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Abstract Studies on driver distraction aim to identify fea-
tures extracted from various sensory signals that can be used
to distinguish between normal and distracted driving beha-
viors. A major challenge in these studies is to determine whe-
ther the observed behaviors are associated with the primary
driving tasks (checking mirrors, monitoring speed, changing
lines) or secondary tasks that deviate the attention of the dri-
vers. This study focuses on detecting the important driving
task of checking the mirrors. The study compares the duration
and frequency of mirror checking actions observed when the
drivers are engaged in secondary tasks with the ones observed
in normal driving conditions. The analysis reveals that the dri-
vers reduce the frequency of checking the mirrors when they
are engaged in secondary tasks, which affects their situatio-
nal awareness. Based on real world driving data, we extracted
multimodal features associated with the driver and vehicle be-
haviors. We train binary classifiers to detect mirror checking
actions. Even though the classes are highly unbalanced (most
of the samples do not have mirror checking actions), the pro-
posed system achieves an F-score of 0.65 (recall 73%, preci-
sion 68%) using the extracted features. This promising result
suggests that it is possible to detect mirror-checking actions,
which can be used to signal alarms, preventing collisions and
improving the overall driving experience.

Keywords Driver mirror checking detection, driver dis-
traction, machine learning

1. INTRODUCTION

Detecting driver distraction has become an important re-
search problem given the increasing usage of infotainment
systems and hand-held devices on vehicles. Although these
devices are popular, they use manual, visual and cognitive
resources affecting the driving performance, and reducing the
driver’s situational awareness. According to a recent report
from the U.S. Department of Transportation, over 17% of
police-reported crashes involved a distracted driver, where
distraction was defined as inattentions from the primary dri-
ving task due to secondary tasks [16]. Another study showed
that over 65% of near crashes and 78% of crashes involve
distracted drivers [15]. These alarming statistics highlight
the importance of detecting distraction caused by secondary
tasks.

Studies on driver distraction aim to identify features ex-
tracted from various sensory signals that can be used to di-
stinguish between normal and distracted driving behaviors
[9, 13]. Some of these signals include direct measurements
from the driving activity such as lateral and longitudinal con-
trol [6, 8], secondary task performance such as driver accura-
cy and response time [4, 14], and features from electroence-
phalography (EEG) and eye movement [3, 17]. A major chal-
lenge in these studies is to determine whether the observed
behaviors are associated with the primary driving tasks (e.g.,
checking mirrors, monitoring speed, and changing lines) or
secondary tasks that deviate the attention of the drivers. A
context-aware monitoring system that can reliably make the-
se distinctions will be more effective in alerting inattentive
drivers. This study focuses on detecting the important driving
task of checking the mirrors.

The purpose of mirror-checking detection is twofold.
First, mirror-checking action is an essential part of safe dri-
ving that helps drivers to maintain their situation awareness.
By regularly checking the mirrors, drivers can monitor the ac-
tivity of adjacent vehicles. The information perceived through
checking the mirrors can change the driver’s driving plan. In
some cases, it can make the driver to delay or abandon the
actual intended maneuver to avoid accidents. This action, ho-
wever, is closely related to the driver’s attention level [7, 10].
It can be influenced by elements such as fatigue, cognitive
workload, and road conditions. When affected by fatigue or
high cognitive workload (day-dreaming, thinking, etc), dri-
vers are likely to reduce the mirror-checking frequency [8].
In these cases, monitoring lack of mirror-checking can faci-
litate the detection of driver fatigue or cognitive distractions.
Second, mirror-checking by itself is a task that forces the
driver to take their eyes off the road, and can be regarded as
a type of a visual distraction. When drivers check mirrors,
they may miss important road events, such as unexpected
brakes or other vehicles changing lanes. These scenarios can
lead to accidents that can be avoided if a monitoring system
is aware of the drivers’ actions. Therefore, detecting driver
mirror-checking can increase the effectiveness of in-vehicle
active safety system.

This study aims to detect driver mirror-checking actions
using multimodal information extracted from CAN-Bus and
cameras. The database used in this study is collected using
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Fig. 1. UTDrive car.

the UTDrive car, over real driving recordings [2]. We record
our corpus from 20 different drivers under both normal and
secondary task conditions. The tasks include secondary ac-
tivities that are commonly performed while driving: opera-
ting a radio (Radio), operating and following a navigation
system (GPS - Operating and GPS - Following), operating
and talking on a cellphone (Phone - Operating and Phone -
Talking), describing pictures (Pictures) and talking to a fel-
low passenger (Conversation). Using this real-world data, we
analyze the mirror checking actions under both normal and
task driving conditions. The result shows that the frequen-
cy of mirror checking action tends to reduce when drivers
are involved in secondary tasks. This finding suggests that
detecting mirror checking actions can be used to signal dis-
tractions. This study evaluate the feasibility of detecting mir-
ror checking actions using the CAN-Bus signal and cameras.
We extracted multimodal features describing the drivers’ eye
openness, head pose, vehicle speed, brake value and steering
angle. Using mirror checking annotations, we conducted bi-
nary classification in which one class includes segments with
mirror checking actions and the second class includes the re-
maining segments. We achieve an F-score of 0.65 in this chal-
lenging, highly unbalanced problem. This promising result
suggests that it is possible to detect mirror-checking actions,
which can be used to signal alarms, preventing collisions and
improving the overall driving experience.

2. DATA COLLECTION

This study relies on real-world driving recordings that
includes numerous uncontrollable factors such as traffic, road
condition and weather. All these challenging but important
conditions are not easily replicated in simulated environ-
ments. This section describes the database used for this study,
and the protocol used to annotate mirror checking actions.

Fig. 2. Driving Route

2.1. UTDrive platform and Database

The UTDrive platform is used to collect the real-world da-
tabase (see Fig. 1). The UTDrive car is a customized 2006
Toyota RAV4 equipped with various sensors that record the
driver, road, vehicle activity and audio [1, 2]. A video camera
(320 × 240 pixels, 30 fps) is mounted on the dashboard fa-
cing the driver to capture the driver facial behavior. Another
video camera is placed on the dashboard facing the road (320
× 240 pixels, 15 fps) to capture the road activity. The CAN-
Bus signal provides the vehicle speed, steering wheel angle,
brake value, and acceleration. Two additional pressure sen-
sors are separately placed on the gas pedal and brake pedal. A
microphone array records the sound in the car.

Twenty drivers (10 male and 10 female) participated in the
data collection. All of them were 18 years old or older, and
had a valid driving license at the time of the recordings. The
average and standard deviation of the participants’ age are 25
and 7, respectively. Each participant drove the vehicle through
a predefined 5.6-mile route twice, as shown in Figure 2. On
average, each lap takes about 15 minutes. During the first lap,
we asked the participants to perform seven tasks that are com-
monly performed in the car (e.g., operating radio, phone and
GPS, describing pictures and conversation with another pas-
senger – see Table 1). During the second lap, we asked the
participants to drive along the same route without performing
the aforementioned tasks. We use this recording as a reference
of normal driving behaviors. A detailed description of the pro-
tocol and recording settings of the corpus is provided in Li et
al. [13].
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Table 1. Seven secondary tasks considered in this study. The
tasks phone and GPS were split, since we observed different
driver behaviors while operating and using the devices.

Task Name Description
Radio
(red-route)

Driver tunes the radio to predeter-
mined stations

GPS-Operating
(green-route)

Driver inputs predetermined ad-
dress into GPS

GPS-Following
(green-route)

Driver follows the GPS instruction
to the destination

Phone-Operating
(blue-route)

Driver dials the airline automatic
flight information system using a
cellphone

Phone-Talking
(blue-route)

Driver interacts with the flight in-
formation system to retreive flight
information

Picture
(orange-route)

Driver describes the A4 size pictu-
res shown by the passenger to re-
flect the distraction caused by road
sighs and billboard

Conversation
(black-route)

Driver discusses the driving experi-
ence with the passengers and ans-
wers general questions to the pas-
senger

2.2. Mirror Checking Annotation

Using the videos facing the driver and the road, the mir-
ror checking actions are manually annotated by external
observers. Mirror checking actions are defined as the pri-
mary driving task of looking at the right, left or center mir-
rors to increase road situational awareness. Both videos are
used by the external observers to distinguish between mirror
checking actions and similar gaze behaviors not related to
mirror checking actions (i.e., road scanning and traffic sign
checking). We annotate the entire corpus including normal
and task driving conditions (20 drivers × 2 driving conditi-
ons). Two external observers participated in the evaluation
who annotated non-overlapped set of the corpus.

We annotate the starting and ending frame of each mirror-
checking action, in both normal and task driving sessions.
Each mirror checking action consists of three steps: It starts
with the head rotation and eye movement that allow the dri-
ver to focus his/her visual attention on the mirror. The second
step is a short period of eye fixation on the mirror, during
which the driver can perceive the reflected scene. The process
finishes when the driver brings his/her visual attention back to
the road. To consider the whole process, the annotation starts
with the frame where the head/eye is about to move, and ends
with the frame where the driver brings his/her visual attenti-
on back to the road. Fig. 3 shows examples of frames where
the driver is identified by the external observer in the process

of checking different mirrors. In addition to the timing of the
mirror checking action, the annotation also includes the par-
ticular mirror that the drivers were looking. There are four
types of mirror checking actions in our database: left mirror
checking, rear-view mirror checking, right mirror checking
and combined right and rear-view mirror checking. The com-
bined right and rear-view mirror checking is the action whe-
re the driver checks both right and rear-view mirrors before
bringing his/her visual attention back to the road. It usually
happens when the driver has the intention of changing lanes
to the right.

3. ANALYSIS OF MIRROR CHECKING ACTIONS

With the annotations, we analyze the duration and frequency
of the mirror-checking actions under both normal and task dri-
ving conditions. The analysis aims to identify differences in
mirror checking actions when the driver is engaged in secon-
dary tasks. We only consider mirror checking actions when
the vehicle speed is above 2km/h, since the driver behaviors
are different when the car is not moving. The vehicle speed is
derived from the CAN-Bus information.

The secondary tasks considered in this study induce diffe-
rent distraction levels since they require varying manual, co-
gnitive and visual resources. Therefore, we expect that mirror
checking actions will be affected by these tasks. To get a bet-
ter understanding of the relationship between secondary tasks
and mirror checking behaviors, we compare mirror checking
actions observed during normal and each of the seven task
conditions listed in Table 1. Notice that checking mirror acti-
ons depend on the underlying road and traffic condition (e.g.,
street signs, intersections, other cars). Therefore, we compa-
re the behaviors during normal and task conditions observed
during the corresponding route segments (see Fig. 2). Noti-
ce that the drivers drove this predefined route twice with and
without performing tasks. Since the time between both recor-
dings was less than 30 minutes, it is expected that the traffic
conditions will be similar. Thus, the mirror checking actions
that happened over the same route segment between normal
and task conditions can be directly compared.

We define two parameters to measure the mirror checking
behaviors between normal and task conditions: mirror checking
duration and mirror checking frequency. Mirror checking du-
ration is defined as the time interval between the first and last
frame of each annotation. The mirror checking frequency is
defined as the number of mirror checking actions per minute.
We calculate the number of mirror checking actions for each
route segment corresponding to a task (see Fig. 2). Then,
we normalize the total number mirror checking actions by
the time duration (in minutes) of the task. Therefore, both
metrics are not affected by the differences in duration of the
secondary tasks.

Figure 4 shows the statistics of mirror checking behaviors.
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(a) Left mirror checking (b) Rear mirror checking (c) Right mirror checking

Fig. 3. Sample frames identified by external observers as mirror checking actions.
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(a) Mirror checking duration
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(b) Mirror checking frequency

Fig. 4. Comparison of mirror checking actions during normal
and task conditions (left, rear and right mirrors). The normal
data was collected during the second lap over the same route
segment used to collect the secondary tasks (see Fig. 2).

Figure 4(a) shows the mean and standard deviation of the mir-
ror checking duration for left, right and rear mirrors. With the
exception of GPS - Following, the duration of mirror checking
action is slightly shorter for task conditions. We observe si-
gnificant differences for GPS - Operating task. In fact, this
is the task identified by external observers as the most dis-
tracting task in terms of both visual and cognitive distractions
[11, 12]. This suggests that mirror checking duration may be
affected when the manual, cognitive or visual demand incre-
ases. In these cases, the driver may compromise the attention
assigned to the primary driving tasks, including the time used
to check the mirrors.

Figure 4(b) shows the comparison of the mirror checking
frequencies between the normal and task conditions for all
mirrors. The figure shows important differences between both
conditions. The frequency of mirror-checking actions reduces
when the driver is engaged in most of the secondary tasks. We
conduct a matched-pairs hypothesis t-test to assess whether
the differences in mirror checking frequencies between each
task and the corresponding normal condition are statistically
significant (the paired conditions is the drivers). As expec-
ted, the mirror checking frequencies during GPS-Operating,
Phone-Operating and Picture are found significantly different
from the one under normal condition (p−value= 0.05). These
findings highlight the detrimental effects of secondary tasks
on the situational awareness of the driver.

Figure 4 describes the aggregated mirror checking stati-
stics across all mirrors. However, we expect that these pat-
terns are different across right, left and rear mirrors. Since so-
me of the left, right and combined right and rear-view mirror
checking actions are related to the driver’s intention to switch
lane or making turns, they are more dependent on the traf-
fic and road conditions. In contrast, checking the rear mirror
is important for situational awareness even when the driver
does not intend to perform any of the aforementioned maneu-
vers. Therefore, we hypothesize that the patterns for checking
rear mirrors is more affected by secondary tasks. To verify
this assumption, we replicate the analysis focusing only on
rear mirror checking actions. Figure 5 shows the duration and
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(a) Mirror checking duration
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(b) Mirror checking frequency

Fig. 5. Comparison of rear mirror checking actions during
normal and task conditions (left and right mirrors excluded).

frequency of rear mirror checking actions. The figure descri-
bes interesting differences compared to the results observed
across all mirrors. Figure 5(a) shows a large difference in re-
ar mirror checking duration not only in GPS-Operating, but
also in Phone-Talking task. Figure 5(b) shows that the re-
duction in rear mirror checking frequency is more evident
than the ones observed across all mirrors. The matched-pair
t-test shows that the mirror checking frequency under GPS-
Operating, Phone-Operating, Phone-Talking and Pictures are
significantly lower than the one under normal condition (p −
value= 0.05). This result suggests that rear mirror checking
actions are more affected by the secondary tasks.

The only secondary task that has higher frequency than
the corresponding normal condition is Conversation. Howe-
ver, a closer look at the database reveals that this unexpected

result is an artifact of the data recording. In many of the re-
cording sessions, the second passenger sit in the back seat to
control the equipments. In these cases, the drivers used the re-
ar mirror to establish eye contact. Therefore, these rear mirror
checking actions are not associated with the primary driving
task. Since it is difficult for external observers to identify the
purpose of each rear mirror checking action, the result for the
task Conversation may not reflect the actual effects of this
task on the drivers’ mirror checking actions.

4. DETECTION OF MIRROR CHECKING ACTIONS
USING MULTIMODAL FEATURES

The results in Section 3 suggest that mirror checking actions
are useful indicators for driver distraction detection. In par-
ticular, the rear mirror checking actions are highly affected
by the secondary tasks. Detecting whether glance behaviors
are associated with the primary driving tasks is important in
the design of context-aware monitoring systems. This secti-
on explores the use of multimodal features from noninvasive
sensors to detect the drivers’ mirror checking actions.

4.1. Preprocessing Steps

We address the detection of mirror checking actions as a bina-
ry classification problem. Using the mirror checking annotati-
on (Sec. 2.2), we create videos containing the mirror checking
actions under both normal and task conditions. The duration
of these segments varies according to the durations of mirror
checking actions. The study considers these videos as the po-
sitive class. The rest of the data is also segmented into short
videos. These videos convey non-mirror checking actions and
are regarded as the negative class. The duration of these vi-
deos is similar to the duration of the positive class. Since dri-
vers present different mirror checking behaviors (i.e., some
drivers finish the mirror checking actions faster than others),
we calculate the average duration of mirror checking actions
per driver. For each driver, the non-mirror checking videos
are segmented such that their duration match his/her average
duration of mirror checking actions.

The definition of positive (mirror checking actions) and
negative (non-mirror checking actions) classes generates
highly unbalanced partitions. Most of the samples belong to
the negative class. (see Table 2). The average ratio between
the size of positive and negative classes across all drivers is 1
to 26.7, since different drivers have different mirror checking
habit (some are more frequent than others).

4.2. Feature Extraction

As described in Section 2, the database used for this study in-
cludes recordings with various sensors: a camera facing the
driver, a camera recording the road, a microphone array, and
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CAN-Bus data. For mirror checking action detection, we con-
sider the data from two modalities: the driver’s camera and
CAN-Bus. The frontal camera captures the movement of dri-
vers’ head and eye glances. The CAN-Bus signals capture the
vehicle activities that may signal mirror checking actions such
as steering wheel jitter and vehicle’s speed.

We extract features describing the driver’s facial beha-
viors from the frontal camera with the computer expression
recognition toolbox (CERT). CERT extracts was developed
by Bartlett et al. [5], and it provides frame-by-frame estima-
tion of head pose and facial action units (AUs) under various
illumination conditions. The toolkit has been used for driver
drowsy detection [20]. We use CERT to estimate both head
pose (yaw, pitch and roll angles) and eye openness (AU 45).
For the CAN-Bus data, we consider three important signals:
steering wheel angle in degrees, the vehicle’s speed in kilo-
meters per hour (km/h), and the brake value. These time se-
ries signals are regarded as low level features. While they de-
scribe detailed aspects of driver behavior, global patterns in
these features are expected to provide discriminant informa-
tion about mirror checking actions. Therefore, we consider
global statistics of these signals. We calculate eight statistics
for each of the signals over the predefined segments: mean,
standard deviation, maximum, minimum, range, interquartile
range, skewness and kurtosis. This approach generates a 56D
feature vector for each data segment (7 signals × 8 statistics).

In addition, we use facial signals extracted with CERT to
derive four additional gaze related features. The first feature is
the total eye-off-the-road (EOR) duration, which corresponds
to the total time that the drivers take their eyes off the road
during the given segment. The second feature corresponds to
the longest eye-off-the-road (LEOR) duration, which provi-
des the duration of the longest glance during the segments. It
is less than or equal to the EOR duration. The third gaze featu-
res is the eye-off-the-road frequency, which gives the number
of glances per segment. The last gaze feature is eye blink fre-
quency, which estimates the number of blinks in the segment.
We have used these features in our previous work to study
driver distraction [12, 13]. They have provided useful infor-
mation about visual and cognitive distractions. The details on
the estimation of these features can be found in Li et al. [13].

Due to hand occlusions, extreme glance behaviors or ad-
verse illumination conditions, CERT may fail to recognize the
face in the frame producing empty values. For each prepro-
cessed data segment, we interpolated the missing value when
the number of frames with missing values is less than one
third of the total number of frames. Otherwise, the data seg-
ment are excluded from the analysis. Overall, a 60D feature
vector is generated for each data segment (56 statistics plus
4 gaze related features). These features are used to train the
classifiers to distinguish between the mirror and non-mirror
checking actions.

Table 2. Binary classification for mirror checking actions.
Classifier Precision Recall F-score

LDC 57% 53% 0.54
KNN 68% 51% 0.57
QDC 62% 73% 0.65

4.3. Detecting of Mirror Checking Actions

Given the high dimension of our feature vector, we reduce the
set using forward feature selection. We implement the feature
reduction technique using the inter/intra class distance ratio
criterion. With this technique, the forward feature selection
algorithm chooses the feature set that maximizes this criteri-
on until a given number of features is selected. We considered
three machine learning algorithms: K-Nearest Neighbor (k-
NN) classifier, linear discriminant classifier (LDC) and qua-
dratic discriminant classifiers (QDC). Notice that the feature
selection scheme is independent of the machine learning al-
gorithm, thus generates consistent features across classifiers.

Due to the highly unbalanced classes (i.e., most of the
segments do not have mirror-checking actions), we report the
precision, recall and the F-score to evaluate the performance.
The precision rate (also called positive predictive value) is the
fraction of classified instances that are correct. The recall rate
(also known as sensitivity) is the fraction of instances that are
correctly classified. The F-score combines the precision and
recall rate using the equation 1:

F = 2 ∗ precision ∗ recall
precision+ recall

(1)

We use a 20-fold driver independent cross-validation
scheme to evaluate the performance. In each fold, the data
from 19 drivers are used for training and the data from the
remaining driver is used for testing. The feature selection
process is performed over the training data. The number of
selected features is changed from 1 to 30. For each setting,
we evaluate the performance using the selected features in
both training and testing data. The best performance among
the 30 settings is averaged across the 20 folds. Table 2 reports
the average results.

QDC provides the best performance among the classifiers
in term of F-score (0.65). Table 3 shows the confusion matrix
achieved by the QDC classifier. The reported performance is
clearly affected by the unbalanced classes. Although the pre-
cision of the QDC is still low, we achieve a recall rate of 73
percent, which indicates that we identified most of the mir-
ror checking actions. This result suggests that the proposed
multimodal features can capture the mirror checking actions.

Notice that the data in the positive class consists of all
the mirror checking actions that were annotated, including the
ones that happened when the car is stopped at the traffic lights
or intersections. In these cases, the CAN-Bus features are not
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Table 3. Confusion matrix of QDC for mirror checking acti-
ons.

Predicted Predicted Non
Mirror Checking Mirror Checking

Actual
Miror Checking 612 442

Actual Non
Miror Checking 3282 21091

very effective in detecting mirror checking actions. Also, we
expect that the drivers glance behaviors change when the car
is not moving. For example, their head movement, and the
duration of the glance patterns can be significantly different
from the ones observed when the car is moving. In our fu-
ture work, we will consider a model that considers the vehic-
le speed. For example, we can add speed constraints such that
data segments where the vehicle speed is low are processed
with different classifiers trained with similar data.

5. CONCLUSIONS

This paper used a real-world driving database to study the
drivers’ mirror checking actions, which were carefully anno-
tated. The study presents a comparison of the mirror checking
actions under both normal and task driving conditions, in
terms of both duration and frequency. The results suggested
that mirror checking frequency is affected when the driver is
engaged in secondary tasks. The drivers reduce the number of
mirror checking actions to cope with the cognitive, visual and
manual demand of the tasks. This result clearly highlights the
detrimental effect of secondary tasks on the situational awa-
reness of the drivers. Leveraging the results of the analysis,
the paper proposed to detect mirror checking actions using
multimodal features. We aimed to detect mirror checking
actions to distinguish glance behaviors that are related to the
primary driving task and to identify deviations from mirror
checking patterns observed under normal driving conditions.
We extracted multimodal features describing the driver eye
openness, head pose, vehicle speed, brake value and steering
angle. We used the manual annotations to define the clas-
ses for binary classification of mirror-checking actions. One
class includes the segments with mirror checking actions, and
everything else is grouped into a separate class. We use a
leave-one-driver-out cross-validation approach, where the da-
ta of one driver is used to test the performance of the system
trained with the data of remaining drivers. We achieved an F-
score of 0.65 (recall 73%, precision 68%) using the extracted
features. This promising result suggests that it is possible to
detect mirror-checking actions, which can be used to signal
alarms, preventing collision and improving the overall driving
experience.

For our future work, we are planning to include features

from the road camera. We are also considering using extra in-
formation from the camera facing the driver and the CAN-Bus
data. We expect to improve the performance of the classifiers
with these extra features. During the annotation of the mirror
checking actions, we noticed that the mirror checking beha-
viors vary across drivers. For example, some drivers tend to
check the mirrors with less obvious head movement. Drivers
also show different behaviors while involved in the seconda-
ry tasks. Some of the drivers are more cautious than others.
They perform mirror checking actions more often when enga-
ged in secondary tasks. In fact, previous studies suggested that
drivers’ mirror checking behaviors are related to the drivers’
experience [18, 19]. Given these observations, we are plan-
ning to build driver dependent classifiers to detect the mirror
checking actions based on personalized models.
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