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Abstract—A critical issue of current speech-based sequence-to-one learning tasks, such as speech emotion recognition (SER), is the
dynamic temporal modeling for speech sentences with different durations. The goal is to extract an informative representation vector of
the sentence from acoustic feature sequences with varied length. Traditional methods rely on static descriptions such as statistical
functions or a universal background model (UBM), which are not capable of characterizing dynamic temporal changes. Recent
advances in deep learning architectures provide promising results, directly extracting sentence-level representations from frame-level
features. However, conventional cropping and padding techniques that deal with varied length sequences are not optimal, since they
truncate or artificially add sentence-level information. Therefore, we propose a novel dynamic chunking approach, which maps the
original sequences of different lengths into a fixed number of chunks that have the same duration by adjusting their overlap. This simple
chunking procedure creates a flexible framework that can incorporate different feature extractions and sentence-level temporal
aggregation approaches to cope, in a principled way, with different sequence-to-one tasks. Our experimental results based on three
databases demonstrate that the proposed framework provides: 1) improvement in recognition accuracy, 2) robustness toward different
temporal length predictions, and 3) high model computational efficiency advantages.

Index Terms—Sequence-to-one modeling, speech emotion recognition, attention model, chunk-level modeling

1 INTRODUCTION

UMMARIZATION from perceived information is an essential
Sability during human decision making processes. Our
brain can effectively extract and summarize information
obtained from different sources, including visual and acous-
tic modalities, to make decisions. The concept of sequence-
to-one learning tasks in machine learning aim to imitate and
learn the human’s summarization mechanism [1], [2]. A crit-
ical challenge of sequence-to-one learning is efficiently
extracting insightful information from data with different
durations. More specifically, the model is required to learn
how to summarize relevant temporal information from a var-
ied length input, mapping the sequence into a single label.

Speech emotion recognition (SER) is a task that is often for-
mulated as a sequence-to-one problem following the labels
provided by existing databases. Some of the emotional cor-
pora are annotated with time-continuous emotional traces
[3], [4], [5], providing labels for sequence-to-sequence for-
mulation. However, those databases are hard to collect, as
the annotation process is time consuming and the inter-
evaluation agreement is often low [6], [7]. There are also
additional challenges with emotional traces, including com-
pensating for the reaction lag of the evaluators [8], [9].
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Therefore, most existing speech emotional corpora are
labeled at the sentence-level (i.e., one global label is
assigned per sentence [10], [11], [12]). As a result, most stud-
ies in SER rely on standard sequence-to-one learning tasks.
Traditionally, studies rely on estimation of high level
descriptors (HLDs) (i.e., a fixed set of statistical functions)
from low level descriptors (LLDs) extracted from speech [13].
For instance, we can compute the mean of the fundamental
frequency and the variance of the Mel frequency cepstral coef-
ficients (MFCCs) to obtain a single fixed dimensional feature
vector that represents the sentence, regardless of its dura-
tion. This vector is then used to train a machine learning
model such as a support vector machine (SVM) [14], [15] or a
fully  connected neural network (FCNN) [16]. Another
approach to obtain the sentence-level representation vector
is to train a wuniversal background model (UBM) such as a
Gaussian mixture models (GMM), and then utilize a bag-of-
words (BOW) model or Fisher vector algorithm to extract the
encoding output [17], [18]. However, these methods provide
static descriptions by either using fixed statistical functions
or a fixed pre-trained background model, which cannot
reflect the dynamic temporal information in the expression
of emotion, leading to limited performance for SER systems.
Deep learning approaches for SER systems have recently
led to state-of-the-art performance [19], [20], [21]. Different
architectures exploring temporal information, such as recur-
rent neural networks (RNNSs), convolution neural networks
(CNNs) or hybrid neural networks (CNN-LSTM), have
shown state-of-the-art performance by deriving features
directly from LLDs or raw waveforms [22], [23], [24], [25],
[26]. A conventional approach to dealing with speech
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sequences with varied lengths is to force them to have the
same length by either cropping the signal or zero-padding
the sequence [25], [26]. However, cropping a sentence into a
specific duration truncates temporal information that can be
valuable. For example, acoustic features at the end of a sen-
tence provide discriminative information to predict happi-
ness [27]. The zero-padding method fixes the length of the
input sequences, which is convenient for batch training.
However, it does not solve the essential problem of tempo-
ral modeling, achieving robust performance toward any
duration of the inputs, especially for long sequences. We
need a dynamic temporal framework that is able to capture
the entire information in a sentence regardless of its dura-
tion, allowing end-to-end training.

This study presents a general framework to solve current
sequence-to-one temporal modeling issues, where our focus
is on SER tasks. The framework consists of four compo-
nents: The first block is the feature extraction step, where we
obtain representative frame-level acoustic features. These
features can be either LLDs, Mel-filter bank, or raw spectro-
gram. The second block is the dynamic chunk segmentation
step, where the frame sequence of arbitrary duration is split
into a fixed number of small chunks with the same duration
by adjusting the overlap between chunks. This approach
does not rely on the zero padding technique. The third
block is the chunk-level feature representation step, which
extracts a feature representation for each chunk. The imple-
mentation of this step is flexible, as we can use several deep
learning approaches, including CNN, RNN or FCNN. The
fourth block is the sentence-level temporal aggregation step,
which combines the chunk-level features into a sentence-
level representation. This component is also flexible, since it
can be implemented with different approaches, such as an
attention model, a gate mechanism or a temporal pooling.
The core part of the framework is our proposed novel chunk
segmentation process, which enables flexible combinations
of different state-of-the-art methods used in deep-learning
by transforming a speech signal of varied length into a fixed
number of chunks with the same duration. This end-to-end
framework not only preserves complete temporal informa-
tion, but also effectively captures emotionally rich regions
within a sentence by jointly training the chunk-level aggre-
gation models. One major advantage of our proposed flexi-
ble framework is that it can accommodate different deep-
learning implementations. We explore multiple combina-
tions of the framework components, implementing the
chunk-level feature representation with LSTM, CNN, or
functional models, and the sentence-level temporal aggre-
gation with a mean pooling layer (NonAtten), a gated net-
work (GatedVec), an attention mechanism (RNN-AttenVec),
or a scaled dot-product self-attention model (Self-AttenVec).
The proposed formulation is also computationally efficient,
since the size and number of chunks are fixed, facilitating
parallel computing.

Our experimental results based on the MSP-Podcast
database [10] demonstrate that our proposed framework
(under any combination) outperforms other sentence-level
and chunk-level SER baseline models. We find that the key
factor leading to the performance improvement is the sen-
tence-level aggregation module, indicating the importance
of modeling the complete temporal information of the
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sentence. Further analysis shows that our proposed frame-
work not only increases the accuracy of our predictions, but
also introduces additional advantages including robust pre-
dictions toward different duration inputs, model efficiency,
and task generality. The two major contributions of this
study are:

e A novel dynamic chunk segmentation approach,
which can map varied length data into a fixed num-
ber of data chunks with fixed lengths.

e A flexible sequence-to-one modeling framework,
which can model complete temporal information
with a flexible combination of different modules to
cope with general sequence-to-one tasks.

The rest of the paper is organized as follows. Section 2
discusses the research background and related work. Sec-
tion 3 presents the proposed framework, providing detailed
explanations of its components. Section 4 presents the
experimental setup used to train and test our approach,
including the database, acoustic features, and implementa-
tion details. Section 5 describes the experimental results on
the MSP-Podcast corpus, comparing our proposed method
with baseline models. Section 6 evaluates the generalization
of the proposed framework, presenting results with two dif-
ferent emotional corpora. Finally, Section 7 presents the con-
cluding remarks and future directions of this study.

2 BACKGROUND

2.1 Segmentation Approaches in SER

Various studies in SER have adopted the concept of model-
ing a sentence at the chunk or segment level [28], [29].
Chunk-level SER forces the model to learn short-term subse-
quences by dividing original sequences of arbitrary length
into short segments with a predefined fixed step size (i.e.,
the overlapping area between segments). Typically, it com-
bines these subsequences (i.e., chunk-level) prediction out-
puts into a sentence-level representation according to a
mean pooling layer or a majority vote rule.

Han et al. [30] formed their segment-level features by
stacking neighboring LLD frames to train a deep neural net-
work (DNN). The outputs of the trained segment-level clas-
sifier were used to estimate the probability of each emotion
for that segment. This approach created probability curves
for the emotions in a sentence. Finally, they estimated statis-
tics, such as the mean over these curves, which were used
as the sentence-level feature representations of a static clas-
sifier implemented with an extreme learning machine (ELM).
Mao et al. [31] proposed a similar approach, consisting of a
segment-level classifier with a CNN model. They demon-
strated the improved performance of segment-level models
by comparing to results with the ones obtained by modeling
the entire sentence. Tzinis and Potamianos [32] employed
HLDs to represent segment-wise global features from
LLDs, which obtained better performance compared to
LLDs under a LSTM model. Tarantino ef al. [33] and Sahoo
et al. [34] found that a smaller step size (i.e., more overlap
between chunks) can increase the discrimination of the fea-
ture representation in the network. These results showed
that chunk-based SER can lead to better performance than
sentence-based approaches.
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These studies set the step size of the chunks as a fixed
parameter, resulting in a varied number of segments in a
sentence depending on its duration. We argue this segmen-
tation approach is not optimal, since it restricts the aggrega-
tion of chunk-level predictions into limited static methods
such as concatenating with a mean pooling layer. Our pro-
posed segmentation approach aims to generate data chunks
by varying the step size of the chunk as a function of the
duration of the utterances, producing a fixed number of seg-
ments for different sentence durations.

2.2 Attention Models in SER

One essential component of the proposed framework is the
fusion of information in the chunks through attention mod-
els, which have been widely used in SER [35], [36], [37],
[38]. The most common way to apply this method is by
building an attention model using frame-level features.
Attention models are often implemented with RNN-based
networks. The inputs of the attention models are activations
of intermediate hidden layers in the network. This approach
produces attention weights per frame, facilitating models to
capture emotionally salient instances. This approach obtains
an attention vector to recognize emotions [36], [37], [38].
Recent self-attention SER models based on scaled dot-prod-
uct attention layers have become popular, since they can be
implemented even with only fully connected layers, reduc-
ing the computational complexity of the models. This model
improves prediction performance, while taking into account
computational efficiency [33], [39], [40]. In contrast to previ-
ous studies constructing attention models at the frame-level,
our formulation constructs attention models at the chunk-
level. Therefore, it reduces the computational cost since the
number of chunks is fixed and significantly lower than the
number of frames.

3 PROPOSED FRAMEWORK

This study proposes a flexible framework, which can cope
with general speech-based sequence-to-one learning tasks
such as SER, speech gender detection, or speaker recogni-
tion. The framework solves the dynamic temporal modeling
of varied length sequences, which is a critical problem for
sequence-to-one learning. We model the complete temporal
information of any input sequence, without relying on crop-
ping or zero padding techniques, by mapping a varied
duration (or length) sequence into a fixed number of small
chunks with a fixed size. Fig. 1 shows the generic formula-
tion that we propose. The core component of the framework
is the proposed chunk-based segmentation process, which
enables the use of various effective chunk-level temporal
aggregating models, achieving competitive sentence-level
recognition performances. This section presents the detailed
descriptions of each block of our system.

3.1 Feature Extraction

The first block in our framework consists of extracting
frame-based acoustic features. Our formulation is flexible,
where different acoustic features can be used, including
common feature sets, spectrogram, or LLDs. Alternatively,
we can also use raw waveforms. Typically, these raw fea-
tures are utilized to build end-to-end deep learning systems.

bt
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Feature Extraction |

e.g., spectrogram,
LLDs, waveform
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Chunk-level Feature
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e.g., NonAtten, GatedVec,
RNN-AttenVec, Self-AttenVec

Fig. 1. Diagram of the proposed framework. The left side of the figure
shows the four system components of our approach. Blocks in green
represent flexible components, which can be implemented with different
alternative methods. The core part of the framework is the dynamic
chunk segmentation (tagged in red), which enables arbitrary combina-
tions across blocks. The right side of the figure shows the corresponding
hierarchical aggregation of the model (speech, frames, chunks, and sen-
tence) and the notation.

The LLDs consist of frequency, amplitude, and spectral-
related features (e.g., fundamental frequency, energy, and
MFCCs). These acoustic features are extracted within a
small window (i.e., frame) from the original audio signal.
The size of the small window wj.,, and window hop size
Awy, are fixed parameters during the feature extraction
procedure. We denote the frame-based feature map as X €
RM*4 where M is the arbitrary number of frames, depend-
ing on the duration of the speech signal, and d is the dimen-
sion of the acoustic feature.

3.2 Chunk-Based Segmentation Process

The second block is the chunk-based segmentation process,
which aims to split the feature map X of varied length into
a fixed number of data chunks that have the same fixed
duration. This is the key step in our formulation, providing
the flexibility to use different chunk-level representation
methods (Section 3.3), and different sentence-level temporal
aggregation approaches (Section 3.4).

There are two parameters that need to be defined in this
process. The first variable is the desired length for the chunk
window w,. This variable should be big enough to preserve
reliable emotional information, but small enough to process
short sentences. We discuss how to set this variable in Sec-
tion 5.6. The second parameter is the maximum sentence
duration of the corpus Th.x = max{1},T5,...,T;,..., Tn},
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Fig. 2. Proposed chunk-based segmentation to split sentences of differ-
ent durations into C' chunks with fixed duration (w.). We achieve this
goal by adjusting the chunk step size (A¢;).

where T; denotes the duration of sentence i. Notice that we
can intentionally set a bigger value for 7},,« to avoid prob-
lems of sentences with durations longer than expected.
However, this study makes the assumption that we know
the maximum duration of the train and the test samples,
which are the same. This assumption is reasonable since a
system would typically set a maximum response time to
reduce latency (i.e., return a result within 7.« secs), which
naturally restricts the maximum length of the input senten-
ces. Tiax cannot be too long for SER tasks, since emotions
may change within the segment. In this case, a single label
or prediction would not properly characterize the emotion
in the long segment.

We can use T, and w, to estimate a fixed number of
chunks C, according to Eq. (1)

C = FLW (1)

We

We obtain a fixed number of chunks for each sentence by
dynamically changing the overlap between chunks. The
step size of the chunks Ac; for sentence i is defined by
Eq. (2). As we increase C, Ac; decreases, resulting in more
overlap between chunks

TL' — W,

Aci: C_1 .

(2)

Fig. 2 visualizes the proposed approach for two senten-
ces with different durations. The key difference between
them is the chunk step size Ac; (i.e., the overlap between
chunks). This approach is able to split sentences of different
durations into a fixed number of chunks C' that have the
same duration w. by adjusting the chunk step size. We
denote these data chunks as {X;,X>,..., X¢} where X; €
R™*4_ The dimension m is a fixed number, which indicates
the number of frames within a chunk window w,. Notice
that the unit of variables w,, T; and Ac; are in seconds. We
provide the values for all the parameters used in our evalua-
tion in Section 4.3.

3.3 Chunk-Level Feature Representation

The third block in our framework is to extract the chunk-
level feature representation for each of these data chunks
{X1,Xs,...,Xc}. There are two clear advantages of extract-
ing feature representations from chunks. First, the size of
the chunk is fixed which simplifies deep learning architec-
tures. Second, this step can be parallelized, estimating the
feature representation for the C' chunks at the same time.
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TABLE 1
Architectures of Different Chunk-Level Feature Representation
Models
Functional model LSTM model
Layer Dimension Activation Layer Dimension Activation
Input 1 x 15d N/A Input mXxd N/A
Linear 1xb ReLU LSTM m x b Tanh
LSTM 1xb Tanh
CNN model
Layer Channels Kernel  Stride Dimension Activation
Input N/A N/A N/A mxd N/A
Permute N/A N/A N/A dxm N/A
CNN-block 128 (1,3) 1 depends ReLU
CNN-block 128 (1,3) 1 depends ReLU
CNN-block 64 (1,3) 1 depends ReLU
CNN-block 64 (1,3) 1 depends ReLU
CNN-block 32 (1,3) 2 depends ReLU
Flatten N/A N/A N/A  depends N/A
Linear N/A N/A N/A 1xb ReLU

While various methods can be applied, we focus on the
three most common approaches used in previous SER stud-
ies: 1) statistical functions, 2) LSTM, and 3) CNN. The three
approaches use LLDs as inputs, which we describe in Sec-
tion 4.2. We present the model architectures in Table 1.

For the statistical functions, we adopt HLDs extracted
from LLDs to obtain chunk-level vector representations,
without relying on deep learning structures. These vectors
are the statistical descriptions over acoustic features
obtained for each data chunk (e.g., mean of fundamental
frequency, kurtosis of energy). We apply a total of 15 HLDs
for the functional representation in this study: mean, max,
min, std, median, argmax, argmin, skew, kurtosis, 99th per-
centile, 1st percentile, range (99th,1st), 75th percentile, 25th
percentile and interquartile range. Then, we pass these func-
tional vectors through a linear layer with ReLU activation,
mapping the HLDs into a b-dimensional chunk-level feature
representation.

For the LSTM model, we feed the LLDs obtained for each
chunk into two consecutive LSTM layers with b nodes and
dropout regularization. The dropout nodes are imposed on
the linear transformation of the inputs with a rate p = 0.5.
Note that we do not drop nodes for the linear transforma-
tion of the recurrent state. Then, we exploit the final time
step output of the second LSTM layer as the chunk-level fea-
ture representation.

For the CNN model, we use 1D convolution over the
LLDs. We use 1D convolution instead of 2D convolution
since the feature map created by the LLDs does not neces-
sarily have spatial relationships. Therefore, the model
implemented with 1D CNN can focus on temporal feature
information. As Table 1 shows, the CNN model has an
encoder-like architecture. The CNN block consists of a 1D-
CNN, a BatchNorm, and a ReLU layer. The output dimen-
sions of each CNN block depends on the length of the
chunk window w, and the CNN padding mode. We do not
use dilated kernels or padding in the CNN layers. Table 1
shows other selected parameters (e.g., number of channels,
kernel size, stride). After flattening the output of the final
CNN layer, we add a linear layer with ReLU activation to
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map the dimension of the vector into a fixed size b-dimen-
sional chunk-level feature representation.

The chunk-level feature representation from the input
data chunks {X;, X», ..., X¢} produced by the three meth-
ods is denoted by {hy, hs, ..., hc}, where by € RV,

3.4 Sentence-Level Temporal Aggregation

The forth block in our framework is aggregating the tempo-
ral information across chunks. Having a fixed number of
chunks per sentence, regardless of its duration, simplifies
the aggregation of temporal information to form the final
sentence-level feature representation. A key advantage of
aggregating temporal information with this approach is the
computational efficiency, since the number of chunks is sig-
nificantly lower than the number of frames in a sentence.
Therefore, our chunk-based approach is more efficient than
frame-based aggregation models.

The goal of this block is to combine the C' chunk-level
feature vectors {hi, hs, ..., h¢} into a single sentence-level
feature representation z, where z € R’ Several appro-
aches can be used. This study explores the following four
alternative methods:

NonAtten. We directly average the C' chunk-level feature
vectors to obtain the sentence-level representation z
(Eq. (3)). This approach corresponds to a mean pooling layer

1 C
z=—> h. (3)

t=

—_

GatedVec. An alternative approach is the gated mechanism
[41]. This approach controls the information flow from dif-
ferent channels, in our case, chunks. Eq. (4) shows this oper-
ation, which consists of a trainable sigmoid neural network
(NN) layer (W, b) and a point wise multiplication operation.
By concatenating the gate model after the chunk-level vec-
tors, we can produce the gating weights ¢; (scalar), which
ranges from 0 to 1. Eq. (5) computes the weighted average
vector for the sentence-level representation z

g =0o(W-h+) 4)
C

z= thht- (5)
t=1

RNN-AttenVec. This approach relies on attention models. We
first stack {hq, hg, ..., h¢} into a chunk-level hidden feature
map H € RY*® and feed H into an attention model formed
with a vanilla RNN layer. The attention model is trained to
produce the attention weights «; by using the general score
function presented in Luong et al. [42]. These attention
weights are then utilized to multiply the corresponding time
step’s hidden states {hy, ha, ..., hc}, where by € R™9, result-
ing in the weighted summation vector v (i.e., context vector)
in Eq. (6). The dimension ¢ is the number of nodes in the
RNN attention model. Finally, we concatenate the vector v
with the last hidden state h¢, passing it through a NN layer
(W) with the tanh activation function to obtain a sentence-
level feature representation z (Eq. (7)). Since the time steps in
the RNN layer are fixed to C (i.e., attention to chunks rather
than attention to all the input frames), the attention model is
very computationally efficient

c
v = Z Oltﬁt (6)
=1
z = tanh(W(v; he)). (7

Self-AttenVec. The last alternative method relies on self-
attention using the multi-head (MH) attention structure [43].
The MH attention model consists of several scaled dot-
product attention layers running in parallel. The scaled dot-
product attention (Eq. (8)) is formulated by the variables
query (@), key (K), value (V), and a scaling factor dj.. The
first softmax term produces attention weights applied on
the value V (Eq. (8)). Eq. (10) shows the MH model
concatenated with multiple single heads, where the inputs
V, Q and K are projected by different trainable parameter
matrices (i.e., matrices VVJ-Q, W]-K and WjV in Eq. (9)). Lastly,
the concatenated output of the heads is mapped into a
matrix with the same dimension as the input V' by the out-
put parameter matrix W, so we can perform residual con-
nections with the input. An advantage of the MH attention
over the RNN-based attention model is the improved
computational efficiency, since this model does not require
any recurrent layer

Attention(Q, K, V) = softmaz(Ziyy ®
ention(Q, 15, = softmax
vy,
Head; = AL‘temfion(QW]-Q7 KVV].K, VW]V) 9)
MH(Q, K, V) = Concat(Head,, . .., Head;,)W©. (10)

We use the stacked hidden feature map H as the self-
attention input (i.e., the V, @ and K variables are equal to
the same H matrix). Note that we do not apply positional
encoding since we are focusing on a sequence-to-one prob-
lem. Finally, we average the output attention matrix H €
R’ along the C axis to obtain the sentence-level represen-
tation z

1 &
=1
where E is the t-th row of matrix H. An additional advan-
tage of chunk-level self-attention is that we map the original
arbitrary length sequence into a fixed length equal to C.
This approach significantly reduces the sequence length,
which is typically the part that contributes the most to the
complexity of the scaled-dot product attention model [44].
After obtaining the sentence-level representation vector
z, we feed it into the output layer, which we implement
with two fully connected layers. The final output of the net-
work is a prediction score for either arousal, dominance, or
valence.

4 EXPERIMENTAL SETTINGS

4.1 MSP-Podcast Corpus

This study relies on the MSP-Podcast corpus [10] to build
and evaluate our proposed approach. The dataset consists
of spontaneous speech turns that are rich in emotional con-
tent from various online audio-sharing podcast websites
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under Creative Commons licenses. The podcasts include
spontaneous discussions on a variety of topics including
politics, sports, entertainment, art, technology and econom-
ics, providing broad, rich, and natural emotional displays.
The collected podcasts are processed to identify clean audio
without music, noise, overlapping speech, or multiple
speakers in the background [45]. The dataset provides both
categorical and attribute-based emotional annotations,
which are labeled by at least five annotators for each speech
segment using a crowdsourcing approach [46]. We evaluate
our models using regression tasks to predict the emotional
attributes of arousal (calm versus active), valence (negative
versus positive), and dominance (weak versus strong). The
ground truth labels are the average of the scores across dif-
ferent annotators. We use version 1.6 of the corpus which
has 50,362 speaking turns (83h29m). We have identified the
speaker identity for 42,567 sentences belonging to 1,078
speakers. We use the speaker information to define the par-
titions for the train (34,280 speech turns), development
(5,958 speech turns) and test (10,124 speech turns) sets. The
partitions aim to define speaker independent sets. The read-
ers are referred to Lotfian and Busso [10] for more details on
this corpus.

We also consider the IEMOCAP [11] and MSP-IMPROV
[47] databases to validate the results with other emotional
corpora in Section 6. The IEMOCAP and MSP-IMPROV
databases are multimodal emotional corpora that have been
widely used in SER studies. Both databases are designed to
elicit spontaneous emotional expression with dyadic inter-
actions between actors. These recordings are collected
under controlled laboratory environments. Therefore, there
are inevitable domain mismatches between these corpora
and the MSP-Podcast corpus, which makes them ideal can-
didates to evaluate the generalization of our proposed
framework. Both of these corpora provide attribute-based
annotations for arousal, valence, and dominance.

4.2 Acoustic Features

For the acoustic features, we extract the LLD feature set pro-
posed for the Interspeech 2013 computational paralinguis-
tics challenge [13] using the OpenSmile toolkit [48]. The
window length w., is set to 32ms, and the window step
size Awy,, is set to 16 ms (50 percent overlap). In total, the
set includes 130 frame-based acoustic features (d = 130),
which are normalized by subtracting the mean and dividing
by the standard deviation. The parameters of this normali-
zation are estimated over the training set. Therefore, the
output feature map X for each sentence is a M x 130 nor-
malized LLD matrix, where the number of frames M
depends on the duration of the sentence.

4.3 Implementation

Each emotion attribute is regarded as an independent
sequence-to-one task building separate models for arousal,
valence and dominance. We implement our approach using
chunks of 1 sec (w.= 1). Studies have shown that segments
as short as 0.5 secs can be used in SER tasks [49], so 1 sec is
a good compromise. Section 5.6 presents the performance of
the system by using chunks of different durations. There-
fore, the fixed number of frames m within each chunk
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window is 62 (16ms x 62 ~ lsec). Since the duration of the
sentences is between 2.75 and 11 secs for the MSP-Podcast
corpus [10], Ti,ax is 11 secs. The number of chunks C'is 11,
according to Eq. (1). The value of the step size for the
chunks Ac; depends on the duration of the sentence T;
(Eq. (2)). For example, if the duration of the input sentence
is T; = 6 secs, then Ac; is 0.5 secs. As a result, we split every
sentence into fixed 11 chunks with 1 sec length for each sen-
tence regardless of its duration. The dimension of each data
chunk X; is fixed to 62 x 130 (i.e., m X d).

For the network settings, we fixed the number of nodes
for all layers, matching the dimensions of the LLDs (i.e.,
d = b= g =130). Our multi-head attention model consists
of three heads, where the output dimension of each head is
50 (i.e., d;=50 in Eq. (8)). We use the Adam optimizer with a
batch size of 128, 256 and 512 for the LSTM, CNN and func-
tional models, respectively. The number of training epochs
is fixed to 100, which is sufficient for convergence of all
models. We save the best models with an early stopping cri-
terion based on the development loss. The cost function
optimizes the concordance correlation coefficient (CCC). We
also report the accuracy of our prediction in the testing set
in terms of CCC. We randomly split the original test set into
15 small subsets with similar size, reporting the average
results. We implement this strategy to conduct a statistical
analysis using a two-tailed t-test over the 15 subsets in the
test partition. We define statistical significant at p-value =
0.05. All models are implemented in Keras.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Preliminary Study of Chunk-Level SER

We first evaluate the role of splitting a sentence into small
chunks using alternative methods. We compare these
approaches with our proposed solution. The ultimate goal of
a sequence-to-one SER task is to encode the emotional infor-
mation of the entire sentence into a single vector. We expect
that this vector is able to capture emotionally-relevant con-
tent in the input speech sentence. To achieve this goal, stud-
ies usually pad zeros to the sequences to match the
maximum length for the batch training. An obvious issue is
the poor capacity toward long sequences since a single fixed
dimension vector may not be sufficient to represent such
complex, long, and temporal dynamic information [50].

An alternative method to avoid the model directly learn-
ing long sequences is to split the original sequence into
small segments (chunks) through cropping and padding
techniques [33], [34]. Similar to the proposed approach, we
need to set a desired chunk window length w,. For the base-
line, we use a fixed chunk step size Ac, which is the conven-
tional approach. Note that the number of chunks per
sentence still varies as a function of the duration of the sen-
tence. During the training stage, each data chunk is treated
as an independent training sample sharing the same sen-
tence-level label. In the inference stage, the final sentence
score is the average of these chunk-level predictions.

Exploring the aforementioned methods, we compare our
dynamic chunk-based segmentation process with alterna-
tive baselines. We present the baseline results in Fig. 3 for
LSTM, CNN, and functional models. The model architec-
tures are the same as the ones presented in Table 1, which
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Fig. 3. Preliminary results of feature extraction models with different
chunking methodologies. The symbols T and | indicates that the results
are statistically significantly better or worse that the entire baseline,
which processes the sentences without chunk segmentation.

are directly combined with two fully connected output
layers without attention models. The settings to train and
evaluate the network are described in Section 4.3 (e.g., batch
size and cost function). The approaches considered in this
study are:

(1) Sentence-level SER
e entire: extracting the sentence-level representa-
tion vector directly from the entire sentence.
These sequences are zero padded to reach the
maximum length of the sentences in the corpus
(i.e., 11 secs).
(2)  Chunk-level SER
e nonQvuerlap: splitting the sentence into chunks
without overlap. We set the length of the chunk to
w, = 1 sec, using the same value used by our
method (Section 4.3). The chunk step size Ac is

fixed to 1 sec (i.e.,, 0 percent overlap between
chunks). The last data chunk, if shorter than 1 sec,
is padded with zeros to reach a duration of 1 sec.

o 30percentOuverlap: same as nonOverlap but the
chunk step size Ac is fixed to 0.7 sec (i.e., 30 per-
cent overlap between chunks).

e  5S0percentOverlap: same as nonQOuverlap but the
chunk step size Ac is fixed to 0.5 sec (i.e., 50 per-
cent overlap between chunks).

e  dynamicQuverlap: split sentence into small chunks
with a dynamic chunk step size Ac; depending
on its duration (i.e., our proposed method in Sec-
tion 3.2). Note that we do not apply any sen-
tence-level temporal aggregation model. Each
chunk is independently treated, sharing the
same sentence-level label during training.

Fig. 3 shows the results for arousal, valence and domi-
nance. We denote with the symbols T and | cases where the
chunk-level segmentation methods lead to significantly bet-
ter or worse performance than the result of the sentence-
level approach, respectively. The figure shows that the
chunk-level SER methods often perform better than the sen-
tence-level SER (i.e., entire) for LSTM architectures. The
results are particularly clear for arousal and valence. This
result shows that reducing the input sequence length can
benefit recurrent-based models. However, we do not
observe the same behavior when we rely on a CNN or a
functional model. The chunk-level SER methods for the
CNN model only improve results for valence. We do not
observe clear benefits of using chunk-based models using
statistical functions, where we even observe worse perfor-
mance for valence. We notice that static encoding models
such as CNN or statistical functions are not able to effec-
tively capture emotionally-relevant features, since each
small data chunk only contains local emotional information.
Moreover, forcing data chunks to share the same sentence-
level label is implausible, since emotions are not uniformly
distributed in a sentence [51]. Another interesting finding is
that the step size between chunks Ac does not play a key
role in the prediction performance. Different overlaps
between chunks do not drastically affect the performance.
Our proposed dynamic chunk step size Ac¢; can even
achieve the best performance in many cases (e.g., valence
results with LSTM and functional models).

We conclude two main issues of current chunk-level SER:
(1) each data chunk only contains partial sentence-level
information, and (2) each data chunk shares the same sen-
tence-level emotional label. Our proposed framework can
solve both issues, hierarchically extracting emotion-relevant
information from the frame-level, chunk-level, and sen-
tence-level, via a simple data segmentation process.

5.2 Proposed Chunk-Level SER Results

As we stated in previous sections, the key advantage of our
proposed dynamic chunk segmentation process is the fixed
number of output chunks, allowing us to aggregate com-
plete sentence-level temporal information by different
techniques in an efficient way. This section compares imple-
mentations of our proposed framework with two models
presented in Section 5.1: entire and dynamicOverlap. We use



TABLE 2
Framework Performance Using Different Combination of Chunk-
Level Feature Representation and Sentence-Level Temporal
Aggregation Methods

Aro [CCC] Val [CCC] Dom [CCC]
Functional Model
entire 0.6777 0.2285 0.6079
dynamicOuverlap 0.6828 0.2319 0.6043
NonAtten 0.6992" 0.2585* 0.6224
GatedVec 0.7038* 0.2942* 0.6236
RNN-AttenVec 0.6666 0.1835 0.5955
Self-AttenVec 0.6987* 0.2679* 0.6253
LSTM Model
entire 0.6711 0.2145 0.6078
dynamicOverlap 0.6976 0.3172 0.6186
NonAtten 0.6807 0.3275* 0.6085
GatedVec 0.6771 0.3141* 0.6011
RNN-AttenVec 0.6955* 0.3006* 0.6175
Self-AttenVec 0.6837 0.3337* 0.6004
CNN Model
entire 0.6762 0.1629 0.5935
dynamicOverlap 0.6818 0.2068 0.6002
NonAtten 0.7035*f 0.2683 0.6268*
GatedVec 0.7027+ 0.2856" 0.6201*
RNN-AttenVec 0.6845 0.1582 0.5885
Self-AttenVec 0.7012* 0.2310* 0.6207

The symbols + and t indicate that the improvements of our methods over the
entire and dynamicOverlap baselines are statistically significant, respec-
tively (two-tailed t-test, p-value < 0.05).

dynamicOuverlap as the representative chunk-level baseline
model, since the performances of chunk methods with dif-
ferent overlaps are similar. In addition, the key difference
between dynamicOverlap and our proposed framework is
the addition of the sentence-level temporal aggregation.
Therefore, it is straightforward to compare the effectiveness
of modeling complete temporal information with the meth-
ods described in Section 3.4.

Table 2 shows the results for different combinations of
chunk-level feature representation models and sentence-
level temporal aggregation methods. For the LSTM models,
Table 2 shows that the results for chunk-level methods are
significantly better than directly learning the entire sequence
for all emotional attributes (especially for valence). Although
arousal and dominance have similar accuracy with dynami-
cOverlap (i.e., the differences are not statistically significant),
our proposed Self-AttenVec method achieved the best
valence CCC result (CCC=0.3337). Valence is an attribute
that is particularly challenging to predict with acoustic fea-
tures [52], [53], indicating that complete sentence-level infor-
mation can bring complemental benefits for more complex
tasks. The advantage of applying attention models is ampli-
fied in the CNN and functional models. Table 2 shows that
the models often obtain significantly better performance
than the entire and dynamicOuverlap baselines for all emotional
attributes (e.g., see results for GatedVec model). These results
verify that aggregation of sentence-level temporal knowl-
edge is necessary and particularly important for the static
CNN or functional-based model.
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The results show that we cannot find a general combina-
tion of our frameworks which is able to reach the best per-
formance for all different tasks and models (chunk-level
feature representation and sentence-level temporal aggrega-
tion models). For instance, the RNN-AttenVec model gives
sub-optimal results when the features are extracted with
either CNN or functional models. This result demonstrates
that the combination of framework modules should be task
or model dependent. Based on the results in Table 2, we
suggest the sentence-level temporal aggregation models of
RNN-AttenVec or Self-AttenVec for the LSTM model, and
NonAtten or GatedVec for the CNN and functional models.
We keep only these combinations for the rest of the evalua-
tions in this study. Notice that the CCC improvements
reported in this section are only possible after using the pro-
posed chunk-based segmentation.

5.3 Analysis of Chunk-Level Attention Weights

We analyze the chunk-level weights of the sentence-level
temporal aggregation methods. We select the RNN-AttenVec
model to analyze the LSTM model. The attention weights o
in the RNN-AttenVec model (Eq. (6)) are the softmax output
of the general score function [42], so they are constrained to
sum to 1. For the CNN and functional models, we use the
GatedVec weights for the analysis (g; in Eq. (5)). Each weight
is the sigmoid output value of the gated model correspond-
ing to each input chunk. Its value ranges from 0 to 1. Other
temporal aggregation methods are not considered. For the
NonAtten framework, the weights are constant across
chunks so this analysis is not relevant. Although the Self-
AttenVec method has the same softmax attention weights as
RNN-AttenVec, we only present the analysis for the RNN-
AttenVec method as the representation of the analysis for
this type of attention weights in the LSTM model since its
performances are generally better than the performances of
the Self-AttenVec model (see Table 2 for arousal and domi-
nance). Our models produce attention weights based on
chunk-level representations, which are used to combine the
vectors hy, hs, ..., he. The number of weights per sentence
is fixed to C =11 under our experimental settings, which
facilitate the visualization of the weights. The purpose of
this analysis is to evaluate if the models are assigning differ-
ent weights to different chunks within the sentences.

Fig. 4 presents the results. The dots inside the solid line
represent the mean weights. The shaded area around the
lines indicates the weight’s standard deviation across the
entire testing set for each specific chunk. The first interest-
ing point we can notice in Fig. 4 is that the attention weights
of LSTM-based RNN-AttenVec present a decreasing trend
along with time for all emotional attributes, indicating that
the first chunks are, in general, weighted more. The results
show the importance of the first impression in the decision
making process [54]. The second observation is the high
value of the standard deviations, which shows that the val-
ues of the weights are different from sentence to sentence.
For both CNN and functional-based GatedVec models, we
observe different patterns for emotional attributes. For
valence, the gated weights have high deviations and the
same decreasing trend as the LSTM-based RNN-AttenVec
model. For arousal and dominance, we observe a flat-shape
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Fig. 4. Analysis of the chunk-level attention weighs for RNN-AttenVec implemented with LSTM, and GatedVec implemented with CNN and functional
models. The solid lines represent the average score for each of the C' = 11 chunks and the shaded area represents the standard deviation.

with small deviations suggesting that the weights of chunks
are similar without much variation across sentences. This
result suggests that keeping the weights constant for arousal
and dominance (i.e., NonAtten model) may be sufficient to
obtain similar performance to the GatedVec model. This
result is consistent with the CCC values observed in Table 2.
The high variability in the weights for valence illustrates the
benefits of adding temporal modeling in its prediction [55].

5.4 Results as a Function of Sentence Duration

This section analyzes additional advantages of the proposed
chunk-level SER framework by analyzing the CCC perfor-
mance as a function of the duration of the sentences. We
compare the selected models to a sentence-level baseline
implemented with zero padding to fix the duration of the
sentence (entire model presented in Section 5.1). To evaluate
the model performance for sentences of different lengths,
we arbitrarily split the test set into short (< 5sec), medium
(5-8sec) and long (> 8sec) subsets based on the duration of
the sentences. The test set has 4,280 short, 3,684 medium,
and 2,160 long sentences. Following the approach presented
in Section 4.3, we further split each of these test sets (i.e.,
short, medium and long sets) into 15 subsets, reporting the
average scores, and estimating statistical significance with a
two-tailed t-test.

Table 3 shows the results of the selected LSTM, CNN,
and functional models. The first observation is that the per-
formance of the entire model degrades as we increase the
duration of the sentences for all three emotional attributes.
The result shows unstable performances for sentences of
different durations, since zero padding introduces artifacts
in the feature vector affecting the temporal model. The
same trend can be observed when this baseline is imple-
mented with either LSTM, CNN, or functional models. The
results verify the challenges in modeling long sequences
using the zero padding technique while building the sen-
tence-level SER (see the results for medium and long sub-
sets, especially for the valence attribute). However, our

proposed models systematically improve the performance
for different duration of the data, especially for medium
and long sequences. These results demonstrate that tempo-
ral modeling based on smaller chunks can be useful to
aggregate long-term temporal information, leading to
robust prediction accuracy, regardless of the duration of the
sentences.

5.5 Analysis of Computational Benefits
As we set the desired chunk window length w,. in Sec-
tion 3.2, we generate C' chunks per sentence. Each chunk
has m frames. The variable m depends on the chunk win-
dow length (w.) and step size (Awj,) during the feature
extraction stage (Section 3.1). Eq. (12) gives this relationship
We = M X AWyey,. (12)
Since we feed these data chunks into a LSTM model, the
GPU is able to process the chunks in parallel. We can
observe that the time step size in the backpropagation through
time (BPTT) and RNN-based forward algorithm reduces
from an arbitrary number M (i.e., total number of frames in
a sentence) to a fixed variable m in Eq. (13), where E is the
prediction loss, ¢ is the network prediction outputs, s is the
consecutive time-step hidden outputs and W is the network
trainable parameters

8E’m _ zm: aEm 3@7” ﬁ as/ ask
OW £ 0fim O \ L B ) O

Typically m is significantly less than the original total
number of frames, which can effectively improve the
computational efficiency of the RNN-based models. For
instance, if the duration of the input sentence is 10 seconds,
with a LLDs extraction step size equal to Aw;.,, = 0.016 sec-
onds (16ms), we will obtain 625 frames for the LLDs feature
map. Now, if we set w, to 1 second, m will approximately
equal to 62, reducing the time step size from 625 to 62. The

(13)
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TABLE 3
Analysis of Performance as a Function of the Sentence Duration
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TABLE 4
Analysis of the Computational Efficiency of the Proposed
Framework for Different Implementations

LSTM Model
Short(< 5sec) Model # of Par. Train Online
Aro [CCC] Val [CCC] Dom [CCC] 6
entire 0.6800 02497 0.6188 [10°] [sec/epoch]  [ms/uttr]
RNN-AttenVec 0.7010% 0.3246* 0.6235 LSTM entire 0.289 436.6 519.2
Self-AttenVec 0.6809 0.3494™ 0.6031
Vodhon(s < 8sc0) LSTM RNN-AttenVec  0.374 140.1 40.9
Aro [CCC] Val [CCC] Dom [CCC] LSTM SElf-Att@TlVEC 0.368 87.5 41.3
entire 0.6622 0.1838 0.5984 CNN entire 1.587 76.9 19
RNN-AttenVec 0.6870 0.2876" 0.6149
Self-AttenVec 0.6794 0.3337* 0.5955 CNN NonAtten 0.269 53.0 1.8
Long(> 8sec) CNN GatedVec 0.269 83.9 3.0
Aro [CCC] Val [CCC] Dom [CCC]
entire 0.6565 0.1836 0.5828 The table lists the number of parameters, time for training, and time for online
RNN-AttenVec 0.6862 0.2452 05951 processing.
Self-AttenVec 0.6892" 0.2775 0.5905
CNN Model have been significantly reduced, achieving models that are
Shori(< Ssec) 10 times faster during online processing than the baseline
Aro [CCC] Val [CCC] Dom [CCC] (i th ¢ del). E th h b .

T 0601 01994 06160 (i.e., the entire model). Even though we observe an increase
NonAtten 07134 0.3159" 0.6332 in the number of parameters for the LSTM models, the pro-
GatedVec 0.7059 0.3326" 0.6262 posed chunk-level attention models have low complexity.

Medium(5 ~ 8sec) For the CNN model, we observe the same efficiency
ArolCCC] Val [cccl Dom [CCC] improvement trend, but the relative improvements are

entire 0.6622 0.1440 05825 p . ! . ve mmp
NonAtten 0.6960" 0.2259" 0.6231% smaller, since the convolution operation is already well par-
GatedVec 0.6995* 0.2473* 0.6172* allelized in the GPU. For the CNN-based model, the number
Long(> 8sec) of parameters is significantly lower than the baseline model
, Aro[CCC] vallcec] Dom [CCC] over the entire sentence. The entire model requires the com-

entire 0.6545 0.1244 05440 o . .

Nom Atten 04814 020617 0.6040" plete sentence-level feature map, resulting in a high dimen-
GatedVec 0.6899 0.2122" 0.6036* sional flatten output at the final CNN layer. This high
Functional Model dimension vector representation increases the complexity of
Short(< 5sec) the model when we add the fully connected output layers.
Aro [CCC] Val [CCC] Dom [CCC] However, chunk-level SER does not inherit this problem,
entire 0.6939 0.2826 0.6241 since it receives small and fixed size sub-maps as the input.
NonAtten 0.7006 02992 0.6288
GatedVec 0.7093 0.3374* 0.6297 . .
Niedinm(5 ~ 8scc) 5.6 Effect of the Window Size for the Chunks
Aro [CCC] Val [CCC] Dom [CCC] While the maximum sentence duration in a corpus is fixed
entire 0.6644 0.209% 0.5956 (T42), adjusting the chunk window length w. changes the
NonAten 0-69637 02522 06175 number of chunks C. There is a tradeoff in setting the value
GatedVec 0.7011% 0.2593* 0.6226 : X . & i
Long(> 8sec) for w,. On the one hand, increasing w. means more informa-
Aro [CCC] Val [CCC] Dom [CCC] tion is contained within a chunk. However, it reduces the
entire 0.6559 0.1406 0.5839 role of the temporal aggregation model since C' decreases.
NonAtten 0.6922" 0.1960* 0.6053 ; ;
CotodVoe i 02364 02989 Furthermore, long sequences might include changes of

The sentences are grouped into short, medium and long sentences. The symbol
« indicates that the improvements of our methods over the entire baseline are
statistically significant (two-tailed t-test, p-value < 0.05).

same model efficiency improvement is also observed with
the CNN model. We split the original big feature map into
multiple small and fixed size sub-maps, which can be proc-
essed in parallel by the GPU.

Table 4 compares the model efficiency in terms of the
number of parameters, time for training (i.e., average in sec-
onds per training epoch), and time for online processing
(i.e., average in millisecond per utterance during inference).
All models are trained and tested under the same single
NVIDIA GeForce RTX 2080 Ti GPU environment. As we
expect, even though LSTM-based chunk-level SER models
are equipped with an additional attention model (i.e., RNN-
AttenVec or Self-AttenVec), they considerably improve the
model efficiency. Both training and online testing times

emotions within the chunks if w, is too large, making it
more difficult to learn its ambiguous information. On the
other hand, decreasing w, can enhance the influence of the
temporal aggregation model since C increases. However,
short-term information may not be sufficient to reliably rec-
ognize emotion if w, is too small. Increasing C also increases
the computational complexity of the sentence-level tempo-
ral aggregation models. This section evaluates the perfor-
mance of the system as a function of w...

Fig. 5 shows the valence results for different values of w,
(i.e.,0.5secs, 1 sec, 1.5 secs and 2 secs). The results for arousal
and dominance present similar trends so we do not present
them in this paper. All settings are the same as the setting
described in Section 4, where we only change the variable w..
We only present specific combinations of the framework as
representative examples for each chunk-level feature repre-
sentation approach (e.g.,, RNN-AttenVec for LSTM). The
figure shows that the recognition performance decreases as
we increase the length of w, to 1.5 secs or 2 secs. However,
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Fig. 5. Analysis of the performance of the models for valence as a func-
tion of the window length w.. We evaluate the RNN-AttenVec model
implemented with LSTM, and the GatedVec model implemented with
CNN and functional models.

the degradation of performance does not significantly
change when we decrease w, to 0.5 secs. We conclude that
the sentence-level aggregation methods can effectively cap-
ture useful temporal information even when the chunks only
contain limited emotional information. Similar results have
been reported by Arias et al. [56], where they successfully rec-
ognized emotions using 0.5 secs windows. Based on the
results, we believe that setting the chunk window length w,
to 1 sec is a good balance to obtain reliable short-term chunk
information and long-term sentence-level aggregation.

We highlight that the value of w, is task dependent. For
some tasks, the target traits are conveyed across all frames.
An example is basic gender acoustic traits, which do not
change too much across time. Therefore, we can use a lon-
ger chunk duration to capture full gender patterns. For
other tasks, such as SER, the target information varies from
frame to frame. For these tasks, the duration of the chunk
window should be short enough to capture temporal varia-
tions to be leveraged by the sentence-level temporal aggre-
gation models. The value of w, also depends on the speech
style. If the recordings are spontaneous speech from a group
of people, we can expect many interruptions and over-
lapped speech. Since these patterns might challenge the
model during training, we can choose a window size with
smaller duration to capture a single speaker for most of the
chunks. Using a reduced window size increases the number
of chunks (Eq. (1)), giving more freedom to the sentence-
level temporal aggregation model to ignore trivial or con-
fusing acoustic patterns.

6 GENERALIZATION OF PROPOSED APPROACH

This section evaluates the generalization of our framework
for SER systems on other emotional corpora. We consider
two benchmark databases widely used in the community:
the IEMOCAP [11] and MSP-IMPROV [47] databases. This
section considers within-corpus evaluations, defining sepa-
rate train, development, and test partitions for each data-
base. We implement the approach for arousal, valence, and
dominance. To simplify the evaluation, we only consider
the CNN model (same architecture described in Table 1)
with the GatedVec algorithm to aggregate the temporal
information across chunks. We compare our approach with
the entire sentence-level SER baseline. All model settings are
the same as the ones described in Section 4.3, including the
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Fig. 6. Results on the IEMOCAP and MSP-IMPRQV corpora. The figure
compares the performance of the proposed GatedVec framework imple-
mented with CNN with the entire baseline implemented with CNN. The
CCC performances are calculated using a leave-one-session-out cross
validation approach, where we randomly split the data into 15 subsets to
perform the statistical test. Results tagged with « indicate statistically sig-
nificant improvements over the baseline.

acoustic features (i.e., the 130 normalized LLDs). The collec-
tion of the IEMOCAP and MSP-IMPROV datasets did not
impose strict duration range for sentences, so we artificially
define T, = 17 secs, discarding sentences with duration
outside this range. We also discarded sentences that were
shorter than 1 sec. Sentences with duration between 1 sec
and 17 secs cover over 97 percent of the sentences for both
datasets. We set w. =1 sec, resulting in C = 17. We imple-
ment the evaluation using a speaker-independent cross-vali-
dation (CV) setting, using 5 folds for the IEMOCAP corpus
(5 dyadic sessions), and 6 folds for the MSP-IMPROV cor-
pus (6 dyadic sessions). For every CV, one dyadic session
(i.e., 2 speakers) is used for the test set, one dyadic session is
used for the development set, and the rest of the corpus is
used for the train set. Consistent with Section 4.3, we report
the average CCC values obtained across 15 randomly split
subsets of the CV prediction results, evaluating statistical
significance with a two-tailed t-test.

The experiment results are shown in Fig. 6. Our pro-
posed chunk-level SER method systematically outperforms
the baseline model, which directly learns discriminative
information from the entire sentence. This result is particu-
larly clear for valence. The same improved performance
trend can be observed in the MSP-Podcast corpus (see the
CNN model in Table 2). The results from the MSP-IMPROV
and IEMOCAP corpora validate the general effectiveness of
the proposed framework.

7 CONCLUSION AND FUTURE WORK

This study presented a general chunk-level sequence-to-one
framework to cope with important dynamic temporal infor-
mation in SER tasks. The proposed approach is able to split
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sentences with varied durations into a fixed number of chunks,
which have the same length by dynamically adapting the over-
lap between chunks. The approach offers the flexibility to effi-
ciently combine different chunk-level feature representation
frameworks (e.g., functional statistics, LSTM or CNN) with
alternative sentence-level temporal aggregation models (e.g.,
GatedVec, RNN-AttenVec or Self-AttenVec). The proposed
framework hierarchically extracts task-relevant features at the
frame, chunk, and sentence levels, providing an appealing
end-to-end framework. The experimental results based on
multiple databases showed the benefits in model efficiency
and accuracy by using the proposed chunk-level temporal
modeling methodology. The results show higher accuracies
for sentences with medium and long durations, which are
challenging for conventional approaches relying on zero pad-
ding. Our solution solves a critical issue for directly building
sentence-level models.

The framework offers multiple potential research direc-
tions to extend this study. First, we expect that this frame-
work can be extended to sequence-to-sequence learning
tasks, providing an appealing solution when emotional
information is available within a sentence (e.g., emotional
traces). Estimating continuous emotion trends from a
speech recording is a challenging task. Robust frame-level
predictions require time-continuous traces (i.e., emotional
labels) that are well synchronized with the speech signal.
This synchronization is hard to achieve due to the reaction
lag of the evaluators [9]. Since this framework decreases the
resolution from frame-level to chunk-level analysis, the
strict synchronization requirement is relaxed. Second, the
framework can also be beneficial for multi-modal process-
ing. Multimodal approaches also require synchronization
between different modalities, which is usually infeasible.
For example, the sampling rate for videos typically does not
match the sampling rate for speech. We can increase the tol-
erance for timing mismatches across signals by turning a
frame-level analysis into a chunk-level analysis. Third, our
current framework splits a sentence into chunks based
exclusively on duration. We can alternatively use other cri-
teria to include more meaningful linguistic information. An
interesting extension of this approach is to develop an
advanced framework that leverages the output from an
automatic speech recognition (ASR) system to define favorable
chunk durations, considering both acoustic and linguistic
information. Finally, we can apply this approach in other
sequence-to-one problems.
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