

DeepEmoCluster: A Semi-Supervised Framework for Latent Cluster Representation of Speech Emotions

Wei-Cheng Lin, Kusha Sridhar and Carlos Busso

THE UNIVERSITY OF TEXAS AT DALLAS

Outline

1. Background

- 2. Proposed Methodology
- **3.** Experimental Results and Analysis
- 4. Conclusions & Future Works

SSL in SER

Semi-Supervised Learning (SSL)

• Leverage large amounts of unlabeled data to improve recognition generalization ability

SSL in Speech Emotion Recognition (SER)

• Reconstruction-based architecture (i.e., AE [1], VAE [2] and LadderNet [3])

Proposed Methodology

DeepEmoCluster framework

Inductive SSL scheme (i.e., pseudo-labeling by K-means clustering)

1. No **Decoder** in the framework

2. Meaningful and interpretable hidden representations, resulting in **emotional clusters**!

msp.utdallas.edu

Dallas

DeepEmoCluster

End-to-End SSL framework

- Input with 128-Mel spectrogram (32ms window size and 16ms overlaps)
- Step 1: chunk-segmentation pre-processing [Lin and Busso, 2020]

DeepEmoCluster

Visualization of 128-Mel spectrogram data chunks

- Originally arbitrary length of audios are mapped into fixed size and fixed number of "small spec-images" as the inputs.
- These images are shared the same sentence-level emotional target during training procedure.

DeepEmoCluster

Step 2: unsupervised (Stage I) + joint-optimization (Stage II)

Some details

- 1. Stage I is for the unlabeled data
- 2. Stage II is for the labeled data
- 3. We reassign the K-means clustering pseudo-labels on every new epoch

Experimental Settings

Corpus: The MSP-Podcast v1.6

- Use existing podcast recordings
- Divide into speaker turns
- Emotion retrieval to balance the emotional content
- Annotate using crowdsourcing framework

msp.utdallas.edu

Dallas

Experimental Settings

- The MSP-Podcast v1.6
 - 50,362 (83h,29m)
 - Duration range: 2.75 ~ 11 secs
- Corpus partition with minimal speaker overlap sets:
 - Test data: 10,124 samples
 - 50 speakers (25 males, 25 females)
 - Development data: 5,958 samples
 - 40 speakers (20 males, 20 females)
 - Train data: 34,280 samples
 - from remaining speakers
 - Unlabeled data
 - Totally around 500,000 samples

Experimental Settings

Parameters Settings:

- w_c :1 (sec), T_{max} :11 (secs) \rightarrow C=11 (sub-images/per sentence)
- Joint-optimization weighting factor of the loss function $\lambda=1$
- 64 batch size, early stopping criteria (for saving the best model based on the min. development loss)
- # of K-means cluster = [10, 20, 30]

(finetuned parameter depending on the size of unlabeled set)

- Size of unlabeled set = [0, 15K, 40K]
 - ple from the unlabeled data pool)

K-Means

Experimental Results

- Recognition performance under *fully supervised learning* (FSL)
 Baseline Models (all use VGG-16 structure):
 - CNN-regressor
 - *CNN-AE* (autoencoder)
 - CNN-VAE (variational autoencoder)

Statistically significant outperforms baseline models

Model	Aro [CCC]	Dom [CCC]	Val [CCC]
CNN-regressor	0.6177	0.4928	0.1696
CNN-AE	0.6338	0.5111	0.1354
CNN-VAE	0.5586	0.4800	0.1826
DeepEmoCluster (10-clusters)	0.6502	0.5426	0.1510

msp.utdallas.edu

ID THE UNIVERSITY OF TEXAS AT DALLAS

Further improved recognition performance while adopting

DeepEmoCluster (10-clusters)

semi-supervised learning (SSL) • ADD KEY RESULTS

Experimental Results

Experimental Results

Finetuned parameter of # K-means clusters ADD KEY RESULTS

DeepEmoCluster (SSL-40K)

# of clusters	Aro [CCC]	Dom [CCC]	Val [CCC]		
10-clusters	0.6611	0.5400	0.1572		
20-clusters	0.6491	0.5459	0.1756		
30-clusters	0.6416	0.5490	0.1752		

Experimental Results

Emotional clusters reflecting by the ground-truth emotion distributions under each cluster

ADD KEY RESULTS

Add original images

(a) Unsupervised Clusters (b

(b) Supervised Clusters

Fig. 3. Emotional distributions of the clusters with the highest and lowest average level of arousal. The distributions are farther apart with the addition of the supervised SER task.

Conclusions

- We introduced a new SSL framework in SER field
- DeepEmoCluster achieved the best and competitive recognition performances comparing to other existing SSL frameworks in SER
- DeepEmoCluster could result in meaningful hidden representations
- We discussed and determined the important parameter
 - The number of K-means clusters is a finetuned parameter depending on the size of unlabeled dataset

Future Works

- Extension of the framework from a single modality (speech) to a multimodal system (speech, language and visual)
 Forming a comprehensive behavioral emotional clusters
- Strengthen the connections between the latent clusters and the target emotions by utilizing information theory based metric

Release of the MSP-Podcast Corpus

- Federal Demonstration Partnership (FDP) Data Transfer and Use Agreement
- Free access to the corpus

Commercial license

Commercial license through UT Dallas

https://msp.utdallas.edu

msp.utdallas.edu

Dallas

Reference

[1] J. Deng, X. Xu, Z. Zhang, S. Fr[°]uhholz, and B. Schuller, "Semisupervised autoencoders for speech emotion recognition," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, no. 1, pp. 31–43, January 2018.

[2] S. Latif, R. Rana, J. Qadir, and J. Epps, "Variational autoencoders for learning latent representations of speech emotion," in Interspeech 2018, Hyderabad, India, September 2018, pp. 3107–3111.

[3] S. Parthasarathy and C. Busso, "Semi-supervised speech emotion recognition with ladder networks," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2697–2709, September 2020.

[4] W.-C. Lin and C. Busso, "An efficient temporal modeling approach for speech emotion recognition by mapping varied duration sentences into fixed number of chunks," in Interspeech 2020, Shanghai, China, October 2020, pp. 2322–2326.

msp.utdallas.edu

THE UNIVERSITY OF TEXAS AT DALLAS

Thank you for your attention !

This work was funded by NSF (CNS-1823166; IIS-1453781)

Github link: <u>https://github.com/winston-lin-wei-cheng/DeepEmoClusters</u> Questions or Contact: **wei-cheng.lin@utdallas.edu**

msp.utdallas.edu

THE UNIVERSITY OF TEXAS AT DALLAS