

INTERSPEECH 2020

OCTOBER 25-29/ SHANGHAI, CHINA SHANGHAI INTERNATIONAL CONVENTION CENTER

An Efficient Temporal Modeling Approach for Speech Emotion Recognition by Mapping Varied Duration Sentences into Fixed Number of Chunks

Wei-Cheng Lin and Carlos Busso

THE UNIVERSITY OF TEXAS AT DALLAS

Outline

1. Background

- **2.** Proposed Methodology
- **3.** Experimental Results and Analysis
- 4. Conclusions & Future Works

Speech Emotion Recognition (SER)

Sequence-to-One Problem

3

Temporal Modeling

Traditional Approach

- Frame-level LLDs (e.g., f0, MFCCs, energy)
- Sentence-level HLDs (e.g., mean, variance)
- Learning models (e.g., SVM, FCNN)

Issues

- HLDs assume all the frames are equally important, ignoring non-uniform externalization of emotion
- Static-encoding vector
- It is not able to dynamically reflect emotional changes over time

Temporal Modeling

Deep Learning Approach

- Jointly trained feature extractor with discriminator
 - Powerful feature representation
- Cropping and Zero-Padding to deal with sentences with different length
- CNN, LSTM or hybrid CNN-LSTM
 - Temporal mean pooling
 - Majority voting or averaging outputs

Issues

- Truncate original temporal information
- Mean pooling/majority voting/averaging outputs still treat every segment the same (i.e., non-dynamic temporal modeling)

UT Dallas MUT Dallas Multimodal Signal Processing Laboratory

- Goal: dynamic temporal modeling
- Key Problem: sentences have varied number of segments/frames
- Proposed: Novel Chunk Segmentation Process

Fixed size and **fixed number** of chunks for different duration sentences

Chunk Segmentation Process

No zero-padding is required!

Pre-defined Parameters:

1. T_{max} (sec): maximum sentence duration in the corpus 2. w_c (sec): desired chunk window length

$$C = \left\lceil \frac{T_{\max}}{w_c} \right\rceil$$
: number of chunks per sentence
$$C_i = \frac{T_i - w_c}{C - 1}$$
 (sec): chunk step size depends on sentence duration

msp.utdallas.edu

8

Dynamically Combining Chunk-Based Feature Representations

Corpus: The MSP-Podcast v1.6

- Use existing podcast recordings
- Divide into speaker turns
- Emotion retrieval to balance the emotional content
- Annotate using crowdsourcing framework

msp.utdallas.edu

- The MSP-Podcast v1.6
 - 50,362 (83h,29m)
 - duration range: 2.75 ~ 11 secs
- Corpus partition with minimal speaker overlap sets:
 - Test data
 - 10,124 samples from 50 speakers (25 males, 25 females)
 - Validation data
 - 5,958 samples from 40 speakers (20 males, 20 females)
 - Train data
 - Remaining 34,280 samples

Acoustic Features

- Opensmile
- Interspeech 2013 computational paralinguistics challenge (IS13ComparE)
- 65 low level descriptors (LLDs) + its delta value = 130-dimensions in total
 - mel frequency cepstral coefficients (MFCCs)
 - Fundamental frequency (f0)
 - Intensity (energy)
 - ••••

msp.utdallas.edu

Parameters Settings:

- MTL tasks: arousal (Aro.), dominance (Dom.) and valence (Val.)
- $w_c : 1 \text{ (sec)}$
- *T_{max}* : 11 (secs)
- C = 11 (chunks/per sentence)
- Network nodes: 130 for all layers (the same as input-dim)
- Adam optimizer
- 128 batch size
- Loss function: concordance correlation coefficient (CCC)
 - Same as the evaluation metric

msp.utdallas.edu

Experimental Results

Baseline Models:

- Padding zeros to the max length (i.e., 11 secs) for all sentences
- *LSTM(130)*, number of nodes in the LSTM shared layers is 130 number of nodes
- *LSTM(260)*, number of nodes in the LSTM shared layers is 130 number of nodes

Best performance for all emotional attributes

Model	Aro [CCC]	Dom [CCC]	Val [CCC]
LSTM (130)	0.6520	0.5711	0.2031
LSTM (260)	0.6875	0.6045	0.2847
NonAtten	0.6781	0.6019	0.2925
GatedVec	0.6747	0.5944	0.3199
AttenVec	0.6947	0.6132	0.3072
			THE UNIVERSITY OF TEXAS AT DA

msp.utdallas.edu

14

Experimental Results

msp.utdallas.edu

Improvement of model efficiency

- Chunks are parallel processed by GPU
- Significant reduction in MFLOPs (i.e., roughly C=11 times faster)

Model	# of Par. [10 ⁶]	MFLOPs [MFLOPS]	Train [sec/epoch]	Online [ms/uttr]
LSTM (130)	0.323	5.67	437.1	547.5
LSTM (260)	1.052	18.49	439.4	598.1
NonAtten	0.323	0.49	74.9	42.2
GatedVec	0.324	0.49	246.6	44.6
AttenVec	0.577	1.50	353.1	45.6

Experimental Results

- Robustness for different duration
 - Short (\leq 5 secs): 4,280 sentences
 - Middle (5-8 secs): 3,684 sentences
 - Long (≥ 8 secs): 2,160 sentences
- Robust to different duration inputs (especially for long sequences)

Long (> 8sec)	Aro-CCC	Dom-CCC	Val-CCC	
LSTM(130)	0.6314	0.5559	0.1737 <	
NonAtten	0.6811	0.5822	0.2331	
GatedVec	0.6933	0.6030	0.2835	
AttenVec	0.6912	0.5989	0.2539	

Short (< 5sec)	Aro-CCC	Dom-CCC	Val-CCC	
LSTM(130)	0.6636	0.5812	0.2389 🗲	
NonAtten	0.6761	0.6077	0.3129	
GatedVec	0.6621	0.5865	0.3263	
AttenVec	0.7003	0.6192	0.3363	

Middle (5~8sec)	Aro-CCC	Dom-CCC	Val-CCC	
LSTM(130)	0.6484	0.5642	0.1735	
NonAtten	0.6779	0.6071	0.2839	
GatedVec	0.6807	0.6042	0.3279	
AttenVec	0.6880	0.6129	0.2978	

Conclusions

- Novel segmentation approach that can split a sentence into a fixed number of chunks, which have the same duration
- Flexibly and dynamically combine temporal information
- Best prediction performance
- Improve model efficiency
- Robust for different duration sentences

Future Works

- General framework of the proposed method
 - Multiple datasets
 - Different feature extraction models (e.g., CNN)
 - Different temporal modeling (LSTM, Attention models)
 - Different sequence-to-one tasks (e.g., age detection)

Release of the MSP-Podcast Corpus

Academic license

- Federal Demonstration Partnership (FDP)
 Data Transfer and Use Agreement
- Free access to the corpus

Commercial license

Commercial license through UT Dallas

https://msp.utdallas.edu

Thank you for your attention !

This work was funded by NSF (CNS-1823166; IIS-1453781)

THE UNIVERSITY OF TEXAS AT DALLAS

msp.utdallas.edu

Questions or Contact: wei-cheng.lin@utdallas.edu