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ABSTRACT

Speech emotion recognition (SER) system deployed in real-world
applications often encounters noisy speech. While most noise com-
pensation techniques consider all acoustic features to have equal im-
pact on the SER model, some acoustic features may be more sensi-
tive to noisy conditions. This paper investigates the noise robustness
of each feature in the acoustic feature set. We focus on low-level
descriptors (LLDs) commonly used in SER systems. We firstly train
SER models with clean speech by only using a single LLD. Then, we
rank each LLD with respect to the absolute performance on a devel-
opment set contaminated with noise, and the relative performance
decrease from the results from the models trained with the clean
set. Our experiment shows that using all the LLDs leads to worse
performance than training the system with a single robust LLD. We
propose to select a group of robust features according to their perfor-
mance and robustness in noisy condition. Without using any com-
pensation method, our feature selection methods improve the perfor-
mance by 24.4% (arousal), 23.9% (dominance), and 43.2% (valence)
in the 10dB noisy condition. Moreover, even though the selection is
conducted with the 10dB condition, our selection methods also yield
performance improvements in unseen noisy recording conditions.

Index Terms— Speech emotion recognition, acoustic feature,
feature selection, noisy speech.

1. INTRODUCTION

Speech emotion recognition (SER) is an useful technology that bene-
fits various domains, including education, entertainment, healthcare,
security and defense. By deploying SER systems on ubiquitous de-
vices, such as smartphones, this technology can provide valuable ser-
vices, improving human-computer interaction (HCI). However, in
real-world applications, SER systems are highly likely to encounter
complex types of background noises in arbitrary recording condi-
tions. Such background noises degrade the quality of the origi-
nal speech signal, leading to the degradation of SER performance.
Therefore, increasing the robustness of the SER system in noisy en-
vironments is important to improve its use in real-world applications.

Many studies have tried to improve the noise robustness of SER.
Some solutions include adding a speech enhancement module [1–3],
augmenting the training set with contaminated speech [4, 5], or ap-
plying domain adaptation to the SER model [6, 7]. Although the
compensation methods differ, most proposed solutions use a com-
plete acoustic feature set during training, regardless of the environ-
mental condition. However, we expect that noise will differently im-
pact parts of speech productions, resulting in features that are more
resilient to noise than others. For example, some features may lead to
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similar performance, regardless of environmental conditions. Other
good features in clean conditions may lead to lower performance un-
der noisy conditions. We hypothesize that understanding the robust-
ness of each acoustic feature can lead to more robust SER systems.

Exploring the idea that not all features are equal with regard to
noise robustness, we analyze each acoustic feature in the presence
of noise, proposing a simple, but novel approach to select a robust
acoustic feature group without applying any feature- or model-level
compensation method. This paper focuses on the low-level descrip-
tors (LLDs) of the feature set introduced in the Interspeech 2013
computational paralinguistics challenge (ComParE 2013), generally
used in previous SER studies. We train emotion recognition models
with a single LLD, reporting the recognition performance for each
model. We consider two selection criteria : performance and robust-
ness. For performance, we rank LLDs by their absolute performance
in noisy conditions. For robustness, we evaluate the relative perfor-
mance decrease from clean condition to noisy condition. We also
consider both criteria by summing up their ranks. For each ranking
method, we cumulatively group them to make new feature sets.

Our experiment with the clean and noisy versions of the MSP-
Podcast corpus [7,8] shows that using some LLDs lead to better per-
formance than using all LLDs in noisy conditions. Moreover, in the
noisy conditions, selecting LLDs by their performance and robust-
ness in noisy condition leads to better performance than randomly
selecting LLDs or using all the LLDs. We observe this result even
when testing in unseen noisy conditions where their signal-to-noise
ratio (SNR) is different from the dataset used for the feature selec-
tion. For example, when selecting LLDs by using the development
set for the 10dB condition, grouping features by robustness improves
the performance over a system trained with all the LLDs by 29.7%
(5dB), 35.5% (0dB) for dominance and 51.3% (5dB), 44.8% (0dB)
for valence, and grouping features by joint criterion improves the
performance by 49.1% (5dB), 50.5% (0dB) for arousal.

2. RELATED WORKS
Compensating background noise has been actively studied in the
SER field. Some studies have explored feature transformation meth-
ods, which are designed to denoise the features from contaminated
speech to make it fit the pre-trained model that is only trained
with speech without noise. For example, Huang et al. [1] showed
that spectral subtraction and perceptual masking-based speech en-
hancement also showed better performance in predicting arousal
and valence levels. Juszkiewicz [2] successfully applied histogram
equalization of Mel-frequency cepstral coefficient (MFCC) to in-
crease the emotion classification accuracy in noisy audio, which
was also shown to be effective in automatic speech recognition [9].
Triantafyllopoulos et al. [3] used a convolutional neural network
with residual blocks as a feature enhancement module to improve



SER performance.
Data augmentation methods have also been studied to address

this problem. Lakomkin et al. [4] augmented the training data by
changing the tempo and loudness of the recordings and adding
background noise and reverberation by considering room impulse
responses. This method showed significant improvements both in
emotion classification and the prediction of arousal and valence
scores. Tiwari et al. [5] utilized various types of noise from the
NOISEX-92 database and modulated white noise to augment the
training data.

Domain adaptation approaches can also improve the recogni-
tion performance in noisy conditions by compensating environmen-
tal mismatch between train and test sets. Leem et al. [7] proposed a
semi-supervised domain adaptation approach for SER to compensate
for the environmental mismatch between train and test sets. Build-
ing on the ladder network backbone [10–12], the study decoupled
the emotional and reconstruction embedding to reduce the influence
of background noise on emotion predictions.

Unlike previous studies, our method does not change the archi-
tecture of the original SER system nor augment its training set. In-
stead, it only selects robust features against the environmental mis-
match from the clean training set. Although Schuller et al. [13] also
proposed to selectively use input features based on the performance
in noisy condition, our method does not only rely on the performance
rank, but we also consider the noise robustness by measuring relative
performance decrease, leading to further performance improvement.
That method also considered matched conditions where the noise in
the train and test conditions were the same. Our approach does not
need matched conditions, making it robust to unseen noisy environ-
ment. Our study is also different from the study of Pandharipande et
al. [14], which discards the noisy frames instead of the features.

3. RESOURCES
3.1. Datasets
To assess the robustness of features in a real-world environment, we
use a clean emotional speech corpus and its noisy version, which
simulates real-world recording conditions. For the clean speech cor-
pus, we use the MSP-Podcast corpus (version 1.8) [8]. It contains a
large amount of natural and diverse emotional speech samples col-
lected from various podcast recordings with over 113 hours. We use
the retrieval approach proposed in Mariooryad et al. [15] to choose
samples expected to have the target emotions. For the annotation,
we use a modified version of the crowdsourcing protocol proposed
in Burmania et al. [16] to increase the reliability of the annotations.
We focus on the emotional attribute scores for arousal (calm versus
active), dominance (weak versus strong), and valence (negative ver-
sus positive) collected with a seven-point Likert-scale. All samples
are selected when the predicted SNR is above 20dB. The recordings
do not have background music. They are formatted at a sampling
rate of 16kHz. We used 44,879 samples for the train set, 7,800 for
the development set, and 15,326 for the test set for the clean con-
dition. The partitions aim to create speaker-independent sets. All
models are trained with the train set using the clean condition.

For the noisy speech corpus, we use the noisy version of the
MSP-Podcast corpus, which was introduced in Leem et al. [7]. We
directly recorded all speech samples in the MSP-Podcast corpus with
non-stationary noise sounds to simulate real-world recording condi-
tions. Noise sounds are collected from traditional radio shows with-
out copyright, and contain human voices, background music, and
various types of sound effects. After simultaneously playing speech
and noise sounds with the speakers of two portable devices, those
mixed sounds are recorded on a smartphone, replicating daily de-

Table 1. LLDs of the ComParE 2013 feature set
Group LLD Nomenclature

Energy

Sum of auditory spectrum Spec-sum
Sum of RASTA style- RASTA-sum
filtered auditory spectrum
Root mean square energy RMSenergy
Zero-crossing rate zcr

F0 Fundamental frequency F0
Probability of voicing voicingProbability

Voice Quality

Jitter(local) jitterLocal
Jitter(delta) jitterDDP
Shimmer(local) shimmerLocal
log harmonic-to-noise ratio logHNR

Spectral

Spectral flux SpectFlux
Spectral entropy SpectEnt
Spectral variance SpectVar
Spectral skewness SpectSkew
Spectral kurtosis SpectKurt
Spectral slope SpectSlope
Spectral harmonicity SpectHarm
Spectral Centroid SpectCent
Spectral roll-off 0.25 SpectROff25.0
Spectral roll-off 0.50 SpectROff50.0
Spectral roll-off 0.75 SpectROff75.0
Spectral roll-off 0.90 SpectROff90.0
Spectral energy 250Hz-650Hz fband250-650
Spectral energy 1kHz-4kHz fband1000-4000
Psychoacoustic sharpness psySharpness

Cepstral MFCC MFCC[1-14]

RASTA RASTA-style auditory RASTA-band[1-26]
spectrum bands

vices used in real-world applications. All noisy speech samples are
collected with three different levels of SNR by changing the distance
between the speakers and smartphone. According to their estimated
SNR, the conditions are named 10dB, 5dB, and 0dB, respectively.
For each noisy speech sample, their emotional labels are directly
transferred from the clean version of the MSP-Podcast corpus. We
used 7,800 samples of the development set in the 10dB condition to
assess the noise robustness of each feature. For the evaluation, we
used the same sentences in the test set (15,326 samples) for all the
three noisy recording conditions.

3.2. Acoustic features
In our experiments, we use the 65 LLDs from the ComParE 2013
feature set extracted with the openSMILE Toolkit [17], as described
in Table 1. To extract each LLD, a 20ms window is applied for the
RMSenergy feature, and 60ms is applied for other LLDs with 10ms
step size. This approach creates a frame-level representation for each
speech signal.

To avoid shifts in the feature distributions due to environmen-
tal noise condition, we apply the Z-normalization to the features.
We regard the development set of each noisy recording condition
as speech samples obtained from the target environment. Then, we
use their mean and standard deviation to normalize features from the
noisy recording conditions. Since we already have a training set in
the clean condition, we normalize the clean features by using the
mean and standard deviation of the clean training set. We clip the
value of each feature if they exceed ±10 after the normalization.

4. METHODOLOGY
4.1. Motivation
Although the ComParE 2013 feature set contains various types of
LLDs, the noise robustness of each LLD has not been evaluated in
previous studies. Therefore, we compare the emotion recognition
performance by only using a single LLD.

We borrow the SER model used as a baseline for the frame-
level acoustic features in the study of Parthasarathy and Busso [11].
This model consists of five blocks of 1D convolution layers and
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Fig. 1. CCC of models trained with either a single LLD or all the
LLDs in clean and noisy conditions (10dB). We mark with a star
when the model trained with a single LLD is significantly better than
the baseline model trained with all the LLDs.

max-pooling layers, two fully connected layers, each of them im-
plemented with 256 nodes, and an output layer. We use the rectified
linear unit (ReLU) as the activation function for the convolution and
fully connected layers, and a linear transformation for the output
layer. We put 10% dropout between the input and first convolution
layer and between the last convolution layer and the first fully con-
nected layers. We use the multitask learning approach proposed in
Parthasarathy and Busso [18] that showed good performance in pre-
dicting emotional attribute scores. Equation 1 illustrates the cost
function of our model.

L = α× Laro + β × Lval + (1− α− β)× Ldom (1)

where Laro, Lval, Ldom denote the loss functions for arousal, va-
lence, and dominance, respectively, and α and β denote the weight
of each loss function. We choose α = 0.7, β = 0.3 for arousal,
α = 0.0, β = 0.2 for dominance, and α = 0.1, β = 0.8 for valence
prediction model, which showed the best performance reported in
Parthasarathy and Busso [11]. We train the model to maximize the
concordance correlation coefficient (CCC) by minimizing the term
1 − CCC for each loss function. We use the Adam optimizer [19]
with a 0.00005 learning rate to optimize the parameters. We train
models for 25 epochs with a mini-batch of 512 sentences. While
augmenting the database with noisy recording can lead to improve-
ments, this solution is not effective if the noise in the environment is
different. We avoid this strategy by training the models with clean
speech, aiming to increase the robustness with resilient features.
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Fig. 2. Relative CCC decrease for models evaluated in the clean and
10dB conditions.

To assess the robustness of each feature, we train multiple mod-
els by changing the type of input feature. Therefore, 65 different
models are trained using different types of LLDs for each prediction
task. We compare the performance of using a single feature with the
baseline model trained with all the LLDs. After training the model,
we evaluate the CCC performance on the development sets for the
clean and 10dB conditions per emotional attribute. We ran ten ex-
periments for each LLD with different initial weights, reporting the
average CCC. To assess the significance of the results, we conduct
a two-tailed Welch’s t-test between the results achieved when using
all LLDs, and when using a single LLD. We assert the significance
when p-value ≤ 0.025. Figure 1 illustrates the CCC for this eval-
uation. We illustrate the top 20 LLDs for each task. The black bar
and gray bar demonstrate the performance of using a single LLD
and all the LLDs, respectively. In the clean condition, using all the
features always shows the best performance for all the tasks. This
result evidently indicates the effectiveness of this popular feature set
for SER tasks. However, when the model is tested in a noisy condi-
tion, some of the single features show better performance than results
from model trained with the entire feature set. Moreover, in valence
predictions, using all LLDs leads to one of the worst performance.
Out of 65 LLDs, 43 features show significantly better performance
than using all the features. This result indicates that selectively using
acoustic features can improve the performance in noisy conditions.

Figure 2 illustrates the relative decrease in CCC from the clean
condition to the 10dB condition. We illustrate the top 20 LLDs for
each task. Some features show less performance decrease in a noisy
condition than using all the features. For valence predictions, most
of the features show a smaller decrease than using all the features.
This result implies that not all the features are influenced the same by
the environmental noise condition. There are robust features against
environmental mismatches. There are also features that disrupt the
prediction in noisy conditions, which should be avoided.

4.2. Cumulative performance by adding LLD
Section 4.1 showed that some features are more resilient than other
against noise. To find a robust subset, we select the feature by cu-
mulatively including LLDs based on their performances (criterion 1)
and their robustness (criterion 2). For the performance criterion, we
rank features based on the CCC performance on the development set
in the 10dB condition. For the robustness criterion, we rank features
based on the relative CCC decrease from clean to 10dB conditions.
We also combined both criteria by adding those two ranks (joint).
Using one of the three criteria (performance, robustness, joint), we
add LLDs in increments of 10% from the top 10% to the 100% cov-
erage. As a baseline, we randomly select LLDs to match the target
coverage level. We use the same hyper-parameters for training as
the one reported in Section 4.1. Although the feature selections are
based on the performance of a noisy condition, only the clean train-
ing set is used to train the models. We conducted ten experiments,



Table 2. CCC comparison of using subset of features based on performance, robustness, and joint selection criteria. We compare these
models with random feature selection (random) and the baseline trained with all the features (all). We use 10%, 20%, and 40% coverage for
arousal ( Aro.), dominance (Dom.), and valence (Val.) prediction, respectively. We highlight in bold the best performance per condition. The
symbols † and * indicate that a feature set shows significant improvement compared to the random and all settings, respectively.

Clean 10dB 5dB 0dB
Aro. Dom. Val. Aro. Dom. Val. Aro. Dom. Val. Aro. Dom. Val.

Performance 0.401 0.399 0.165 0.265† 0.298 0.109† 0.288*† 0.305* 0.096*† 0.236*† 0.258*† 0.083*†

Robustness 0.379 0.429 0.151 0.316† 0.357*† 0.139*† 0.252† 0.34*† 0.115*† 0.201† 0.29*† 0.084*†
Joint 0.414 0.413 0.192 0.346*† 0.319* 0.115*† 0.34*† 0.302* 0.109*† 0.292*† 0.257* 0.076*†

Random 0.376 0.405 0.181 0.157 0.239 0.074 0.141 0.221 0.063 0.116 0.183 0.048
All 0.572 0.505 0.212 0.278 0.288 0.097 0.228 0.262 0.076 0.194 0.214 0.058
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Fig. 3. CCC performance for each feature coverage, and selection
criterion in the 10dB condition. The red dashed line marks the per-
formance of the baseline using all the LLDs.

reporting the average CCC on the development set for each coverage
and selection criterion.

Figure 3 illustrates the CCC as a function of number of features
for each selection criterion. Our three selection methods show bet-
ter performance than the random selection across all feature cov-
erage, showing the merit of the criterion. The performance of the
random selection criterion leads to worse performance than using
all the features. However, in the other three selection criteria, there
exist feature subsets that show better performance than the baseline
using all the features. In the development set, the robustness crite-
rion reaches the best performance for arousal (10% coverage) and
dominance (20% coverage). For the valence, the joint criterion leads
to the best performance (40% coverage). Selecting a feature group
based on the noise robustness of the feature can improve the perfor-
mance, even without using any compensation method.

4.3. Proposed approach
According to the observations described in Sections 4.1 and 4.2,
we propose to use a subset of robust acoustic features to improve
the recognition performance of a SER system in noisy conditions.
Based on the previous experiments, we select 10%, 20%, and 40%
coverage for the arousal, dominance, and valence prediction tasks,
respectively. With these feature coverage, we evaluate the recogni-
tion performance in the test set for each of the three selection criteria:
performance, robustness, and joint. We compare those performances
with the baseline model trained with all the features. We also con-
sider a second baseline trained by randomly selecting features un-
til reaching the target coverage. To assess the effectiveness of the

feature selection in unseen noisy conditions, we also evaluate the
performance on the test set in the 5dB and 0dB conditions.

5. RESULTS
We run ten experiments to evaluate the significance of our selec-
tion criterion. We conduct a two-tailed Welch’s t-test to evaluate the
methods. We assert significance at p-value ≤ 0.025.

Table 2 shows the average CCC value over the ten trials for each
method. When testing in clean condition, none of the feature sub-
sets improves the performance of the baseline model trained with
all the features. However, in noisy conditions, the joint criterion al-
ways show significantly better performance than using all features
for all prediction tasks. Even though we select the features only
based on the development set in the 10dB condition, those feature
selection methods can yield performance improvement in the 5dB
and 0dB conditions, which are unseen in the feature selection stages.
For arousal prediction, the joint selection criterion shows the best
performance, with relative improvements over the baseline equal to
24.4% (10dB), 49.1% (5dB), and 50.5% (0dB). In the dominance
and valence prediction tasks, only considering the robustness cri-
terion leads to the best performance. The robustness criterion im-
proves the performances over a system trained with all the features
by 23.9% (10dB), 29.7% (5dB), and 35.5% (0dB) in dominance pre-
diction, and 43.2% (10dB), 51.3% (5dB), and 44.8% (0dB) in va-
lence prediction. Although the performance criterion also shows
significant improvement in the 5dB and 0dB conditions, it does not
reach the performance of the robustness selection method. Our rank-
based criteria show significantly better performance than random se-
lection for most conditions. Simply using a small number of features
is not the reason for the reported improvements. Instead, the robust-
ness of the selected features leads to the reported improvements.

6. CONCLUSION

We proposed to select features based on the performance and ro-
bustness of individual LLDs in noisy conditions to improve the SER
performance. Even though we did not apply compensation meth-
ods or leverage a noisy training set while training the model, our
rank-based selection criteria yielded significant improvement over a
system trained with all the features. We also determined that such
improvement cannot be achieved by only randomly selecting a small
number of features. We must select robust features that are resilient
to noisy conditions.

Based on this study, we plan to selectively enhance the features
that are highly influenced by background noises. We also plan to
generalize this study by explicitly determining the features affected
by types of noises (e.g. babble noise), including reverberation with
different room impulse response. Our feature selection is very sim-
ple, but it does not consider interaction between LLDs. A more so-
phisticated feature selection may lead to further improvements.
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