Rear-end Collision Prevention Using Mobile Devices

Nanxiang Li, Amardeep Sathyanarayana, Carlos Busso and John H.L. Hansen

Center for Robust Speech Systems (CRSS)
Erik Jonsson School of Engineering & Computer Science
University of Texas at Dallas
Richardson, Texas 75083, U.S.A.

Introduction

- 29% of the crashes are rear-end collisions
- State-of-the-art ADASs are only available in luxury cars
- Mobile devices are used within vehicular environment

- Goal: Use the built-in camera of commercial portable devices to detect frontal vehicle for preventing rear-end collisions

Frontal Vehicle Detection and Distance Estimation

- Device: Samsung Galaxy Tab10.1WiFi (1280x720 at 30 fps)

 Naturalistic Driving Data
 - One car, over 30 hours
 - Various weather and road conditions

 Controlled Data
 - 3 cars, 2 are used each time
 - Tablet mounted on ego vehicle
 - Second vehicle moving in front
 - Known distance between cars

- Detecting frontal vehicle – Viola Jones Algorithm (OpenCV)
 - 3000 manually marked tail light objects for positive images
 - 3496 negative images
 - 3019 general images
 - 477 specific images (road scene without vehicle)

- Estimating Frontal Vehicle Distance
 - Apply detector on controlled data
 - Map the size of the detected tail light object to the distance

Detection Result and System Integration

- Distance approximated with the mapping
- 5 distance groups (< 10m, 10m-20m, 20m-30m, 30m-40m, >40m)
- Average detection rate is 83.2%

- Naturalistic Driving Data
- Distance approximated with the mapping
- 5 distance groups (< 10m, 10m-20m, 20m-30m, 30m-40m, >40m)
- Average detection rate is 83.2%

- GPS estimates speed of ego-vehicle
- Accelerometer estimates the driver’s intention to accelerate or decelerate

- Vehicle tail-light detector with high detection rate
- 93.9% in controlled recordings
- 83.2% in naturalistic recordings
- Frontal vehicle distance estimation using mapped object size
- IMUs and GPS sensors to estimate the vehicle dynamics using mobile device for rear-end collision prevention

Future Directions:

- Include more challenging conditions including night recordings
- Consider temporal information (tracking algorithms)
- Focus on detecting the front-vehicle actions (braking, turning, etc.)