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its Application to Maneuver and Secondary Task
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Abstract—This study explores the feasibility of detecting drivers’ mirror-checking actions using non-invasive sensors. Checking the
mirrors is an important primary driving action that allows drivers to maintain their situational awareness, especially when they are
planing to turn or change lanes. Recognizing when drivers are checking the mirrors can facilitate the detection of hazard scenarios
by considering contextual information (e.g., turning without checking mirrors, lack of mirror-checking actions signaling cognitive
distractions, or distinction between gazes due to primary or secondary tasks). This study analyzes drivers’ mirror-checking actions
under various real driving conditions. We analyze the drivers’ mirror-checking actions under normal conditions, and when the drivers are
engaged in secondary tasks such as tuning the radio or operating a cellphone. We also compare mirror-checking behaviors observed
during different maneuver actions: driving straight, turning and switching lanes. The study reveals statistically significant differences in
mirror-checking actions among most of the comparisons. The results suggest that mirror-checking actions can be useful indicators in
recognizing drivers engaged in secondary tasks, and in detecting driving maneuvers. We propose to detect mirror-checking actions
using features extracted from multiple noninvasive sensors (CAN-Bus and cameras facing the driver and the road). We consider three
machine learning algorithms for unbalanced datasets, achieving F-score of 91%. The recognized mirror-checking actions are used
as additional features to improve the performance of secondary task detection and maneuver recognition. These promising results
suggest that it is possible to detect mirror-checking actions, providing contextual information to improve new driver monitoring systems.

Index Terms—Driver distraction, driving maneuver, mirror-checking detection, binary classification, imbalanced classification.
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1 INTRODUCTION

D RIVERS rely on frequent peripheral visual scanning
and mirror-checking actions to keep their situation

awareness. However, under high mental workload, sec-
ondary tasks, or the influences of fatigue, drivers tend
to reduce the range of peripheral scanning, neglecting
mirror-checking actions. As a result, they are detached
from the surrounding traffic, increasing the risk of ac-
cidents [1], [2]. Therefore, an advanced driver assistance
system (ADAS) should be aware of the drivers’ mirror-
checking behaviors, which can be valuable in assess-
ing the attention level of the drivers while performing
primary (e.g., turning, switching lane) and secondary
(e.g., tuning radio, using a cellphone) tasks. We propose
that drivers’ mirror-checking action is a unique sub-
driving task that can be automatically detected using
multimodal features extracted from noninvasive sensors.
The automatically detected mirror-checking actions can
be used to estimate when the driving behaviors deviates
from normal patterns.

There is a close relationship between mirror-checking
actions and drivers’ behaviors. Primary driving tasks
such as visual scanning, turning and switching lanes
require mirror-checking actions [3]–[6]. Secondary tasks
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such operating a mobile device and tuning the radio also
affect mirror-checking actions [7]. As the cognitive load
increases, drivers reduce the frequency and duration in
mirror-checking actions affecting their situational aware-
ness [8], [9]. Therefore, understanding mirror-checking
actions in the context of ADAS can have a number of
benefits. An ADAS is designed to increase drivers’ situa-
tion awareness by providing additional sensory informa-
tion. For example, a lane departure warning (LDW) should
not warn the driver if he/she wants to execute a lane
change. A driver monitoring system should distinguish
between glances related to primary or secondary driving
tasks. This study focuses on detecting mirror-checking
actions, and its role in recognizing both drivers engaged
in secondary tasks, and vehicle maneuvers.

After manually annotating mirror-checking actions,
we evaluate the deviation from normal behaviors ob-
served when drivers are engaged in secondary tasks.
The analysis relies on real driving recordings using
the UTDrive platform [10]. We observe clear differ-
ences indicating that secondary tasks reduce frequency
and duration of mirror-checking behaviors, affecting
the driver’s situational awareness. We also compare
the mirror-checking behaviors when the drivers were
turning, driving straight and switching lanes. We find
significant differences across these maneuver actions.
Based on these findings, we propose to detect mirror-
checking actions using noninvasive sensors, achieving an
F-score of 0.91 using multimodal features extracted from
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the controller area network (CAN)-bus signal and video
cameras facing the driver and the road.

To demonstrate the benefits of detecting mirror-
checking actions, we use the detected actions as features
in two separate problems: identify drivers engaged in
secondary tasks; and recognize driving maneuver. In
both cases, the classification results improve when we
use the mirror-checking actions. The findings from this
study demonstrates that it is feasible to detect drivers’
mirror-checking behaviors and use this information to
improve driving behavior modeling. It illustrates the
benefit of leveraging high level semantic features, con-
taining important information about the driver behav-
iors, complementing low level features. This study opens
new directions in the field of monitoring driving behav-
iors to improve the next generation of ADASs.

The paper is organized as follows. Section 2 summa-
rizes the finding from studies related to this work. Sec-
tion 3 describes the multimodal corpus recorded in real-
world driving conditions, the feature extraction proce-
dure, and the manual annotation of mirror-checking ac-
tions in the database. Section 4 analyzes drivers’ mirror-
checking behaviors under various driving conditions,
including primary and secondary driving tasks. Section 5
presents our approach to detect the drivers’ mirror-
checking actions using multimodal features. Section 6
demonstrates the benefits of using mirror-checking ac-
tion in maneuver recognition and secondary task detec-
tion. Section 7 concludes the paper with final remarks
and our future research directions.

2 RELATED WORK

Studies on driving maneuver indicated that mirror-
checking behavior is closely related to actions such as
turning and switching lanes [4]–[6]. Georgeon et al. [4]
found that lane switch maneuver can be detected from
the changes in the vehicle speed and the drivers’ left
mirror-checking actions. Olsen [5] suggested that identi-
fying glances to the left outside mirror provides earlier
prediction of left turn and lane switch. Itoh et al. [6]
used increases in mirror-checking frequency to estimate
intention of truck drivers to change lanes.

Studies have reported the close relationship between
mirror-checking behaviors and different driving condi-
tions [3], [7], [11]. In 1972, Robinson et al. [11] suggested
that mirror-checking behaviors can indicate drivers’ vi-
sual search workload (busy traffic versus no traffic). This
observation becomes more relevant nowadays due to
the various in-vehicle infotainment systems and hand-
held devices used by modern drivers. Several studies on
driver distraction have mentioned the changes in mirror-
checking behaviors under different driving conditions
[1], [2], [7]–[9], [12]–[15]. Harbluk et al. [8], [9] observed
that drivers are likely to reduce the mirror-checking
frequency and duration under fatigue or high cognitive
workload. Brookhuis and de Waard [2] suggested that
this behavioral change is produced by drivers allocating

workload resources to complete tasks while driving. As
the task demand increases, drivers reduce the rearview
mirror-checking frequency.

In addition to indication of high mental workload
and driving maneuvers, other related studies have used
mirror-checking behaviors for different purposes. Mur-
ray et al. [16] studied the driving patterns of people
driving either for work or personal purposes. They
concluded that people who drive for work purposes
engage in less safe driving practices. One of the fac-
tors considered in the analysis was to overtake without
checking the mirrors. Lei et al. [17] used the driver behav-
ior questionnaire (DBQ) to investigate the skill and style
of drivers. The self-reported survey explicitly includes
cases when the driver failed to check his/her rear-view
mirror before conducting maneuver such as changing
lanes. Underwood et al. [18] used mirror-checking be-
haviors to evaluate the differences in skills between
novice and experienced drivers on different road types.
They found that novice drivers checked the external door
mirror less often than experienced drivers in lane change
tasks while driving in dual-carriageways.

Despite the clear relationship between mirror-checking
actions and driver behaviors, current ADASs do not
explicitly consider this primary driving task. The studies
mentioned in this section extract mirror-checking ac-
tions using manual annotations, or self-reported ques-
tionnaires. To the best knowledge of the authors, the
automatic detection of mirror-checking actions has not
been explored. Furthermore, related studies have not
considered mirror-checking actions as features in driving
classification problems (normal versus tasks, maneuver
recognition). This study takes up the challenge of detect-
ing mirror-checking actions using noninvasive sensors.
The detected actions are used as contextual features in
maneuver and secondary task recognitions.

3 DATA COLLECTION AND PREPROCESSING

This study relies on recording collected in real-world
driving conditions using the UTDrive platform. The
corpus provides realistic driving behaviors, preserving
the computer vision and signal processing challenges
existing in real world applications (i.e., vibrations, noise,
adverse illumination, complicated road dynamics, be-
haviors from other vehicles).

3.1 Data Collection
We collected a multimodal database from people driving
the UTDrive platform in real roads (see Fig. 1). The
details of the corpus are given in Li et al. [19]. The
UTDriver car is a 2006 Toyota RAV 4 equipped with mul-
tiple sensors: a microphone array, a camera facing the
road, a camera facing the driver, and two pressure sen-
sors on the gas and brake pedals [10]. We extract multi-
ple information describing the vehicle performance from
the CAN-Bus signal (e.g., speed and steering wheel).
The UTDrive offers a perfect platform to simultaneously
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Fig. 1. UTDrive car and placement of the sensors.

study the vehicle dynamic, environment condition and
driver performance. We have used this corpus to study
the driver’ visual and cognitive distractions [19]–[22].

As shown in Figure 2, we define a 5.6-mile route
comprising both city and residential roads with various
traffic signs (e.g., traffic light, stop signs). Twenty stu-
dents/employees (10 male and 10 female) from the Uni-
versity of Texas at Dallas participated in the recording.
The average and standard deviation of the participants’
age are 25.4 and 7.03, respectively. Each participant drove
along the predefined route twice. During the first lap, the
drivers operated the vehicle while performing different
secondary tasks during specific segments in the route.
The colors in Figure 2 indicates the route segments
corresponding to each secondary tasks. The description
of these tasks is given below.

• Operating the in-built car radio (Fig. 2, red route):
The driver is asked to tune the radio to the prese-
lected stations.

• Operating and following instructions from the GPS
(Fig. 2, green route): A pre-defined address is given
to the driver, who is asked to enter it into the GPS.
Then, they are asked to follow the GPS instructions
to reach the destination. This task is subdivided into

Fig. 2. The subjects drove this route twice (5.6 miles):
first lap, performing a series of secondary tasks: Ra-
dio (red), GPS-Operating and GPS-Following (green),
Phone-Operating and Phone-Talking (navy blue), Picture
(orange) and Conversation (black) (Table 1); second lap,
driving normally without getting involved in any other task.

TABLE 1
Secondary tasks in the corpus. The tasks phone and

GPS were split, since we observed different driver
behaviors while operating and using the devices.

Tasks Duration [s] Mean Speed [km/hr]
Normal Task Normal Task

Radio 1748 1635 50.56 54.04
GPS-Operating 1113 975 48.30 55.46
GPS-Following 3286 3050 35.13 37.09
Phone-Operating 476 478 51.76 53.46
Phone-Talking 2403 2546 40.76 37.81
Picture 1564 1573 51.79 52.34
Conversation 1648 1618 43.75 45.37

GPS - Operating and GPS - Following (preliminary
results suggested that driver behaviors are different
for these two activities [23]).

• Operating and talking on the phone (Fig. 2, navy
blue route): The driver is asked to call an airline
automatic flight information system (toll-free) to
retrieve flight information between two given US
cities, using a cellphone. This task is also subdivided
into Phone - Operating and Phone - Talking for similar
reasons as above.

• Describing pictures (Fig. 2, orange route): This task
requires the driver to look and describe randomly
selected pictures which are held out by a passenger
seated beside the driver. The purpose of this task is
to simulate the task of looking at objects outside the
car, such as billboards, sign boards and shops.

• Conversation with a passenger (Fig. 2, black route):
The last task is a spontaneous conversation between
the driver and a second passenger in the car.

The secondary tasks, approved by our institutional
review board (IRB), are chosen from common activities
that drivers daily engage while driving. They span broad
range of activities with different level of difficulty, induc-
ing different types of distractions (visual, manual and
cognitive). We do not consider activities such as texting,
for safety reasons. For the second lap, the drivers drove
the same route without performing any secondary tasks.
This protocol to record the database follows the experi-
ence from other research groups [10], [24]–[26], where we
fix the order of the tasks over predefined route segments.
Therefore, we can collect a reliable baseline for normal
driving behavior, in which most of the other variables
are kept fixed (e.g., route, traffic, and street signals).
The differences in behaviors observed for normal and
secondary task conditions can be primarily associated
with the effect induced by secondary tasks – not the
route.

Table 1 lists the average duration and speed for each
task route segment for both normal and task driving
conditions. All experiments are conducted under good
weather conditions, with a short break between the
two laps. The entire corpus comprises approximately 12
hours of multimodal data.
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TABLE 2
Multimodal Features. (CAN = CAN-Bus signal; MI =

microphone; RC = road camera; DC = driver camera)

Multimodal Features

C
A

N

Vehicle Speed (Speed) Brake Pressure (Brake)
Steering Wheel Angle (Steering) Acceleration (Acceleration)
Steering Wheel Jitter (Jitter) Gas Pedal Pressure
Brake Pedal Pressure

M
I

Energy

R
C Road Optical Flow

Road Intensity

D
C

Head Yaw Angle (Yaw) Chin Raiser (AU17)
Head Pitch Angle (Pitch) Lip Stretcher (AU20)
Head Roll Angle (Roll) Cheek Raiser (AU6)
Inner Brow Raiser (AU1) Lip Tightener (AU7)
Outer Brow Raise (AU2) Lip Puckerer (AU18)
Brow Lowerer (AU4) Lip Tightener (AU23)
Upper Lid Raiser (AU5) Lip Pressor (AU24)
Nose Wrinkler (AU9) Lips Part (AU25)
Upper Lip Raiser (AU10) Jaw Drop (AU26)
Lip Corner Puller (AU12) Lip Suck (AU28)
Dimpler (AU14) Eye Openness (AU45)
Lip Corner Depressor (AU15)

Statistics Derived for each Analysis Window
Mean, standard deviation, maximum, minimum, range,
inter-quatile range, skewness and kurtosis

Gaze features derived from the driver’s camera
Eyes-Off-the-Road Duration (EOR Dur.)
Eyes-Off-the-Road Frequency (EOR Freq.)
Longest Eyes-Off-the-Road Duration (LEOR Dur.)
Eye Blink Frequency (Blink Freq.)

3.2 Feature Extraction from Noninvasive Sensors

This study considers features extracted from the CAN-
Bus signal, pedal sensors, an array of five microphones,
and two cameras, one facing the driver and another
facing the road. The signals from the CAN-Bus can
be directly used to describe driving behaviors. Table 2
lists the signals extracted from the CAN-Bus and pedal
sensors. The feature Brake pressure (Brake) is extracted
from the CAN-Bus and it measures the actual pressure
from the brake sensor in the vehicle. The feature Brake
Pedal Pressure is extracted from the brake pedal sensor,
capturing activity even when the driver steps on the
pedal without pressing it. The other modalities require
preprocessing steps, which are described next.

We estimate the energy from the central microphone
of the array. This feature is useful to characterize driver
behaviors involving speech or background music (e.g.,
Conversation, Radio – see Table 1). We rely on the computer
expression recognition toolbox (CERT) [27] to extract head
and facial features from the video facing the drivers.
CERT estimates frame-by-frame both the head pose and
facial action units (AUs). AUs are part of the facial
action coding system (FACS) and describe facial muscle
activity [28]. Although the main purpose for CERT is
on expression recognition, it has been used for driver
drowsy detection [29]. Table 2 lists the AUs and head
pose estimation angles extracted from CERT. The toolkit
occasionally fails to detect the driver face due to adverse
illumination conditions and extreme head movement.

For these cases, we interpolate the values of head pose
and AUs if more than two third of the frames from the
analysis window are available. Otherwise, we do not use
facial features from these segments.

For the video facing the road, we calculated two quan-
tities in each frame to represent the road dynamics: op-
tical flow energy and image intensity. The former feature
characterizes the traffic condition (i.e., the overall objects
movement). It is estimated by summing the magnitude
of the optical flow for each frame. The latter feature char-
acterizes the driving condition (i.e., illumination, road
condition). It is estimated by summing the raw pixel
intensity values in each frame. Despite the simplicity of
these features, our previous study demonstrated their
effectiveness in detecting driver distractions [22].

In our previous study, we have successfully mod-
eled driver behaviors using statistics within a moving
window from the features listed on Table 2 [19], [21],
[22]. The same method is adopted here (see Sections
5 and 6). We estimate eight statistics for each signal:
mean, standard deviation, maximum, minimum, range,
inter-quartile range, skewness and kurtosis. The window
size in the study is set to five seconds, as a trade-off
between lag in driver behavior detection and reliable
statistic estimation. The lowest sampling rate among all
signals is the vehicle speed, which is 2Hz. Therefore,
we can have at least 10 samples per window to es-
timate the statistics. Also, mirror-checking behavior is
usually completed during short period, usually within
two seconds, occurring at relatively long intervals (20
- 40 seconds) [30]. Therefore, the window size should
be short enough to capture the characteristic behaviors
associate with mirror-checking actions. The promising
mirror-checking detection results described in Section 5
suggest that a five-second window is appropriate for
detecting this behavior.

To capture the drivers’ eye movement, we derive
four additional gaze related features estimated over the
analysis window using the head pose and eye openness
estimation from CERT. They are eye-off-the-road dura-
tion (EOR Dur.), eye-off-the-road frequency (EOR Freq.),
the longest eye-off-the-road duration (LEOR Dur.) and
eye blink frequency (Blink Freq.) (see Table 2). The details
of these four features are given in Li and Busso [22].

Overall, we extract a 268D feature vector for each five
second window (33 signals × 8 statistics + 4 gaze fea-
tures). To improve time resolution, we shift the analysis
window every one second producing overlapped win-
dows (i.e., four seconds overlap). Therefore, we have a
feature vector every one second for the entire recording,
excepting the first four seconds of the recordings.

3.3 Mirror-Checking Behavior Annotation

We manually annotate mirror-checking actions for the
entire database. Two external observers were asked to
annotate mirror-checking actions by watching synchro-
nized recordings displaying the driver and the road.
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Fig. 3. Number of mirror-checking actions in the corpus.
Overall, there are 1323 mirror-checking actions.

Occasionally, primary driving actions such as road glanc-
ing and traffic sign checking are confused with mirror-
checking actions. In these cases, the video showing the
road is useful to clarify the ambiguities, improving the
accuracy of the annotation. Each observer annotates half
of the recordings.

The annotators identified four types of mirror-
checking actions. They include left mirror-checking,
rear mirror-checking, right mirror-checking, and com-
bined right and rear mirror-checking (referred to as
“Right+Rear”). The later actions usually happens when
the driver is about to turn right or change lanes. Each
mirror-checking action follows these steps: the driver
initiates the mirror-checking action by moving his/her
head towards the target mirror; the driver fixes his/her
gaze on the target mirror for a short period; finally, the
driver gazes back to the road. The annotators marked
the starting and ending frames for each mirror-checking
action. Figure 3 summarizes the number of mirror-
checking actions identified in the corpus. Looking at the
rear mirror is the most common mirror-checking action,
followed by checking the left mirror. A possible expla-
nation for the distribution of mirror-checking actions is
that drivers frequently use the rear mirror to be aware
of the driving environment, while the side mirror are
mainly used for changing lanes or turning. Figure 4
shows sample frames for mirror-checking actions.

4 MIRROR-CHECKING BEHAVIOR ANALYSIS

As discussed in Section 2, previous studies have ob-
served changes in mirror-checking behaviors when the
drivers are under different driving conditions. Most
of these changes are observed in terms of frequency
and duration of mirror-checking actions [1], [2], [7], [8],
[12]. Following these studies, this section analyzes how
drivers’ mirror-checking behaviors change in terms of
these two measurements, while performing secondary
tasks and driving maneuvers.

4.1 Secondary Tasks and Mirror-Checking Actions
This section analyzes differences on duration and fre-
quency of mirror-checking actions between normal and
secondary task conditions. We only compare the be-
haviors from normal driving recording collected over
the corresponding route segment for each secondary

task (see Sec. 3). This setting is particularly important
for studying mirror-checking behaviors, since different
routes require different glance actions. We calculate the
duration of mirror-checking actions using the starting
and ending frames from the manual annotations for
each highlighted action. We estimate the frequency by
counting the total number of mirror-checking actions
occurred within non-overlap 5-second window (referred
to as “5s frequency”).

Figure 5 shows the histogram of the mirror-checking
duration and the 5s frequency under both normal and
secondary task driving conditions. Most of the mirror-
checking actions have durations between 0.5 and 1
second. The figure also shows the low frequency of
mirror-checking actions. We rely on the Wilcoxon signed-
rank test [31] to assess whether these measurements
are different under normal and task conditions. This
is a nonparametric statistical hypothesis test commonly
used when the data is not normal distributed, as in this
case (common statistical tests such as t-test and ANOVA
assume that the data is normal distributed).

Table 3 shows the test results for each of the seven
secondary tasks, where we assert significance when p
< 0.05. A “1” in the table indicates that the differences
between normal and task conditions are significantly
different (otherwise, we list a “0”). The Right-tailed
Wilcoxon signed rank test indicates that the mirror-
checking duration is significantly higher for normal
driving condition for the secondary tasks Radio, GPS -
Operating, GPS - Following and Phone - Operating. Drivers
perform shorter mirror-checking actions while engaged
in these secondary tasks. The mirror-checking frequency
is significantly higher under normal driving condition
for the secondary tasks GPS - Operating, Phone - Oper-
ating, Phone - Talking and Picture. This result indicates
that both the duration and frequency of mirror-checking
actions are affected by secondary tasks.

The only secondary task where both the duration and
the 5s frequency features are not significantly different
from normal driving behaviors is Conversation. In some
of the recordings, the second passenger sat on the back
seat to control the equipments. For the task Conversation,
we noticed that drivers used the rear mirror to establish
eye contact with the passenger who is sitting in the
back seat. Therefore, the mirror-checking actions were
induced by the secondary task, affecting the duration
and frequency of the behaviors. This is the only sec-
ondary task where some of the mirror-checking actions
are induced by the task. Notice that this is not an artifact
of the corpus, but an actual approach used by drivers
to establish conversation with another passenger. In this
case, mirror-checking actions do not increase the drivers’
situation awareness. Instead, the passenger in the back
seat takes away the driver attention from the road.

Overall, the results from this section agree with previ-
ous studies showing that mirror-checking behaviors are
different when drivers are performing secondary tasks.
These results suggest that mirror-checking behavior is a
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(a) Left mirror-checking (b) Rear mirror-checking (c) Right mirror-checking
Fig. 4. Sample frames identified by external observer as mirror-checking actions.
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Fig. 5. Histogram of the mirror-checking duration and
frequency under normal and task conditions.

useful indicator to detect when drivers are engaged in
secondary tasks. We explore these ideas in Section 6.

4.2 Driving Maneuvers and Mirror-Checking Actions
This section explores the differences in the drivers’
mirror-checking behaviors while they are performing
different driving maneuvers. We manually annotate the
entire corpus with the six most common driving ma-
neuvers: left turn, right turn, left lane switch, right lane
switch, stop and driving straight [32]. Since the vehicle’s
movements is the result of the driving maneuvers, we
conduct the annotation by observing the road camera
video. We annotate the beginning of the turning maneu-
vers when the vehicle starts deviating from the driving
lane. We annotate the ending point when the vehicle
finished turning and get to the center of the new driving
lane. For lane switch annotations, we label the beginning
point as two seconds before the vehicle starts moving
towards the target driving lane, to capture the behaviors

TABLE 3
Right-tailed Wilcoxon signed rank test for mirror-checking

duration and 5s frequency between normal and task
driving conditions. We assert significance when p<0.05

(1 - significant, 0 - not significant)

Task Duration 5s Frequency
Radio 1 0

GPS Operating 1 1
GPS Following 1 0

Phone Operating 1 1
Phone Talking 0 1

Picture 0 1
Conversation 0 0

TABLE 4
Summary of driving maneuver annotation (T - turns, LS -

lane switch).

Maneuver Number Duration [sec]
Normal Task All Normal Task All

Left T 139 138 277 2687 2573 5260
Right T 120 119 239 1328 1221 2549
Left LS 36 49 85 297 293 590
Right LS 30 35 65 125 185 309
Straight 425 419 844 10877 11402 22279
Stop 87 80 167 1665 1523 3188

displayed while the drivers prepare to complete the
maneuver. The ending point is determined when the
vehicle starts moving along the new driving lane. For
stop maneuvers, the annotation starts when the vehicle
is approaching either the stop sign or a red light. The
annotation ends when the vehicle starts moving again.
Unlike other driving maneuver studies [32], [33], we do
not distinguish between curving and driving straight,
since both maneuvers present similar behaviors in our
corpus. We annotate these two cases as straight driving
maneuver. Table 4 summarizes the driving maneuver
annotation results.

For simplicity in the analysis, we ignore the difference
between left and right maneuvers and combine them
as one maneuver: left and right turns are regarded
as turns, and left and right lane switch are regarded
as lane switch. Notice that clustering the maneuvers
assumes similar mirror-checking behaviors between left
and right maneuvers in terms of frequency and dura-
tion. In addition, we focus our analysis on the mirror-
checking behaviors while the vehicle is moving, thus
stop maneuver is not considered in this study. As a
result, the analysis focuses on 3 driving maneuvers:
driving straight, turning and switching lanes. Using
the mirror-checking annotation, we estimate the mirror-
checking frequency and duration associated with each
driving maneuver. The duration is calculated using a
similar approach as before. The frequency is estimated
by normalizing the number of mirror-checking actions
by the associated maneuver duration.

Following the approach used in Section 4.1, we used
the Wilcoxon signed-rank test to compare the duration
and frequency during different driving maneuvers. We
assert significance when p<0.05. The analysis considers
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TABLE 5
Right-tailed Wilcoxon signed rank test with 5%

significance level for mirror-checking duration and
frequency under different driving maneuvers: T - turns, S

- straight, LS - lane switch, (1 - significant, 0 - not
significant).

Duration Frequency
Maneuvers T S LS T S LS
Turns (T) - 1 0 - 0 0
Straight (S) 0 - 0 0 - 0
Lane switch (LS) 0 1 - 1 1 -

pair-wise comparison between the driving maneuvers.
Table 5 shows the comparison results for duration and
frequency of mirror-checking actions for the three ma-
neuvers (1 - significant, 0 - not significant). The mirror-
checking duration for turn and lane switch maneuvers
are significantly longer than the mirror-checking dura-
tion observed for the straight maneuver. For mirror-
checking frequency, we observe that lane switch ma-
neuver induces significantly higher number of mirror-
checking actions than turn and straight maneuver.

Overall, the results suggest that drivers have different
mirror-checking behaviors while performing different
driving maneuvers. This conclusion motivates the idea
of using mirror-checking behaviors as features for ma-
neuver detection, as discussed in Section 6.

5 MIRROR-CHECKING ACTION DETECTION

An important goal of this study is to detect the drivers’
mirror-checking actions using noninvasive sensors. Few
studies have addressed the intrinsic relation between
mirror-checking actions and traffic, vehicle dynamic and
driver behaviors. Cai et al. [34] observed that less mirror-
checking actions is associated with poor lane control.
When traffic density increases, Wierwille et al. [35]
showed that drivers focus more on the traffic scene,
affecting their peripheral awareness. These findings sug-
gest that it is feasible to detect driver mirror-checking
behaviors using multimodal features describing the ve-
hicle dynamic, road conditions, and driver behaviors.

We segment the corpus into five second videos with
four seconds overlap resulting in 36593 segments (see
Fig. 6). As described in Section 3.2, we form a feature
vector using statistics extracted from multiple sensors
over these segments. We hypothesize that the audio does
not provide discriminative information about mirror-
checking actions. Therefore, this feature is excluded,
forming a 260D feature vector. There are 7894 data
segments where CERT failed to extract facial features.
We create two sets of segments: All Data, including all of
the 36593 segments; and, Reduced Set, including segments
where CERT successfully detected facial features (28699
segments). The proposed process for estimating mirror-
checking actions introduces a delay of 5 seconds.

We model the detection of mirror-checking actions as
a binary classification problem, where the positive class

has mirror-checking actions, and the negative class has
all other driving behaviors. The data for the two classes
is labeled based on the manual annotations of mirror-
checking actions (Section 3.3). The videos are labeled
as a positive class if they include more than 80% of
a labeled mirror-checking action within the period (see
Fig. 6). Otherwise, the videos are labeled as non mirror-
checking actions. Notice that the 80% threshold refers
to the percentage of the mirror-checking action included
in the 5s window. In Section 5.2, we demonstrate that
changing this threshold does not affect the performance
of the proposed classifier (see Table 6). With this ap-
proach, 4141 videos are labeled as mirror-checking action
(14.4%) and 24558 videos (85.6%) are labeled as non
mirror-checking actions (Reduced Set). Notice that we do
not distinguish between types of mirror-checking actions
since the classification problem would be even more
unbalanced, especially for right mirror-checking events
(see Fig. 3). For applications that require to know the
target mirror, we could implement a second classification
stage that categorizes the type of mirror-checking actions
of the detected videos.

5.1 Imbalanced Classification Problem
Normal machine learning algorithms attempt to min-
imize the overall error function. Applying these algo-
rithms to this highly imbalanced problem (14.4% versus
85.6%) would result in a heavily skewed classification
outcome where the overall error would be dominated
by the error of the overrepresented class. One way to
address this problem is to modify the number of samples
per class before training using up- or down-sampling
mechanisms. Another way is to modify the training pro-
cess such that the minority class receives more weights.
These methods include cost sensitive learning and mi-
nority class based recognition learning. This section
highlights three machine learning algorithms that are
suitable for this task.

CAN$Bus

Audio

Road-Camera

Driver-Camera

Extracted-
features

Multimodal-
signals

5s-

F(1)

5s-1s-

F(2)

5s-1s-

F(3) …….

Manual-MC-
annotation

MC-Label 1 1 0 …….

Fig. 6. The multimodal data is segmented into 5-second
segments for mirror-checking binary classification. This
figure illustrates the process of creating positive and
negative classes (see MC label).
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5.1.1 Modified Support Vector Machine
The soft margin support vector machine (SVM) constructs
a separation hyperplane in the feature space X =
{x1, x2, . . . , xn} to maximize the margin between the
classes yi ∈ {1,−1}. The margin is defined as

yi
(
xTi w + b ≥ 1− ξi

)
(1)

where the penalty term ξi > 0 is used for dealing with
non-separable data. Any data point that falls within the
margin on the correct side of the separating hyperplane
(0 < ξi < 1), or on the wrong side of the separating hy-
perplane (ξi > 1 ) will have a penalty cost Cξi associated
with it. In this case, the maximum margin is found by
formulate the well-posed optimization problem (using l1
regularization):

min 1
2w

Tw + C
∑n
i=1 ξi

s.t. yi
(
xTi w + b ≥ 1− ξi

)
ξi > 0

(2)

Although the soft margin SVM has been successfully
applied to many challenging machine learning problem,
it has very limited success when applied to imbalanced
datasets. The standard SVM classifier assumes uniform
prior probabilities, which is invalid when the classes
are not balanced. To address the unbalanced classes, a
modified SVM can be used where the weights between
the majority and minority classes are adjusted [36]. In
particular, we rescaled the cost factor C to N

2Ni
for class

i, where Ni is the number of samples in class i and
N =

∑
Ni. The formulation for SVM becomes:

min 1
2w

Tw + Ci
∑n
i=1 ξi

s.t. yi
(
xTi w + b ≥ 1− ξi

)
ξi > 0

Ci =
N
2Ni

Ni =
∑

(y = yi)
(3)

This rescale increases the penalty cost on mistakes
made on the minority class (Ci is higher when Ni is
small). As a result, this version of the SVM classifier is
less affected by unbalanced data sets.

5.1.2 1 Nearest Neighbor
Previous studies have used k-NN in imbalanced clas-
sification problems [37], [38]. Unlike other classification
algorithms that construct a general internal model such
as Linear discriminant Classifier (LDC) and Support Vec-
tor Machine (SVM), k-NN classifier is a non-parametric
method that simply stores the instances of the training
data. For a given test data xt, it looks for its k nearest
neighbors in the training data, measured by a distance
metric φ(xt). The majority vote among the labels of the k
selected samples in the training set is used to determine
the label of the test sample. It is formulated as:

yt = arg max
l∈{−1,1}

∑
xi∈φ(xt)

I(yi = l) (4)

where I() is an indicator function. For the unbalanced
dataset, the majority class has higher chances to appear

in φ(xt), the k-neighborhood of xt, especially near the
class boundary region. Thus the output of the classifier
favors the majority class. One simple solution is to use 1-
NN classifier (the nearest neighbor classifier) where the
label of the closest training sample is used to label the
test data. The output is only determined by the nearest
sample, reducing the effect of a dominant class.

k-NN is sensitive to overfitting when the feature di-
mension increases (e.g., feature vector with thousands of
features [39]). However, the mere number of dimensions
does not necessarily affect k-NN, since relevant addi-
tional dimensions can also increase the contrast between
the classes [40]. Only irrelevant dimensions reduce the
discrimination. As discussed in Section 5.2, we do not
observe overfitting problems when using 1-NN in our
detection problem.

5.1.3 Random Under-Sampling Boost

The random under-sampling boost (RUSBoost) classifier
combines both the data level and training level meth-
ods to address the imbalanced classification problem:
random under-sampling (RUS) and boosting. The RUS
step consists in applying random under-sampling over
the majority class to form a balanced dataset between
classes. Therefore, many classifiers can be trained using
the balanced datasets. Since each classifier is trained
with limited training data, they are considered as weak
learners. By applying boosting algorithm (standard Ad-
aboost method), these weak classifiers are combined
into a boosted classifier with better performance. The
idea of boosting is especially appealing for imbalanced
classification problems since the samples from the mi-
nority class are likely to be misclassified. Increasing the
weights for these samples is equivalent to increasing the
cost of misclassifying the minority samples. The detailed
description of the RUSBoost algorithm can be found in
Seiffert et al. [41].

5.2 Mirror-Checking Detection Result

We consider the three classifiers described in Section
5.1 to evaluate their performance in the mirror-checking
detection problem (260D features). For the RUSBoost
algorithm, we use deep trees as the weak learners, which
is achieved by setting the minimum observations for
each leaf (5 in this case). The depth of a weak learner tree
makes a difference for training time, memory usage, and
predictive accuracy. We set the learning rate to 0.1, and
constructed 500 such deep trees to form the ensemble.
This setting has been widely used in other studies [42]–
[44]. We implement SVM with linear kernel using the
formulation presented in Section 5.1, where we change
the cost factor C according to Equation 3. We derive the
solution using quadratic programming optimization.

We use a 20-fold driver independent cross-validation
approach to evaluate the classifiers, where in each fold
the data from one driver is used for testing and the
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(b) Reduced Set (28699 samples)
Fig. 7. Comparison of mirror-checking detection using
different modalities and classifiers. The reduced set ig-
nores samples when CERT fails to extract facial features
(CAN = CAN-Bus signal; RC = road camera; DC = driver
camera; All = 260D feature vector).

data from other drivers is used for training. This cross-
validation approach guarantees that the data for training
and testing are completely different, coming from differ-
ent drivers, collected during different days. Given the
unbalanced dataset, we measure performance in term
of F-score as follows. First, we compute the precision
(i.e., positive predictive value) and recall (i.e., sensitivity
value) rates for each of the two classes. For a given class,
the precision rate is the fraction between the number of
samples that are correctly classified and the total number
of recognized samples. The recall rate is the fraction
between the number of samples that are correctly classi-
fied (for a given class) and the total number of samples
for that class. We estimate the average precision and
recall rates across both classes. Then, we estimate the F-
score by combining both metrics (see Eq. 5). Given this
definition, the F-score is 0.5 for random performance,
regardless of how unbalanced the dataset is.

F = 2 ∗ precision ∗ recall
precision+ recall

(5)

We evaluate the performance over the Reduced Set set
(28699 samples where 7894 data samples are excluded
due to unreliable CERT feature extraction) and All Data
samples (36593 samples). This comparison allows us to
quantify the performance when features from the driver
camera cannot be robustly estimated.

Figure 7 shows that the best performance is achieved
with RUSBoost (F score of 0.877 for All Data, and 0.914
for Reduced Set). We believe that RUSBoost outperforms
other classifiers since it effectively combines the data
level, and training level methods to deal with unbal-
anced classes. The 1-NN classifier also provides high
F-score (F score of 0.797 for All Data, and 0.858 for
Reduced Set). To evaluate potentially problems associated

with using a high dimensional feature vector in k-NN,
we train a 1-NN classifier using the first 30 features
identified by the forward feature selection (FFS) algorithm.
The performance is very similar to the F-score achieved
with the 260D feature vector (F score of 0.811 for All Data,
and 0.873 for Reduced Set), suggesting that 1-NN does not
present overfitting problems in our study. The modified
SVM does not have good performance (F score of 0.652
for All Data, and 0.677 for Reduced Set). We believe this
is mainly due to the limitation of the linear kernel. The
fact that the 1-NN and RUSBoost have better F-scores
than the modified SVM suggests a highly non-linear
separation hyper plane in the features space between the
mirror-checking and non mirror-checking behaviors.

To understand the contribution of individual modal-
ities, we also compare the results of mirror-checking
detection using features extracted only from the CAN-
Bus, road camera or driver camera (See Fig. 7). As ex-
pected, the driver camera contain rich information about
drivers’ head movement. Therefore, the performance
is close to the one achieved using all the modalities.
We also observe the discriminative power of CAN-Bus
features. These results validate the close relation between
driving maneuvers and mirror-checking actions. Overall,
the results in Figure 7 suggest that when one modality
is not available, one can rely on different modalities to
detect drivers’ mirror-checking actions.

Figure 8 shows the mirror-checking detection perfor-
mance under both normal and task conditions per route
segment (normal refers to the recording over the second
lap from the corresponding route segments – see Fig. 2).
We observe consistent performance of mirror-checking
behaviors for normal and secondary tasks, which implies
that secondary tasks do not affect the performance of
the proposed mirror-checking detection system (no sta-
tistical differences between normal and task conditions
at 1% significant level using pairwise t-test). Even for
Conversation, the difference is not statistically significant,
where the objective of checking the mirror may be to
establish eye contact with the passenger in the back seat.
We observe that the route have an effect on the per-
formance, especially for the route associated with GPS
following. This route segment has more intersections.
Even for this route, the drop in performance is consistent
across normal and secondary tasks.

As mentioned before, we form the binary classes
(positive versus negative) by evaluating if 80% of the
duration of a mirror-checking action was included in the
5-second window. The labels for the classes depend on
this threshold (set to 80%). To validate our assumption
that the effect of this threshold is small, we evaluate
the mirror-checking detection with different thresholds
(from 50% to 100%). Table 6 reports the classification re-
sults achieved by the RUSBoost classifiers for the Reduced
Set in term of F-score. It also reports the accumulative
confusion matrix across folds for each condition (i.e.,
it includes all samples in the Reduced Set). When the
threshold is set to 80%, the F-score is 0.914. The accuracy
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Fig. 8. Mirror-checking detection result for each road seg-
ment under both normal and secondary task conditions.

TABLE 6
Confusion matrix for the detection of mirror-checking
actions using RUSBoost (Reduced Set). When the

threshold to set the classes is set to 80%, the classifier
achieves a F-score=0.914, and accuracy = 95.9%.

Threshold 50% 60% 70%
F-score 0.9101 0.9115 0.912

N-MC MC N-MC MC N-MC MC
N-MC 23790 352 23939 333 24060 341

MC 973 3584 941 3486 896 3402

Threshold 80% 90% 100%
F-score 0.9132 0.914 0.912

N-MC MC N-MC MC N-MC MC
NMC 24232 321 24256 302 24452 314

MC 863 3283 872 3269 833 3100

is 95.9%, which is very high given the challenging prob-
lem of estimating features from real driving recordings.
The table shows similar results across different values of
this threshold. The results suggest that the definition of
the classes is not very sensitive to this threshold. Most
mirror-checking actions have duration less than 2s (see
Fig. 5(a)). Therefore, only a small portion of the data will
have different labels if the threshold is changed.

These promising results suggest that mirror-checking
actions are highly detectable behaviors using multi-
modal signals. It provides a solid foundation for the
second purpose of this study which is to use mirror-
checking behaviors as contextual information to detect
driver distraction and driving maneuver. The following
evaluations consider the Reduced Set with the RUSBoost-
based mirror-checking detection system.

6 MANEUVER AND SECONDARY TASK DETEC-
TION WITH MIRROR-CHECKING ACTIONS
Various recent driver distraction studies have considered
the gaze behavior as a useful indicator [45]–[49]. The goal
of this study it to evaluate the effect of mirror-checking
actions on detecting drivers engaged in primary (i.e.,
vehicle maneuvers) and secondary (i.e., tuning radio)
tasks. To the best of our knowledge, this is the first study
that uses automatically detected mirror-checking actions
as feature to recognize these problems.

As described in Section 5, the RUSBoost detector
processes five-second segments, providing a sequence

of binary label indicating whether the segments con-
tain mirror-checking actions. Since the segments have
four seconds overlap, detection is performed every one
second. We refer to this value as mirror-checking (MC)
feature and we use it to classify driving maneuvers and
secondary tasks. In addition, we estimate two extra fea-
tures derived from this binary sequence to characterize
mirror-checking duration and frequency. These features
are motivated by the analysis in Section 4, which showed
significantly differences in mirror-checking duration and
frequency across secondary tasks and driving maneu-
vers. Since these two features need to be estimated
within a time window, we limit the window size to be
small to localize the effect of mis-detection. Specifically,
we use two and five seconds windows (i.e., two and
five values from the mirror-checking binary sequence,
respectively). To approximate mirror-checking duration,
we calculate the ratio between the frames detected as
mirror-checking actions and the duration of the window
analysis. This feature is referred to as mirror-checking du-
ration (MCD). Likewise, we estimate the mirror-checking
frequency (MCF) by counting the number of transition be-
tween mirror-checking actions and non-mirror-checking
actions over the window analysis. This number is di-
vided by the duration of the window analysis. We also
generate these mirror-checking features (MC, MCD and
MCF) directly from the manual annotations to study the
effects of errors on the mirror-checking detections.

If we consider the windows used for estimating
mirror-checking actions (5s) and the mirror-checking
features (2s or 5s), the proposed approach has a delay
of either 6s or 9s (the first frame in the window anal-
ysis is estimated including the last four seconds). This
delay is needed to estimate accurate estimation of these
mirror-checking features, which may prevent real-time
implementation of the approach in some applications.

6.1 Secondary Task Detection
We investigate the effectiveness of using mirror-checking
features (MC, MCD and MCF) to detect when drivers
engage in secondary tasks. We estimate the mirror-
checking detection over five-second windows with four
seconds overlap. With this setting, the numbers of seg-
ments for GPS-Operating and Phone-Operating are very
limited, since drivers can complete these tasks in sec-
onds. Therefore, this section consider the tasks Radio,
GPS-Following, Phone-Talking, Picture and Conversation.

The classification evaluation follows the approach
proposed in our previous studies consisting in binary
classification problems between normal and each of the
secondary tasks conditions [19], [23] (i.e., normal versus
Radio, normal versus Phone-Talking). The secondary task
data (first lap) and the normal task data (second lap)
are derived from the corresponding route segment, re-
ducing the dependency on the route. We compare the
performance of classifiers trained with and without the
proposed mirror-checking features. For sake of simplic-
ity, we use linear discriminant classifiers (LDCs) for the
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evaluation. Following the methodology used in Section
5, we implement the classification evaluation with a 20-
fold driver-independent cross-validation scheme.

We train the baseline classifiers as following: First, we
estimate the 268D multimodal features for each segment.
Then, we reduce the feature set for each binary classifier
using forward feature selection (FFS). We use the deviance
of the linear regression as the criterion, where the inde-
pendent variables are features and the dependent vari-
able is the driving condition label (0 - task, 1 - normal).
The features are added to the model as long as the the
change in deviance is more than a threshold, which is
defined by a chi-square distribution with one degree of
freedom. The classification evaluations in Li et al. [19]
showed that the best performance was achieved when
approximately 15 features were selected. Starting from
an empty set, we add features until we get a 15D feature
vector (without including mirror-checking features). The
column “Baseline” in Table 7 reports the F-score for
these classifiers. Overall, the classification performances
are similar or better than the ones reported in Li et
al. [19] with SVM. The main difference between the
experimental settings is the increased number of features
considered in this study (AUs and features extracted
from the road camera).

We use the following approach to evaluate the con-
tribution of the proposed mirror-checking features for
these binary classification problems. Starting from the
mirror-checking features, we add new features from the
268D set using FFS using the same criteria used for the
baseline. We stop the process when we reach a 15D fea-
ture vector (including the mirror-checking features). This
approach forces the classifiers to use the mirror-checking
features, maintaining the dimension of the feature vector.
Therefore, we can directly compare the classification
performance of the classifier trained with and without
the mirror-checking features. The evaluation separately
considers MCF, MCFR, and MCDR. It also considers
using these three features together.

Table 7 reports the results. We highlight the best
performance per row. Using mirror-checking features
derived from manual annotation improves the F-score
for the five secondary tasks (3.7% relative improvement
on average). Extracting features from the automatic
mirror-checking detector does not significantly affect
the performance. With the exception of Phone-Talking,
the automatically estimated mirror-checking features im-
prove the detection performance of secondary tasks
(3.1% relative improvement on average). All the mirror-
checking features contribute to improve the classification
performance for some of the secondary tasks. Given
that the considered secondary tasks cover various types
and levels of distractions (see Li and Busso [20]), the
results suggest the robustness of the proposed mirror-
checking features against different types of distractions.
For example, the duration feature helps more when
the secondary task involves more cognitive distraction
(Phone-talking, Picture and Conversation). Drivers reduce

the mirror-checking duration when they are engaged in
a high cognitive secondary task.

We study the selected features to understand better
the contribution of mirror-checking features. We com-
pare the selected features before and after including
the mirror-checking features across all secondary tasks.
Figure 9 shows the percentage of removed (left) and
added (right) features per modality. The removed fea-
tures provide redundant information when we consider
the proposed mirror-checking features. As expected,
most of them comes from the driver camera (69%). The
features that are added after including mirror-checking
features provide complementary information. Although
the majority of them come from the driver camera, the
percentage significantly drops to 37%, allowing features
from other modalities to be included. Each modality
contains rich information capturing different driver be-
haviors. For example, the driver face camera not only
provides information related to eye and head movement,
but also includes lip and eyebrow movement. The differ-
ent statistical measurements estimated from these signals
also provide different information. For example, the
mean and standard deviation from Speed provide cues
to understand the car dynamics and the road conditions.
Due to these reasons, it is possible for features from the
same modality, or even the same signal, to be added or
removed when we incorporate mirror-checking features.

We also estimate the most frequently added/removed
features when the mirror-checking features are included
across the 20 cross-validation folds. Figure 10 shows
the results where black bars correspond to the most
frequently added features, and gray bars correspond to
the most frequently removed features. The feature AU1
Max (driver camera) is frequently added to the mirror-
checking features. Our previous study showed that this
feature is closely related to cognitive distractions [22].
Another interesting observation is that features related
to the steering wheel movement (jitter mean, jitter STD
and jitter max – CAN-Bus features) are among the
most frequently removed features. This suggests a close
relationship between mirror-checking actions and subtle
jitter driving maneuvers. Notice that the only signals
repeated are AU1 and RC intensity. Although these

11%

3%

69%

17%

(a) Removed Features

26%

16%

37%

21%

(b) Added Features

 

 

CAN−Bus
Audio
Face Cam
Road Cam

Fig. 9. Percentage of features for each modality that are
either (a) removed or (b) added when mirror-checking
features are used.
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TABLE 7
Secondary task detection with and without mirror-checking features. The table highlights in bold the best F-score per

row (MC - mirror-checking detection, MCF - mirror-checking frequency, MCD - mirror-checking duration).

Baseline Mirror-Checking MC MCF MCD All
Feature Extraction 5s 2s 5s 2s 5s 2s 5s

Radio 0.833 Manual annotations 0.821 0.830 0.817 0.831 0.823 0.843 0.849
RUSBoost detector 0.817 0.829 0.810 0.819 0.836 0.832 0.844

GPS-Following 0.694 Manual annotations 0.699 0.711 0.738 0.736 0.723 0.718 0.717
RUSBoost detector 0.725 0.712 0.733 0.741 0.735 0.754 0.717

Phone-Talking 0.817 Manual annotations 0.818 0.773 0.789 0.828 0.794 0.818 0.795
RUSBoost detector 0.816 0.776 0.802 0.802 0.792 0.792 0.776

Picture 0.869 Manual annotations 0.895 0.875 0.870 0.906 0.874 0.860 0.866
RUSBoost detector 0.865 0.878 0.868 0.848 0.882 0.852 0.876

Conversation 0.655 Manual annotations 0.685 0.659 0.647 0.685 0.666 0.673 0.655
RUSBoost detector 0.662 0.681 0.658 0.64 0.606 0.652 0.68
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Fig. 10. Top 10 added (black bars) and removed (gray
bars) features when mirror-checking features are included
in the secondary task classifiers across 20 folds.

signals exist in both the removed and added features,
the features are not the same (different statistics).

6.2 Driving maneuver detection

We follow the same methodology to compare the perfor-
mance of maneuver classifiers trained with and without
mirror-checking features (feature selection, classifiers,
baselines). The only difference in this evaluation is the
initial feature set. Instead of using the 268D feature
vector, we consider only the features derived from the
CAN-Bus signal (48 features), since driving maneuvers
are highly related to the vehicle dynamics. We use FFS
to reduce the set to 15 features. We evaluate three binary
classifiers (one maneuver versus all the others).

Table 8 reports the results, which show improvements
for all maneuver detection tasks when we consider
mirror-checking features derived from the manual anno-
tations (8.3% relative improvement on average). When
we use mirror-checking features from the RUSBoost
detector, the performance increases for all maneuvers,
with the exception of straight maneuver detection (4.2%
relative improvement on average). We achieve over 20%
and 12% improvements for lane switch detection with
mirror-checking features derived from manual annota-
tion and RUSBoost detector, respectively. The improve-
ment in performance is expected since mirror-checking
features provide complementary information that can
not be captured by the CAN-Bus signals. For example,
they provide relevant behaviors, as the driver prepares

to perform the maneuver (e.g., checking mirrors before
turning). These promising results suggest that these
mirror-checking features can be used as contextual cues
to identify drivers changing lanes without signaling.

7 CONCLUSIONS AND DISCUSSION

The study explored the differences in mirror-checking
behaviors observed when the drivers are engaged in
primary and secondary tasks. We found statistically
significant differences in mirror-checking duration and
frequency under different driving conditions. We pre-
sented a framework to detect mirror-checking behaviors,
using the RUSBoost algorithm, overcoming the highly
imbalanced machine learning problem. In spite of the
challenging task, the RUSBoost detector achieved an F-
score equals to 0.914 using features derived from multi-
ple noninvasive sensors. Finally, we demonstrated the
benefits of detecting mirror-checking actions by con-
ducting classification problems for secondary task recog-
nition, and driving maneuver detection. We extracted
measurements describing mirror-checking duration and
frequency from the detected mirror-checking detection.
Overall, we observed improved classification perfor-
mance for both task driving detection and maneuver
detection when we use mirror-checking features. These
promising results validate the idea of automatically de-
tecting mirror-checking actions to provide contextual
information for other classification problems related to
driver behaviors.

One interesting extension of this study is to consider
driver-dependent mirror-checking behavior models. Pre-
vious work on driver behavior suggest that driving
patterns vary according to the experience and driving
style of the drivers [17], [50]. The annotations of mirror-
checking actions suggest that some drivers checked the
mirror more frequently than others, even when they
were driving without performing any secondary tasks.
We expect that models that are adapted to the target
drivers will outperforms the general models proposed
in this study. Another challenging problem is to improve
the mirror-checking detection. Given the unique behav-
iors associated with mirror-checking actions, we believe
that collecting more data from various drivers will in-
crease the robustness of the detectors. We are planning
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TABLE 8
Driving maneuver detection with and without mirror-checking features. The table highlights in bold the best F-score

per row (MC - mirror-checking detection, MCF - mirror-checking frequency, MCD - mirror-checking duration).

Baseline Mirror-Checking MC MCF MCD All
Feature Extraction 5s 2s 5s 2s 5s 2s 5s

Turns 0.759 Manual annotations 0.760 0.759 0.762 0.761 0.762 0.760 0.761
RUSBoost detector 0.759 0.758 0.758 0.759 0.758 0.757 0.757

Lane Switch 0.529 Manual annotations 0.603 0.528 0.528 0.533 0.533 0.603 0.653
RUSBoost detector 0.557 0.530 0.529 0.534 0.536 0.578 0.596

Straight 0.692 Manual annotations 0.694 0.691 0.692 0.690 0.690 0.699 0.700
RUSBoost detector 0.692 0.692 0.691 0.689 0.674 0.691 0.682

to modify the recording protocol to minimize potential
learning effects. For example, we can randomize and
balance the order of normal and task conditions for the
first and second laps. We can also record other cues
from the CAN-Bus such as control signals from radio,
smartphone and GPS, which can help to robustly detect
when the drivers operate these devices. Finally, the cur-
rent implementation of the approach is off-line. We are
planning to develop a real-time implementation, which
will be an important instrument to detect deviation from
normal driving behaviors. Improving the accuracy of the
mirror-checking detectors will help vehicle manufactures
to incorporate this technology in future ADASs.
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