet DeepEmoCluster (Fig. 2(b)): Another alternative way to effi-
ciently learn temporal information without adding extra model complexity
(as done with the temporal-net module) is by introducing the triplet loss
function during training. Similar to conventional approaches (Shor et al.,
2020; Saeed et al., 2021; Baevski et al., 2020), we design the triplets by
finding an anchor, a positive sample, and a negative sample based on the
temporal proximity. Specifically, the positive sample is determined by the
samples that are temporally close to the anchor within a specified window
length W , and the negative sample is determined by the samples outside of
that window, as shown in the triplet loss block in Figure 2(b). The triplet loss
function encourages the model to learn similar representations for temporally
close samples and dissimilar representations for distant samples. Note that
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our triplet loss function is computed at the chunk level (i.e., hi from Eq.
4) rather than at the raw acoustic frame level. This implementation signif-
icantly reduces the number of triplet pairs needed for training. Equation 6
indicates the loss function,

Jtriplet = max{d(hanc, hpos)− d(hanc, hneg) + δ, 0} (6)

where d(·) is the L2 distance between two vectors, and δ is a nonnegative
margin set as a hyper-parameter. Finally, the triplet loss term is added to
the original DeepEmoCluster loss (Eq. 3) with a weighting control factor
γ, resulting in the overall loss function in Equation 7 for joint optimization.
Therefore, the model is trained to maximize the separation between clusters
based on emotion contents with additional temporal consistency constraints.
We refer to this approach as Temp-Triplet.

Jtotal = J + γ × Jtriplet (7)

4. Experimental Settings

4.1. The MSP-Podcast Corpus

We use version 1.8 of MSP-Podcast (Lotfian and Busso, 2019a) corpus to
evaluate our approach. The dataset collects spontaneous emotional speech
segments from various publicly available audio-sharing websites. The original
full podcast conversations are segmented by a series of automatic steps such
as speaker diarization, and noise and music detection to obtain recordings
containing a single speaker, with high signal-to-noise ratios (SNRs), and no
background music. We rely on the emotional retrieval strategy proposed by
Mariooryad et al. (2014) to prioritize samples to be annotated with emo-
tional labels that are likely to have emotional content. These segments are
processed to have a duration ranging from 2.75 to 11 seconds. Every segment
is rated by at least five different annotators for categorical descriptors (e.g.,
anger, happiness, and sadness) and emotional attributes (arousal, valence,
and dominance). This study only focuses on attribute-based descriptors for
arousal (calm to active), valence (negative to positive), and dominance (weak
to strong), where the labels are sentence-level scores ranging from 1 to 7.
The ground truth is the average of the scores provided by the evaluators to
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Table 1: The VGG-16 feature encoder model used in this study.

Layer Channels/Nodes Kernel Stride Activation

Input 1 N/A N/A N/A

CNN-block (×2) 32 (3, 3) 1 ReLU

CNN-block (×2) 64 (3, 3) 2 ReLU

CNN-block (×3) 128 (3, 3) 2 ReLU

Flatten N/A N/A N/A N/A

Linear 256 N/A N/A ReLU

Dropout p = 0.5 N/A N/A N/A

a speech recording. We formulate the SER task as a regression problem,
similar to previous studies (Abdelwahab and Busso, 2018, 2019).

The dataset defines the partitions for the train (44,879 speech turns), de-
velopment (7,800 speech turns), and test (15,326 speech turns) sets. The sets
aim to have speaker-independent partitions where data from one speaker is
only included in one set. We use the train set to build our models, optimizing
performance and hyper-parameters on the development set. The final SER
evaluation results are based on the test set. We utilize segments that have
not been retrieved and annotated in the corpus to create the unlabeled pool
(over 600K speech turns). If the semi-supervised learning scheme is used in
the experiment, we randomly sample a subset from this pool to serve as the
additional unlabeled set.

4.2. Acoustic Features

We use the same acoustic feature set used in the original DeepEmoClus-
ter model (Lin et al., 2021), which corresponds to a 128D Mel-spectrogram.
We extract this feature vector using a 32 ms window size with a 16 ms win-
dow hop size (i.e., 50% overlaps). We perform the z-normalization approach
on these features, where the normalization parameters (mean and standard
deviation) are estimated over the entire train set.

4.3. Hyper-parameter, Model Implementation and Baseline Settings

We follow the original settings of the DeepEmoCluster framework (Lin
et al., 2021). We split every sentence into C=11 data chunks using the chunk
size wc=1 sec, since the maximum sentence duration of the dataset is Tmax =
11 secs. The model architecture of Φ(·) uses the VGG-16 structure (Simonyan
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and Zisserman, 2015). Table 1 shows the details of the VGG-16 model. We
use stochastic gradient descent (SGD) with a learning rate set to 0.001 for
the VGG-16 encoder. We use Adam with a learning rate set to 0.0005 for the
output layers. The fcltr(·) and femo(·) networks are implemented with two
fully connected (FC) output layers, each of them implemented with 256-nodes
using the rectified linear unit (ReLU) as the activation function.

The three alternative approaches for the temporal-net Ψ(·) are imple-
mented with different settings. The Temp-GRU model uses a single bi-
directional GRU layer using the tanh activation. The Temp-CNN model has
two 2D-CNN blocks of convolutional weights with 16 channels, each of them
with a 5× 5 kernel. We also use ReLU as the activation function and batch
normalization layers. The Temp-Trans model uses a single-head transformer
encoder with positional encoding. The hidden nodes of the network layers
are set to 256, implemented with dropout with a rate set to 0.3.

We set the window length to W=4 for the Temp-Triplet approach, which
is used to define positive and negative samples. Therefore, the positive sam-
ples are located within ±2 chunks of the anchor. The margin (δ) for the
triplet loss function is set to 1 (Eq. 6). To efficiently train the model, we
randomly sample 10 triplets per sentence and re-sample another 10 pairs for
each training iteration instead of considering the full set of triplets. Since
we do not observe significant performance differences when we increase the
number of triplets during training, we conclude that the model can infer tem-
poral relationships based on this setting. We set the weighting factor γ=1
for the triplet loss function (Eq. 7). The cluster number (Q) for the K-means
algorithm is fixed to 10 for the DeepEmoCluster-based frameworks. We ran-
domly sample 15K speaking segments from the unlabeled pool (Sec. 4.1) as
the unlabeled set U for the SSL experiments. We present a hyper-parameter
analysis for γ, Q, and the size of U in Section 5.4. For a fair comparison, all
the models are trained with the same training and evaluation configurations
using CCC as the performance metric, a batch size of 64, and a maximum of
30 epochs. We save the best models with an early stopping criterion based
on the development set performance (i.e., CCC). The final reported model
results are averaged over five running trials with different network initializa-
tions. We test on four randomly split sub-test sets from the original test set.
This setting results in 20 values (i.e., 4 subsets × 5 trials), which are used to
statistically analyze and compare the results using a two-tailed t-test, assert-
ing statistical significance if p-value < 0.05. The models are implemented in
PyTorch.
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For the baseline models, we consider the vanilla DeepEmoCluster (Lin
et al., 2021). In addition, we also implement conventional reconstruction-
based SSL frameworks for SER using AE, VAE, and LadderNet. These
models have an encoder-decoder architecture with different input reconstruc-
tion strategies. AE directly reconstructs the input data from the bottleneck
embeddings using the mean square error (MSE) loss. Deng et al. (2018)
used this strategy for SER tasks. We refer to this baseline as CNN-AE.
VAE utilizes reparametrized latent vectors, sampling from learnable Gaus-
sian distributions to reconstruct the input vector. The approach uses the
evidence lower bound (ELBO) as a cost function. Latif et al. (2018) used
VAE for SER tasks. We refer to this baseline as CNN-VAE. LadderNet is
similar to the AE approach, but it introduces random noise perturbations to
intermediate encoder layers, which imposes additional denoising constraints
for the reconstruction process. They also have lateral connections across
intermediate representations between the encoder and the decoder. Several
studies have used LadderNet for SER tasks (Parthasarathy and Busso, 2020;
Huang et al., 2018; Parthasarathy and Busso, 2018; Goncalves and Busso,
2023; Leem et al., 2021; Reddy Naini et al., 2023). We refer to this base-
line as CNN-LadderNet. All these models are attached with an emotion
regressor to the bottleneck layer for predicting the emotional attribute score.
We implement these models to have the same VGG-16 feature encoder Φ(·)
structure described in Table 1. The decoder layers Φ−1(·) have the reverse
structure implemented with an upsampling process using a transposed con-
volution operator. These baselines are ideal to have a fair comparison with
the proposed model since they have the same model complexity and predict-
ing pipeline during the inference stage (i.e., input data only passes through
the feature encoder and emotion regressor to produce recognition results).
We also compare our approach with a standard supervised regression model,
referred to as CNN-regressor. This model serves as a näıve baseline that
does not include extra self-supervision tasks for leveraging unlabeled data
(i.e., input reconstruction or cluster classification).

5. Experimental Results

5.1. Performance Comparison

Tables 2 and 3 summarize the performance comparison of different ap-
proaches implemented as a fully-supervised learning (FSL) problem (i.e.,
training with labeled data) and SSL problem (i.e., training with labeled
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Table 2: Summary of FSL results on the test set of the MSP-Podcast corpus. The symbol
∗ indicates that the results of the proposed approaches are significantly better than the
results achieved by the reconstruction-based baselines (i.e., the CNN-AE, CNN-VAE, and
CNN-LadderNet). The symbol † indicates that the results for the proposed approaches
are significantly better than all the baselines, including the vanilla DeepEmoCluster (two-
tailed t-test, p-value < 0.05). Bold values indicate the best performance for each attribute.

Approach (FSL) Aro.-CCC Val.-CCC Dom.-CCC

CNN-regressor 0.5151 0.1222 0.4334

CNN-AE(Deng et al., 2018) 0.5114 0.1302 0.4226

CNN-VAE(Latif et al., 2018) 0.5155 0.1465 0.4252

CNN-LadderNet(Parthasarathy and Busso, 2020) 0.5212 0.1184 0.4257

vanilla DeepEmoCluster(Lin et al., 2021) 0.5463 0.1260 0.4618

Temp-GRU 0.5722†∗ 0.1573†∗ 0.4656∗

Temp-CNN 0.5589†∗ 0.1514 0.4705†∗

Temp-Trans 0.5636†∗ 0.1586†∗ 0.4638∗

Temp-Triplet 0.5515∗ 0.1508 0.4701†∗

and unlabeled data), respectively. The unlabeled set has 15K speaking
turns. The symbol ∗ indicates that the proposed approach is significantly
better than the reconstruction-based baselines (i.e., CNN-AE, CNN-VAE,
and CNN-LadderNet). The symbol † indicates that our approach is signif-
icantly better than all the baselines including the vanilla DeepEmoCluster
approach.

The implementations of the proposed temporal-enhanced DeepEmoClus-
ter framework systematically obtain significantly better performances than
the baselines under FSL or SSL training strategies. With different imple-
mentations of the proposed approach, we obtain the best CCC performance
for arousal (0.5726), valence (0.1674), and dominance (0.4837). More impor-
tantly, if we compare the results of the Temp-Triplet model and the vanilla
DeepEmoCluster using an FSL strategy (Table 2), we can see that the criti-
cal role leading to the improvements is the sentence-level temporal modeling
rather than simply increasing the model complexity (i.e., they have the same
model architecture, differing only on the triplet loss function added in the
Temp-Triplet model during the training stage and the sentence-level uniform
sampling strategy).

We observe a general trend while considering additional unlabeled data
leading to better performance (i.e., Table 3), which shows the benefit of
using SSL frameworks. However, the improvements in the reconstruction-
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Table 3: Summary of SSL-15K results on the test set of the MSP-Podcast corpus. The
symbol ∗ indicates that the results of the proposed approaches are significantly better than
the results achieved by the reconstruction-based baselines (i.e., the CNN-AE, CNN-VAE,
and CNN-LadderNet). The symbol † indicates that the results for the proposed approaches
are significantly better than all the baselines, including the vanilla DeepEmoCluster (two-
tailed t-test, p-value < 0.05). Bold values indicate the best performance for each attribute.

Approach (SSL-15K) Aro.-CCC Val.-CCC Dom.-CCC

CNN-AE(Deng et al., 2018) 0.5051 0.1362 0.4248

CNN-VAE(Latif et al., 2018) 0.5306 0.1260 0.4429

CNN-LadderNet(Parthasarathy and Busso, 2020) 0.5201 0.1428 0.4362

vanilla DeepEmoCluster(Lin et al., 2021) 0.5553 0.1530 0.4734

Temp-GRU 0.5660†∗ 0.1576∗ 0.4837†∗

Temp-CNN 0.5650†∗ 0.1523∗ 0.4678∗

Temp-Trans 0.5726†∗ 0.1674†∗ 0.4763∗

Temp-Triplet 0.5581∗ 0.1535∗ 0.4627∗

based baselines are relatively limited. The average relative performance
improvements across emotional attributes from FSL to SSL is 2.2% for
reconstruction-based approaches (CNN-AE, CNN-VAE, CNN-LadderNet),
and 2.7% for cluster-based approaches (DeepEmoCluster, Temp-GRU, Temp-
CNN, Temp-Trans, Temp-Triplet). A potential explanation for this result
is that the input reconstruction task becomes trivial if we have sufficient
training data (i.e., MSP-Podcast corpus v1.8 has more than 100 hours of
audio data). The decoder may already be well-trained with the labeled set,
diminishing the role of the unlabeled data. In contrast, the proposed frame-
works utilize a harder cluster classification task, grouping and separating
deep features based on different acoustic conditions (e.g., speaker traits or
microphone settings). Studies have shown that a harder self-supervision or
pretraining task can increase the model regularization and lead to better gen-
eralization performance (Zhang et al., 2021; Wang et al., 2021; Li et al., 2020).
Our approach provides a favorable way to leverage unlabeled data. As an
aside, we notice that it is challenging to predict valence using spectrogram
features. A similar performance trend has been reported in other studies
(Yan et al., 2022; Wagner et al., 2023). The proposed framework can easily
adopt other acoustic features such as the Wav2Vec (Schneider et al., 2019)
or low-level descriptors (Schuller et al., 2013) to further increase recognition
performances.

The Temp-Triplet is the most efficient method to incorporate sentence-
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level temporal modeling from our implementation. For example, it is ap-
proximately 33% more efficient than the Temp-Trans model in terms of the
number of parameters. In fact, it has the same model architecture as the
vanilla DeepEmoCluster during inference. The differences between these two
approaches are solely coming from the training stage, with the addition of the
triplet loss function (Sec. 3.4), and the sentence-level uniform sampling (Sec.
3.3). Therefore, it is straightforward and fair to analyze the Temp-Triplet
and the vanilla DeepEmoCluster model to obtain further insights into the
temporal modeling. By comparing the Temp-Triplet and vanilla DeepEmo-
Cluster methods, Section 5.2 focuses the analysis on temporal consistency,
and Section 5.3 focuses the analysis on clustering representation.

5.2. Analysis of Temporal Consistency

It is expected that nearby data chunks should be assigned to similar clus-
ters since they contain partial overlaps (Eq. 1) and are temporally close to
each other. We refer to this property as temporal consistency in the clustering
process. A strength of our proposed approach is the improved temporal con-
sistency in the assignment of clusters. As mentioned in the previous section,
it is straightforward to validate the effectiveness of the temporal modeling
by comparing the Temp-Triplet and vanilla DeepEmoCluster models, since
they have the same architecture.

We validate the effectiveness of the temporal modeling from the chunk-
level clustering assignment perspective. Notice that the clustering assign-
ment is based on the hidden chunk-level representations hi (Eq. 4). We
measure the cluster transition between data chunks within a sentence to ver-
ify this property. We calculate this metric as the ratio between the chunk-
level cluster assignment transitions within a sentence and C − 1, where C
is the total number of chunks. In this metric, the numerator increases by
one every time two consecutive chunks are assigned to different clusters. A
higher ratio indicates a lower temporal consistency since the chunk-level clus-
ter assignments keep jumping across chunks within a sentence. Figures 3(a)
and 3(b) illustrate the analysis results based on the test set of the MSP-
Podcast corpus under FSL and SSL-15K setups, respectively. As we can
see, the vanilla DeepEmoCluster approach always shows a high transition
ratio (blue bars are located on high values of this ratio), demonstrating low
temporal consistency due to the lack of proper temporal modeling. In con-
trast, the proposed Temp-Triplet model consistently obtains better temporal
consistency (red bars are located on low values of the ratio), validating the
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Vanilla DeepEmoCluster
Temp-Triplet

(a) Fully-Supervised Learning (FSL)

Vanilla DeepEmoCluster
Temp-Triplet

(b) Semi-Supervised Learning (SSL-15K)

Figure 3: The transition ratio of the chunk-level cluster assignments within a sentence
under FSL and SSL settings (test set of the MSP-Podcast corpus). Lower ratio values
indicate better temporal consistency as the cluster assignments for the chunks within a
sentence are more stable.

effectiveness of the temporal modeling. Interestingly, the use of unlabeled
data in the vanilla DeepEmoCluster method improves the temporal consis-
tency of the model (see the left-shifting trend of the blue color distribution
from Fig. 3(a) to Fig. 3(b)). We can also observe a general trend that a
higher temporal consistency of the clusters (i.e., lower transition ratio) leads
to better recognition performances when we compare Figure 3, Table 2 and
Table 3. The peak ratio in the figures is 0.8 (Fig. 3(a)) for the FSL approach
and 0.6 (Fig. 3(b)) for the SSL approach. This shift leads to improvements
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(a) t-SNE plot of the vanilla DeepEmoCluster (FSL)

Low

Mid
High

TS
N
E-
2
D
-T
w
o

TSNE-2D-One

TS
N
E-
2
D
-T
w
o

TSNE-2D-One

(b) t-SNE plot of the Temp-Triplet (FSL)

Figure 4: The t-SNE plots of hidden representations for the Temp-Triplet and vanilla
DeepEmoCluster models trained under an FSL setup (test set of the MSP-Podcast corpus).
For each case, the left-hand side figures provide the clustering assignment groups, and the
right-hand side figures provide the corresponding ground-truth emotional levels aggregated
into low (1-3), middle (3-5) and high (5-7) scores. The figure shows the t-SNE plots for
arousal. The blue and red frames represent a low arousal region and a high arousal region,
respectively.

in the performance for both methods, when we compare Table 2 (FSL) and
Table 3 (SSL).
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(a) t-SNE plot of the vanilla DeepEmoCluster (SSL-15K)

Low

Mid
High

TS
N
E-
2
D
-T
w
o

TSNE-2D-One

TS
N
E-
2
D
-T
w
o

TSNE-2D-One

(b) t-SNE plot of the Temp-Triplet (SSL-15K)

Figure 5: The t-SNE plots of hidden representations for the Temp-Triplet and vanilla
DeepEmoCluster models trained under an SSL-15K setup (test set of the MSP-Podcast
corpus). For each case, the left-hand side figures provide the clustering assignment groups,
and the right-hand side figures provide the corresponding ground-truth emotional levels
aggregated into low (1-3), middle (3-5) and high (5-7) scores. The figure shows the t-SNE
plots for arousal. The blue and red frames represent a low arousal region and a high
arousal region, respectively.

5.3. Analysis of Clustering Representation

This section compares the hidden representations learned by the Temp-
Triplet and vanilla DeepEmoCluster models using t-SNE plots (van der
Maaten and Hinton, 2008). Our focus is on visualizing the emotional content
of the chunks assigned to the clusters. The t-SNE technique projects the high
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dimensional hidden embeddings (i.e., the hi in Eq. 4) into a 2D subspace for
better visualization of the learned feature representation created by a model.
This goal is achieved by minimizing the Kullback-Leibler divergence (KLD)
between the two sets of feature distributions (i.e., high-dimensional versus
low-dimensional) to preserve the most prominent global data structure. Fig-
ures 4 and 5 visualize the plots under FSL and SSL setups, respectively. The
Figures show the t-SNE plots for the vanilla DeepEmoCluster (Figs. 4(a)
and 5(a)), and Temp-Triplet (Figs 4(b) and 5(b)) models. The left-hand
side of each subfigure indicates the cluster assignments coded in different
colors. The right-hand side of each subfigure indicates its corresponding
ground-truth emotional levels (three bins). We select arousal as the emo-
tional attribute in our illustration for simplicity since valence and dominance
also show similar trends. Considering that the arousal values range from 1 to
7, the emotion levels in the right-hand side figure represent low (1-3), mid-
dle (3-5), and high (5-7) levels of arousal. The combination of these figures
(i.e., clusters and emotional content) helps us monitor the emotional content
contained in each cluster. The data points in the plots are based on the test
set of the MSP-Podcast corpus. Each data point is the mapping of a hidden
embedding (i.e., hi in Eq. 4) in the t-SNE space. We assign the sentence-level
label to each of the chunks within the sentence. We highlight some regions
in the figures to facilitate the interpretation. The blue and red rectangles
show low (tan color in right-hand side figure) and high (dark purple in right-
hand side figure) arousal regions, respectively. The corresponding clusters
are highlighted in the left-hand side figures.

Figure 4 shows that the Temp-Triplet model (Fig. 4(b)) learns to group
similar emotions. This is exactly the desired objective of the DeepEmoClus-
ter framework, which aims to obtain highly separable clusters according to
the emotional content of the sentences. If the clusters were unrelated to the
emotional content, the auxiliary task of recognizing the cluster assignment
would not lead to SER improvements. In contrast, the vanilla DeepEmoClus-
ter (Fig. 4(a)) shows some clusters with mixed emotional content, limiting
the model’s accuracy. To quantify the separability of features, we finetune a
simple linear classification head for the three emotion-level classes based on
the feature encoder that was trained (frozen). As expected, the clusters that
show well-separated emotions (i.e., the proposed Temp-Triplet model) also
obtain improved classification accuracy, improving the macro F1-score from
0.445 (Fig. 4(a)- right) to 0.472 (Fig. 4(b)- right).

Interestingly, Figure 5 shows a similar emotional grouping trend when us-
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Table 4: Hyper-parameter analysis for different sizes of the unlabeled set U (development
set). We evaluate the Temp-Trans approach with 15K, 50K, and 100K sentences, using a
fixed number of clusters (Q=10).

Temp-Trans Aro.-CCC Val.-CCC Dom.-CCC

SSL-15K 0.5726 0.1674 0.4763

SSL-50K 0.5605 0.1395 0.4749

SSL-100K 0.5593 0.1134 0.4579

Table 5: Hyper-parameter analysis for different numbers of clusters Q (development set).
We evaluate the Temp-Trans approach with 10, 30, and 50 clusters, using a fixed size for
the unlabeled set (U = 100K).

Temp-Trans Aro.-CCC Val.-CCC Dom.-CCC

Q=10 0.5593 0.1134 0.4579

Q=30 0.5762 0.1563 0.4847

Q=50 0.5726 0.1365 0.4765

ing the vanilla DeepEmoCluster framework under an SSL setting (Fig. 5(a)).
We observe that the emotional content within the clusters is more consistent.
The improved clusters are responsible for the improvement in CCC perfor-
mances achieved by the vanilla DeepEmoCluster implemented using the SSL
setting (Table 3) over the results achieved with the FSL setting (Table 2).
The t-SNE plots for the Temp-Triplet model show similar consistency in the
emotional content of the clusters. The proposed temporal modeling approach
can effectively capture sentence-level temporal information. This capability
directly contributes toward the model learning separable emotional clusters,
leading to better SER performances.

5.4. Hyper-Parameter Analysis

There are three critical parameters of the proposed temporal-enhanced
DeepEmoCluster framework: 1) the size of the unlabeled set U in the SSL
scheme, 2) the number of clusters Q, and 3) the weighting factor γ in the
Temp-Triplet approach.

In general, we observe the Temp-Trans model achieves the best recogni-
tion performances according to Table 2 and Table 3. Therefore, we select the
Temp-Trans approach as the representative method to perform the hyper-
parameter analysis for U and Q. Tables 4 and 5 show the analysis results for
U and Q, respectively. Table 4 shows a general trend, where lower perfor-
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Table 6: Hyper-parameter analysis for the weighting factor γ of the Temp-Triplet approach
(Eq. 7). The results are reported on the development set of the MSP-Podcast corpus.
The models are trained using a fixed size for the unlabeled set (U = 15K), and a fixed
number of clusters (Q=10).

Temp-Triplet Aro.-CCC Val.-CCC Dom.-CCC

γ=0.5 0.5492 0.1394 0.4623

γ=1.0 0.5581 0.1535 0.4627

γ=2.0 0.5632 0.1438 0.4697

γ=4.0 0.5549 0.1389 0.4662

mances are observed when adding more unlabeled data under a fixed number
of clusters (Q=10). However, when we start increasing the cluster number
Q corresponding to the larger unlabeled data size, Table 5 shows a positive
trend in the performance. This result suggests a relationship between the
hyper-parameters U and Q. It is necessary to adjust the model’s clustering
capacity with respect to the size of U. By increasing the cluster number Q,
the model obtains higher clustering capacity to encode more complex acous-
tic conditions, such as speaker traits, microphone settings, and potentially
environmental noises included in the unlabeled set. Using a limited number
of clusters for a large unlabeled data set might force the model to encode
mixed features within each cluster, causing additional confusion and inferior
performance. However, the best value for Q is a finetuned parameter that
depends on the size of U, where a higher number of clusters is not necessarily
better. In the case when U=100K, using 30 clusters is better than using 50
clusters (Table 5).

The parameter γ controls the contribution of the temporal information
term for the Temp-Triplet model (i.e., the triplet loss). The analysis of γ is
useful for understanding how the temporal information impacts the model
performance. Table 6 shows the results. The performance drops if we reduce
the value for γ. This result verifies the importance of considering temporal
information. However, the model trained with a higher value for γ also de-
creases the recognition performances (i.e., see the decreasing trend of arousal,
dominance, and valence when γ=4). This result suggests that a balanced
weight between temporal and emotional information is needed to achieve the
best model performances.
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6. Conclusions and Future Work

This study proposed the temporal-enhanced DeepEmoCluster framework
that incorporates temporal constraints in the use of clusters as an auxiliary
task for SSL tasks. The temporal constraints are imposed using two alterna-
tive sentence-level temporal modeling approaches: 1) temporal-net, and 2)
triplet loss function. The temporal-net method consists of an additional net-
work module (i.e., Temp-GRU, Temp-CNN, and Temp-Trans) that encodes
the temporal information across data chunks in the sentence. The triplet loss
function leverages the temporal relationship between data chunks to learn
the hidden representation with additional temporal constraints (i.e., Temp-
Triplet). We propose a sentence-level uniform sampling strategy to preserve
the original sentence-level temporal orders of the data chunks in the sentence,
enabling the use of either the temporal-net or the triplet loss function. Our
experimental results based on the MSP-Podcast corpus demonstrated that
the temporal-enhanced models consistently outperform the vanilla DeepE-
moCluster and other existing reconstruction-based semi-supervised frame-
works (AE, VAE, LadderNet) in SER tasks for all the emotion attributes
(i.e., arousal, dominance, and valence). These improvements are observed
when the models are implemented with either FSL or SSL training schemes.
The analysis demonstrated that the temporal-enhanced model obtains a high
temporal consistency property, where nearby chunks are assigned to similar
clusters. The analysis also reveals that the temporal-enhanced DeepEmo-
Cluster framework leads to clusters with well-defined emotional patterns,
validating the effectiveness of the proposed temporal modeling approaches.
We conclude that these properties lead to performance improvements.

Our main goal for our future research is to extend this research direction
to a multimodal formulation. We aim to derive a complete clustering repre-
sentation of emotions, under a multimodality scenario (e.g., speech, spoken
contents, and facial expression). Since humans convey emotions in a multi-
modality manner, the modeling of emotional clusters should not be limited to
a single channel. An open question is how to model the cross-modality tem-
poral relationships during the clustering process. We expect to achieve this
goal with an advanced temporal modeling approach that considers the syn-
chronization and characteristics of the expression and perception of emotions
across different modalities. Another research direction is to obtain feature
representations that learn to cluster the data into meaningful multimodal
emotional clusters.
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