

Jukka-Pekka Onnela, David Gard, and Carlos Busso

Erik Jonsson School of Engineering & Computer Science at the University of Texas at Dallas, Richardson, Texas 75080, USA

Motivation

Background:

- Fine-tuning a large pre-trained transformer model (Wav2Vec2.0, HuBERT) performs well in SER tasks
- Fine-tuning the model under multiple noisy environments requires considerable resources (adaptation time and parameter space)

Our Work:

- Propose environment-agnostic and environment-specific adapters to adapt a pre-trained transformer model to multiple environments
 - Decrease the parameter space requirements for each noisy environment

Reduce the adaptation time by avoiding the gradient backpropagation through the transformer encoder

Proposed Method

Environment adaptation with skip connection adapters

Skip connection adapters

INTERSPE

- Environment-agnostic adapter (A_{agn}): updated for all the environments
- Environment-specific adapter (A_{spe.}): updated for each target environment

Denoised speech representation

- Select the environment-specific adapter, $A_{spe.}^{i}$, with respect to the input environment *i*
- Get denoised representation, $z(x^i)$, with A_{agn} and the selected A_{spe}^i . $z(\widehat{x^{i}}) = T\left(E(\widehat{x^{i}})\right) - \left\{A_{agn}\left(E(\widehat{x^{i}})\right) + A_{spe}^{i}\left(E(\widehat{x^{i}})\right)\right\}$

- $\widehat{x^i}$: Input noisy speech
- E: Convolutional feature encoder
- T: Transformer encoder

Experiment Settings

Data preparation

- Fine-tune the pre-trained wav2vec2-large robust with the clean version of the MSP-Podcast corpus (v1.8) [Wagner, 2022]
- Contaminate the clean version of the MSP-Podcast corpus to simulate six noisy environments
 - Radio, Babble, Indoor, outdoor, house, and vehicle

Adapter architecture

- The architecture of the adapter is the same as a single transformer layer of wav2vec2.0
 - LN: layer normalization
 - FC: fully connected layer

Results

Emotion Recognition Performance (CCC)

		10dB			5dB			0dB		
		Ar <u>o.</u>	<u>Dom.</u>	Val.	<u>Aro.</u>	Dom.	Val.	<u>Aro.</u>	Dom.	Val.
	Original	0.596	0.562	0.473	0.526	0.506	0.424	0.432	0.418	0.338
	RT	0.634*	0.587*	0.507*	0.581*	0.541*	0.453*	0.492*	0.465*	0.369*
	RH	0.637*	0.553	0.484	0.590*	0.535*	0.433	0.497*	0.458*	0.349
	SCA-a	0.613	0.571	0.499*	0.561	0.534	0.450*	0.446	0.445	0.371*
	SCA-s	0.629*	0.580*	0.464	0.581*	0.536*	0.410	0.473*	0.460*	0.307
	SCA	0.633*	0.573*	0.506*	0.583*	0.540*	0.461*	0.502*	0.469*	0.370*

RT: retrain transformer layers RH: retrain downstream head

SCA-a: use only environment-agnostic skip connection adapter SCA-s: use only environment-specific skip connection adapters

Skip connection adapter (SCA) leads to improvements for all the attributes

Shrink dimension size from 1,024 to 256

Use the same architecture for each environment-specific and –agnostic adapters

Conclusions

- <u>Combining environment-agnostic and environment-specific adapters</u> can improve SER performance under multiple noisy environments
- Our proposed adaptation method can decrease the time and memory **requirements** to adapt the model to a new environment

Future Work

Understand why environment-agnostic adapter helps valence prediction, and environment-specific adapter helps arousal and dominance predictions

Requires less adaptation time than RT while achieving similar performance

SCA is memory efficient method for multiple noisy environments

This study was supported by NIH under grant 1R01MH122367-01

SCA = 0.98%*RT

1,581,568