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ABSTRACT In autonomous, as well as manually operated vehicles, monitoring the driver visual attention
provides useful information about the behavior, intent and vigilance level of the driver. The gaze of the
driver can be formulated in terms of a probabilistic visual map representing the region around which the
driver’s attention is focused. The area of the estimated region changes based on the level of confidence
of the estimation. This paper proposes a framework based on convolutional neural networks (CNNs) that
takes the head pose and the eye appearance of the driver as inputs, and creates a fusion model that estimates
the driver’s gaze on a 2D grid. The model contains upsampling layers to create estimations at multiple
resolutions. The model is trained using data collected from 59 subjects with continuous recordings where
the subject looks at a moving target in a parked car, and glances at a set of markers inside the car while
driving the vehicle and while the car is parked. Our fusion framework provides superior performance than
unimodal systems trained exclusively with head pose or eye appearance information. It estimates the gaze
region with the target location lying within the 75% confidence region with an accuracy of 92.54%.

INDEX TERMS convolutional neural networks (CNN), Driver monitoring systems, Visual Attention, Gaze
Estimation

I. Introduction

CURRENT driving systems place the driver at the center
of the controls. The driver takes responsibility for

ensuring that the entire system runs smoothly. If there is
a sudden change in the environment, such as a pedestrian
crossing the road, or a vehicle suddenly stopping in front
of the ego car, it is up to the driver to take necessary
actions to avoid potential accidents. While advances in in-
vehicle technologies have helped drivers with safety features,
such as collision avoidance, lane assist, and adaptive cruise
control, the responsibility is still on the driver. Hence, it
is only natural to design systems that can monitor drivers,
inferring if they are aware of the driving environment [1].
The transition from manually controlled vehicles to fully
autonomous systems is going to be gradual, given the com-
plexity of mixed-autonomy traffic [2]. A semi-autonomous
system needs to have synergy between the autonomy of the
car and the human driver. When the driving system is unable

to make important maneuvering decisions, it must transfer
control to the driver. A distracted driver takes longer to
resume control of the vehicle [3]. Hence, the system should
be able to understand the actions, intents, and behaviors of
the driver before transferring control of the car.

Various studies have addressed different aspects of driver
attention, such as vehicle state information [4], physiological
signals [5]–[7], cognitive distractions [8]–[10] and changes
in emotional states [11]. The 100-car naturalistic driving
study by the National Highway Traffic Safety Administration
(NHTSA) concluded that in 80% of crash events and 65%
of near-crash events, the driver was looking away from the
incoming road just before the event [12]. A driver relies on
vision to gather information from the environment, including
road signs [13], and pedestrians [14]. Driving tasks such
as mirror checking actions [15], [16] and lane change [17],
[18] also require the driver’s visual attention. Knowledge of
the driver’s visual attention can be helpful in understanding
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their intent and their knowledge of the environment [19].
Correlating driver visual attention with visual saliency of the
scene can be helpful in gaining insights about what the driver
is attending to [20], [21]. This information can be useful
in cloning behavioral models onto autonomous systems to
replicate safe driving patterns [22]. These examples illustrate
the importance of estimating the driver’s visual attention,
and its potential applications. As the technology evolves
towards autonomous vehicles, from level 1 to level 4, the
relevance of this task also increases. In non-autonomous
vehicles (L1 and L2), the drivers are involved in controlling
the operations of the car, so the knowledge of their attention
helps in maintaining safe driving conditions. In level 3, it
is crucial to have synergy between the driver and the car,
as most activities will be shared between them. While the
driver might not need to be always attentive, at crucial times
during handovers, the system needs to check that the driver
is paying attention before transferring control of the car.
With full autonomy (L4), the knowledge of a user’s visual
attention can be helpful for infotainment and navigation
systems (e.g., displays information on buildings visually
attended by the driver, and resolve ambiguities for road-
related driver’s commands).

Different studies have tried to use the driver’s gaze to
estimate distractions. Studies have binarized the problem by
considering the duration of gaze-off-the-road events [10],
[23]. Other studies have associated head pose and gaze
estimation directly with driving activities [4], [17], [24]. An
alternative approach is to divide the driver visual attention
into gaze zones [25]–[27]. While these methods provide a
good coarse estimate of the driver’s visual attention, some
applications may require a finer estimation of where the
driver is directing her/his visual attention. While commercial
head-mounted eye trackers such as Tobii and faceLAB can
provide an accurate estimate of the driver’s gaze, and are
useful for research, due to their invasive nature, they provide
limited usage in real-world applications. These methods
do not provide information about the driver’s awareness
of particular objects on the road such as other vehicles
and pedestrians. Acknowledging the fact that fine details
about the driver’s gaze may not always be available, we
design a model that uses both head pose and eye appearance
information to estimate the gaze in real naturalistic driving
recordings. We define eye appearance as the image around
the eyes of a person.

Visual attention is a broader concept in cognitive science
that deals with the study of a person’s awareness of the visual
world. However, This study restricts our definition of visual
attention as the heat map representing the distribution of
the driver’s gaze (i.e., the area that a driver is looking at
while operating the car). We quantify visual attention with a
probability map that can be easily projected onto the road,
mapping the driving environment with the driver’s attention.
This formulation also allows us to assign an intensity to the
direction of the driver’s vision. For example, a driver fixating

on a location will have a map with high intensity in a small
region. When a driver is exploring the driving environments,
the saccade movements will create a map with low intensity
in a large area.

In Jha and Busso [28], [29], we proposed that providing
probabilistic maps is a practical and effective way to estimate
visual attention. Our earlier efforts relied only on the head
pose, but driver visual attention is a function of both head
pose and eye movement [30]. In this work, we build a fusion
model with two branches, each of which takes the head
pose and the eye image as inputs and learns a combined
representation of the visual attention of the driver. The
proposed model contains three parts: a head pose encoder,
an eye encoder, and a decoder. The head pose encoder
takes the six parameters describing the head pose (position
and orientation) as the inputs, which are passed through
fully connected networks, followed by reshaping to obtain a
low-dimensional map. The eye encoder takes the eye patch
image as the input and sends it through a neural network to
extract discriminative information. The decoder of our model
concatenates the outputs of the encoders, creating a unified
feature map that is sent through an upsampling network
to obtain the probabilistic map at different resolutions. We
classify the driver’s visual attention on a 2D grid which
is learned by using upsampling with convolutional neural
networks (CNNs). This representation is purely learned from
the data and, hence, is non-parametric. Therefore, it does not
require imposing parametric distributions as in our previous
model [28], increasing the flexibility of our formulation.

We use the multimodal driver monitoring (MDM) dataset
[31] to train and evaluate our model. The recordings used
for training are a combination of continuous data, where
the driver follows a target marker that is moved around
in front of a parked car, and discrete data points, where
the driver briefly glances at target markers inside the car,
while driving the vehicle and while the car is parked. These
datasets provide us with a diverse set of data in terms of how
the subject approaches a gaze target. We first design simple
models that use only one input modality (head pose only
or eye appearance only) and compare them with respective
baseline models. We observe that our models show superior
performance to the baseline models. Our fusion model that
takes both head pose and eye appearance as inputs shows
better accuracy when compared to a simple model based
solely on the head pose or eye appearance. For the eye
appearance, we use the face camera and for the head pose
we use Fi-Cap labels. We demonstrate potential applications
of the model by projecting the probability map onto the
road. For example, the visual map that includes 75% of the
probability overlaps with the true target point 92.54% of the
time.

This paper is organized as follows. Section II discusses
related studies in the field of monitoring driver visual atten-
tion. Section III describes the portion of the MDM dataset
that we use for our proposed model. Section IV describes
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in detail the proposed model architecture. Section V dis-
cusses the experimental settings, including baselines and
implementation details. Section VI evaluates our proposed
model by comparing its performance in different settings
with various baselines. It also discusses projections of the
probabilistic gaze map on the road, evaluating the estimation
for cases when the subjects were looking at landmarks on
the road. Section VII provides the concluding remarks and
future research directions.

II. Related Work
Driving is a challenging task requiring a high level of
vigilance from the driver. Therefore, many researchers have
studied the factors associated with driver behaviors and their
effects on vehicle operation [32]. In their review of human
behavior in an intelligent vehicle environment, Ohn-Bar
and Trivedi [33] noted that multiple studies have analyzed
drivers in terms of their intentions, behaviors, and actions for
maneuvering control. These studies mostly include the gaze,
eye appearance, hands, and head movements of the driver,
and their interactions with objects inside the car. This section
reviews relevant studies on driver visual attention, emphasiz-
ing the relation between head pose and eye appearance for
gaze estimation.

A. Driver Visual Attention estimation
Given the importance of visual attention in studying driver
vigilance, many studies have proposed methods for using
head pose and/or gaze to estimate the driver’s visual at-
tention. Dong et al. [34] presented a review of various
monitoring systems for driver distraction. They discussed
methods based on subjective reports [35]–[37], physiological
methods [38]–[41], physical methods [42]–[44], and driving
performance measures [45]–[47]. Dong et al. [34] reports
many studies that have used the driver’s eye and head move-
ments to estimate distraction [42], [48] and fatigue [43], [44].
Tracking eye movement does not require invasive sensors
like other physiological signals, such as electroencephalo-
gram (EEG) and electrocardiogram (ECG). They concluded
that using driving performance measures in conjunction with
eye and head movements is the most reliable solution for
monitoring driver distractions.

1) Relationship between Head Pose and Gaze
The eyes and head move when we glance at a given target
location. The gaze-eye relationship is non-trivial, depending
on several factors including the cognitive load. Muñoz et
al. [49] analyzed the head rotations of a driver during
forward glances and glances to the center console of the
vehicle. They recognized these two glance patterns using a
temporal model based on a hidden Markov model (HMM).
They observed that head pose is a strong indicator of gaze
location. They also observed that there are differences in
the patterns observed across individual drivers. Talamonti
et al. [50] studied head pose and eye gaze dynamics by

asking various subjects to look at different locations in the
car in a simulated driving environment. They observed that
there is very little head movement when looking at locations
such as the odometer and rear-view mirror. However, looking
at locations such as the center console and the left mirror
require more head movement from the driver. Jha and
Busso [30] noted that while there is a strong relationship
between head pose and gaze location, the relationship is not
one-to-one. They observed that the variability in the gaze
changes based on the direction that the driver is directing
her/his visual attention to. They also observed a significant
difference in gaze patterns when driving a vehicle, where
glancing is one of several driving tasks, and when the car is
parked, where glancing is the only task and the driver has
more time.

2) Using Head Pose to Estimate Driver Visual Attention
Given the strong relation between head pose and gaze,
many studies have used head pose to estimate the driver
visual attention. Fridman et al. [25] proposed a method to
estimate gaze zones with only head pose. They extracted
facial landmark features that provide strong cues for head
pose. They used these features as inputs to a random forest
(RF) classifier to categorize the driver’s visual attention into
seven gaze zones. They trained and evaluated the model
on a dataset collected from 50 subjects with two different
vehicles. Yuen et al. [51] used a dataset collected in a
naturalistic driving setting to perform face localization, land-
mark detection, and head pose estimation using deep neural
network (DNN) architectures. They observed higher perfor-
mance compared to models trained using public datasets
collected in indoor settings. Jha and Busso [28] proposed an
alternative probabilistic method to model visual attention of
a driver. Instead of dividing the visual area into gaze zones,
they use heat maps to represent a probability distribution
of the driver’s gaze conditioned on the head pose. They
use Gaussian process regression (GPR), which provides a
Gaussian distribution of the gaze as a function of the driver’s
head pose.

3) Incorporating Eye Appearance Information
Head pose provides important information about the visual
attention of the driver. However, the estimates are coarse.
To provide finer details, many studies have incorporated
information from the eyes. Tawari et al. [52] used both head
and eye cues to classify the driver’s visual attention into
preset gaze zones. They extracted high level geometrical eye
features from the eye location and used them as inputs along
with the head pose into a RF classifier. They observed that
adding eye cues increases the performance of their model,
reaching 94.9% accuracy when compared to a head pose
only model which had an accuracy of 79.8%. Fridman et
al. [53] studied the gain in performance of a model when

VOLUME , 3

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2023.3258184

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Jha et al.: Driver Visual Attention Estimation using Head Pose and Eye Appearance Information

using head pose alone versus when using information about
the head pose and eye appearance. They observed that while
there is an improvement in performance, this improvement
is user specific. They defined a metric called owlness, which
quantifies how much the driver depends on head movement
alone to complete a glance. The study concluded that if a
driver’s owlness score is low, there is a larger improvement
in the model when adding the eye appearance information.
Most of these approaches classify the driver’s gaze into
discrete zones. Bergasa et al. [43] proposed a model based
approach for this problem. They estimate factors related to
eye closure, head pose, and gaze to determine the drivers
level of vigilance. Near-infrared (IR) illuminators were used,
which create bright reflections on the eye, making it easier
to detect the pupil. They used these factors to estimate the
driver’s fatigue level and inattentiveness using preset rules in
a fuzzy logic design. Vora et al. [26] proposed a generalized
framework for estimating driver gaze zones using CNNs.
They performed an analysis using different models and
images with different parts of the face, concluding that a
squeezenet model that takes the top half of the face as
input provided the best results with an accuracy of 95.18%.
Ewaisha et al. [27] proposed a CNN based multitask learning
approach that simultaneously performs gaze estimation and
head pose estimation. The model performs regression on
both tasks, followed by a clustering step where the data
samples are assigned to different gaze zones. Performing
head pose estimation as an auxiliary task increased the
robustness of the model against head pose variations. They
achieved 78.2% accuracy on cross-subject evaluations.

B. Application of Visual Attention
Ahlstrom et al. [54] studied the effect of a visual distraction
warning system on the driver’s behavior. They used a gaze
zone classification system to generate a warning when the
driver looked away for more than a certain amount of time.
They observed that using this warning system reduced the
amount of time the driver spent looking off-the-road, even
when involved in a secondary distracting activity. Liang
et al. [55] analyzed the crash risk associated with driver
gaze variables (i.e., glance history, glance duration, and
glance location). They analyzed 24 different algorithms that
estimate risk and concluded that the off-the-road glance
duration was the most important factor for estimating crash
risk. Li and Busso [10] studied various multimodal features
from the CAN-Bus data, road scene, and driver’s face to
estimate the perceived visual and cognitive distraction during
driving. The distraction space formed by visual and cognitive
distractions was divided into four clusters and a classifier was
trained to distinguish between these classes using multimodal
features. They noted that the model classified the data as
distracted when the drivers were performing secondary tasks
characterized by high cognitive and/or visual load.

Sodhi et al. [56] analyzed the eye positions and pupil
diameter using an eye tracking device to study the effect
of a secondary task on the driver’s visual attention. They

observed an increase in the amount of off-the-road fixa-
tion because of competing visual demands on tasks. They
observed that the impact varied based on the task. For
example, tuning the radio required more off-the-road fixation
compared to checking the odometer. They also noted that
cognitive tasks decreased the amount of eye movement,
since the standard deviation for the fixation displacement
reduced when performing mental calculations. Similarly,
Reimer et al. [9] studied the effect of cognitive demand on
visual attention. They used gaze concentration as a metric,
which is a measure of reduction in gaze variability. As the
amount of cognitive demand increased, they found that the
amount of gaze concentration also increased, implying that
drivers tend to fixate at a point when cognitively distracted.
They observed that while the amount of gaze concentration
increased when moving from low to moderate difficulty
tasks, the difference was less defined than the difference from
moderate to high difficulty tasks. Martin and Trivedi [17]
used the gaze dynamics of the driver to estimate lane based
maneuvers in a real world driving scenario. They designed
models that could estimate lane change 600 milliseconds
before the event with an accuracy of 85%.

There has also been interest in estimating visual saliency
based on the road scene to estimate where the driver is
expected to look. Palazzi et al. [20] collected the Dr(eye)ve
dataset that uses an eye-tracker to track the driver’s fixation
on the road view. They used this data to train a temporal
model that estimates the visual attention of the driver based
on the road scene image. They trained a three branch
network that takes the original RGB image, the optical flow
image, and a semantic segmentation from the scene view
to estimate the focus of attention. Lv et al. [21] improved
this model by using reinforced attention. This method uses
deep reinforcement learning as a regulatory mechanism that
increases the density of the estimation.

C. Relation to Prior Work
Our model is inspired by the model proposed in our previous
conference papers [29], [57]. In Jha and Busso [29], we
proposed a method that uses CNN with upsampling to create
a 2D grid representation of the visual attention learned from
the head pose. This model has important limitations, since
we exclusively rely on head pose without considering eye
information. As a result, the model created large maps of vi-
sual attention with low certainty. Additionally, the model was
only trained on discrete gaze points which made the model
overfit to those specific locations. In Jha and Busso [57], we
proposed a method to estimate gaze maps from eye patch
images using CNN with maxpooling and upsampling. This
model was trained with the MSP-Gaze corpus [58], which
was collected in an indoor laboratory setting. Therefore, the
model did not address the challenges observed in naturalistic
driving conditions [59].

In this study, we propose a model that incorporates both
head pose and eye appearance with a novel encoder-decoder
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FIGURE 1. Sensors included in the MDM corpus. This study relies on the
face camera. It also uses the back camera to estimate the head pose of
the drivers.

approach that relies on downsampling and upsampling with
CNN. We also use data collected with continuous gaze
sequences and with discrete gaze locations making the data
more representative of gaze in a vehicle. This approach
provides better representation, leading to a model that can
estimate a small area of gaze region with high accuracy. The
contributions of this study are:
• We propose a principled gaze detection approach to fuse
head and eye movements. The approach uses two encoders
that take inputs from the head pose and eye appearance and
fuses the representations with a single decoder that generates
the visual map at different resolutions.
• We propose a loss function that uses marginal distribution
in the horizontal and vertical directions with Gaussian fil-
tering so that estimations which are further away from the
ground truth get higher penalties.
• We create a loss term for each resolution and optimize
them in parallel to make sure that the correct representation
is learned at each resolution.
• We conduct an exhaustive evaluation using natural driving
recordings, demonstrating the performance of the proposed
fusion approach, which achieves better performance than
alternative baseline methods.
• The approach is trained such that it works even when one
modality is missing, making this approach more practical for
real world applications.
• We demonstrate the potential of the proposed approach
by projecting the estimated probabilistic gaze map onto the
road to identify gaze targets outside the vehicle.

III. Database
We use the multimodal driver monitoring (MDM) dataset
[31] to train and evaluate our model. The MDM dataset is a
real world driving dataset collected with 59 subjects, where
the drivers are asked to perform various actions in a parked
car as well as while driving. The objective of the dataset
is to collect naturalistic data with reliable ground truths for

the head pose and gaze of the driver. Each subject wore
the Fi-Cap helmet [60] during the data collection, which
is a cap like structure that contains 23 AprilTags that can
be easily tracked in an image (Fig. 1). By tracking these
AprilTags, we can establish reliable information about the
driver’s head pose. Figure 1 shows the sensors used in the
data collection. The data is recorded using four GoPro RGB
cameras: frontal face, profile face (near rearview mirror),
back, and road. The data also includes a PMD picoflexx
depth camera, which is not used in this study. This depth
camera uses time-of-flight (TOF) technology. This dataset
provides annotation of the driver’s gaze in the 3D space in
a variety of situations. Since the data is collected in both
driving and parking settings, it provides a diverse set of data
to train robust driver-independent models. Another reason
for using the MDM corpus for our experiments is the labels
available in the corpus for the gaze and head pose.

A. Protocol
While the data collection protocol involved multiple primary
and secondary tasks, we limit our discussion in this paper
to the sections that are relevant to the current study. The
readers are referred to Jha et al. [31] for more details about
the corpus.

1) Discrete Gaze Markers
A goal from this corpus is to have data to train gaze-based
models. There are 21 differently numbered markers placed at
different locations inside the car (Fig. 2(b)). The numbered
markers are placed on the following locations: 1 to 13 on the
windshield, 14 to 16 on the mirrors, 17 and 18 on the left and
right windows, respectively, 19 on the speedometer panel,
20 on the dashboard, and 21 near the gear of the car. The
subjects are asked to look at each of the numbered markers
in a random order multiple times. For example, Figure 2(a)
shows an example of a subject looking at marker number
13. This step is repeated for two conditions: when the car is
parked, and when the participant is driving on a straight road.
The location of each of the markers with respect to the back
camera is known, which is used as the ground truth gaze
location for the frames when the subject is looking at these
target markers.

2) Continuous Gaze Target
The corpus also includes continuous gaze data collected
while the vehicle was parked. In this step, a researcher
conducting the experiment holds a large board with an
AprilTag [61] printed on it. The researcher walks in front
of the vehicle (Fig. 2(d)). The AprilTag is used so that its
3D location can be tracked from the road camera image.
The researcher moves this target and the subject is asked
to follow the target with her/his gaze. The data is collected
in 3 to 5 sessions of about one minute each. This part of
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(a) Face (b) Discrete gaze markers

(c) Face (d) Continuous gaze target

(e) Face (f) Gaze target landmark

FIGURE 2. Protocol to collect ground truth for gaze data. (a) Discrete
gaze markers, where drivers are asked to look at markers inside the car,
(b) continuous gaze target, where drivers are asked to follow a board held
by a researcher when the car is parked, and (c) gaze target landmark,
where the driver is asked to look at landmarks outside the car.

the recordings provides us with continuous data with ground
truth gaze annotated for each subject. This protocol cannot
be implemented when the driver is operating the vehicle,
resulting in limited diversity in terms of appearance and
changes in illumination. However, it provides very rich data
to be augmented with the marker data.

3) Gaze Target Landmark
In this part of the protocol, the subjects are asked to look at
various landmarks on the road and answer questions about
them (Fig. 2(f)). For example, we ask them to identify stores
on the side of the road. This data is collected when the
subject is driving. The landmark location is captured on the
road camera. Since the target information is limited to the
2D projections on the road, we use this data to validate
our model in real world scenarios by projecting our model
estimation onto the road (Sec. F).

B. Data Preparation
The proposed model takes as input the head pose of the
driver and an image of her/his eyes to generate a 2D grid
that represents the horizontal and vertical gaze directions.

The head pose is obtained using the Fi-Cap reading. While
the model can work with head pose obtained from automatic
computer vision algorithms, we use the Fi-Cap for this
purpose because of its reliability in providing head pose in all
six degrees of freedom for almost all the frames (position and
orientation). The Fi-Cap is in the back of the head so it does

(a) 3× 7 (b) 6× 14 (c) 12× 28 (d) 24× 56

(e) 48× 112 (f) 96× 224

FIGURE 3. Example of the process to convert the ground truth gaze
angles into grid. The figure shows the maps as we increase the resolution
from 3× 7 to 96× 224. The true angles in this example are θ = −0.15 and
φ = 0.21.

not occlude important facial features. Hence, an accurate
head pose estimation algorithm that relies on facial images
will also work on the MDM dataset. Using the Fi-Cap, the
head orientation angles are obtained using the multiple local
reference frame calibration framework explained in Hu et al.
[62]. These angles are with respect to the depth camera that
is placed alongside the face RGB camera. Local reference
frames are picked from each of the videos with near-frontal
face orientation. The relative rotations of these frames from
a global reference frame are calculated using the iterative
closest point (ICP) algorithm. The angles for each frame are
calculated based on the rotation of the Fi-Cap with respect
to these local reference frames. The position of the head is
approximated with the position of the center of the Fi-Cap.
The back camera (Fig. 1) is used as the reference location
to ensure that the gaze targets and the face lie on the same
side of the coordinate system.

We obtain the eye patch from the face alignment network
(FAN) algorithm [63] on images captured by the face camera.
The landmarks surrounding the eye region are used to create
a bounding box for the eyes. We add an extra margin by
including 10 to 40 pixels around the eye, picking the actual
number at random. The image is resized to 112×224 pixels
while maintaining the aspect ratio by adding blank spaces
in the boundaries of the larger dimension. We add random
augmentations such as scaling, illumination variation, noise,
and compression to increase the variability in the images.

The ground truth gaze location during discrete gaze is
obtained using the absolute location of the markers, which
is estimated before the recordings. The ground truth location
during continuous gaze is obtained using the location of the
AprilTag tracked with the road camera. The locations are
all transformed into the back camera coordinate system. The
gaze vector (g) is obtained by connecting the head location
(hpos) and the target gaze location (tgaze). The horizontal
and vertical gaze angles are obtained from the vector g =
[gx, gy, gz] using the following equations:

g = tgaze − hpos (1)

ĝ =
g

‖g‖
(2)
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FIGURE 4. Our proposed architecture to fuse head pose and eye
information to estimate visual attention. The model contains three parts:
head pose encoder that takes 6D head pose information, eye encoder that
takes an eye patch image from the face camera

, and visual attention decoder that generates visual
attention maps at multiple resolutions.

θgaze = arctan

(
ĝx
−ĝz

)
(3)

φgaze = arctan

(
ĝy√
ĝ2x + ĝ2z

)
(4)

The gaze angle values are truncated within the range of
−1.75 ≤ θgaze ≤ 1.75 and −0.5 ≤ φgaze ≤ 1.5. The
resulting gaze angles are binned into 2D grids to create maps
of different resolutions (3× 7, 6× 14, . . ., 96× 224), which
are used to train our model. Figure 3 shows an example for
the angle θ = −0.15 and φ = 0.21.

IV. Proposed Model
Our proposed approach uses the driver head pose and eye
information to obtain a map representing the visual attention
of the driver. Figure 4 shows the entire model, which consists
of three blocks: the head pose encoder, the eye encoder
and the visual attention decoder. The motivation behind
this design is to obtain a common representation of the
visual attention from both head pose and eye information
at low resolution and then gradually upsample to refine the
information. The head pose encoder and the eye encoder take
the head pose and eye patch information as inputs, respec-
tively, and generate multiple 2D maps that are concatenated.
The visual attention decoder uses upsampling to create high
resolution 2D maps that represent the direction of the driver
visual attention. This section presents these blocks in details.

A. Head Pose Encoder
The goal of the head encoder is to transform the head
pose information into a tensor, which is used to upsample
the visual attention representation. We have observed good
performance by using CNNs to upsample the representation
obtained from the head pose [29]. For this study, the CNN-
based upsampling is conducted by the visual attention de-
coder (Sec. C). The head pose information, represented by a
six dimensional vector, is passed through two fully connected
(FC) layers. The first FC layer has 512 nodes and the second

FC layer has 672 nodes. The output of the FC layers is a
672D feature representation that is reshaped to transform this
representation into a 3 × 7 × 32 tensor. This tensor is then
used to obtain 2D maps to represent the visual attention of
the driver.

While predicting a high-resolution 2D map from just
six numbers may appear as an under-defined problem, we
can effectively represent this gaze distribution by training
the method per stage, presenting the target ground truth
gaze area at different resolutions, as demonstrated by the
experiments in Section A.

B. Eye Encoder
The appearance of the eyes, including the relative position
of the iris, gives valuable information about the target gaze
direction [57], [58], [64], [65]. Our goal is to incorporate
this information into the model. The eye encoder takes
the eye image and generates a tensor which serves as a
representation to estimate the gaze area. We can use several
networks to obtain a discriminative feature representation
from the eye patch provided by the FAN algorithm. This
study relies on the MobileNet network [66], without the
FC layers. This network relies on depth-wise separable
convolutions, which provide a competitive performance with
a reasonable size. The architecture has been found useful in
various computer vision tasks such as image classification,
detection, and segmentation. The output of the eye encoder
is a representation with dimension 3×7×1, 024 (e.g., 1,024
channels with a 3×7 resolution).

C. Visual Attention Decoder
The 3 × 7 maps obtained from the head pose and the eye
encoders are concatenated, forming a 3 × 7 × 1056 tensor,
which is used as input to the decoder network. The decoder
network consists of convolution layers along with upsam-
pling operations to increase the resolution of the probabilistic
visual map. Figure 5 shows the structure of the upsampling
block, which consists of two convolutional layers with a 3×3
kernel. The number of filters, n, varies according to the layer.
The convolution function is followed by batch normalization
and dropout. We also add a shortcut connection that bypasses
the convolution function to enable residual learning. The
output before the upsampling operation is passed through
a single 3 × 3 convolution kernel followed by a softmax
operation to generate the output. This approach has also
several advantages including the flexibility to define the
resolution of the mask by adding or subtracting convolutional
layers. For our experiments, we run six stages of upsampling
as we observe that the performance saturates at this point.

D. Loss
Figure 6 illustrates the approach that we use to estimate
the loss. The loss is separately calculated in the horizontal
and vertical directions. This approach helps in reducing the
number of operations by allowing us to obtain losses in
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FIGURE 5. Detailed description of one upsampling block in the visual
attention decoder.

FIGURE 6. Post processing of the model output and ground truth to
estimate loss function. The model separately estimates the losses for the
horizontal and vertical axes.

two separate 1D spaces (horizontal and vertical directions)
instead of looking at each point in a common 2D space. The
visual map output and the ground truth are first filtered with a
Gaussian mask to create a neighborhood of influence around
each point. This approach starts rewarding the model when
the estimations are getting spatially closer to the ground truth
value, facilitating the learning process (i.e., overlap between
the estimated and Gaussian masks). Then, the marginal
distributions in both the horizontal and vertical directions
are calculated by adding each column and row, respectively.
The final loss is the sum of the cross entropy and the mean
absolute error loss between the estimated and the ground
truth vectors in each direction,

Lh =
∑5

l=0 cc(ptrue(hr), ppred(hr)) +mae(ptrue(hr), ppred(hr))

(5)

Lv =
∑5

l=0 cc(ptrue(vr), ppred(vr)) +mae(ptrue(vr), ppred(vr))

(6)

L = Lh + Lv (7)

where, ptrue(hr) and ppred(hr) are the marginal distribu-
tions of the ground truth and the estimated vectors in the
horizontal direction, and ptrue(vr) and ppred(vr) are the
marginal distributions of the ground truth and the estimated
vectors in the vertical direction. The term cc(true, pred) is
the cross entropy function between the ground truth and
the estimated vector and the term mae(true, pred) is the
mean absolute difference between the ground truth and the
estimation vector.

(a) Head pose only model [29]

(b) Eye only model [57]

FIGURE 7. Network architecture for two baselines used to evaluate our
proposed approach.

V. Experimental Settings
A. Baseline Models
We compare our approach with implementations of our
approach relying on either head pose or eye appearance.
We also compare with competitive alternative approaches
for systems implemented with either head pose or eye
appearance information.

1) Upsampled Neural Networks Using Head Pose
This model follows the same architecture as our main model
without the eye encoder. The model estimats the visual
attention of the driver with only the head pose. Figure 7(a)
shows the architecture, which follows a similar structure as
the one presented in our preliminary work [29]. We refer to
this method as HP upsample NN.

2) GPR Model with Head Pose Input
To compare our models with regression-based methods,
we train a Gaussian process regression (GPR) model to
study the performance of the HP upsample NN. The model
takes the head pose as the input, and provides Gaussian
distributions of the horizontal and vertical gazes as the
output [28]. The model uses a linear basis function with a
squared exponential kernel function with automatic relevance
determination. Equation 8 shows the expression for the
kernel function, where σf represents the amplitude defining
the autocovariance of the data point and li represents the
length scale parameter which determines the covariance in
each dimension with respect to the distance between the
points. Jha and Busso [28] provides the details of this
implementation.

k(x,x′) = σ2
f exp

(
−1

2

d∑
i=0

‖xi − x′i‖2

l2i

)
(8)
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3) Upsampled Neural Networks Using Eye Appearance
We train an eye only model without the head pose encoder.
Figure 7(b) shows the architecture of this baseline model,
which is similar to the one presented in our preliminary work
[57]. We refer to this method as eye upsample NN.

4) Regression Model With Eye Image Input
We train a regression model to compare the performance of
the eye upsample NN. For this purpose, we design a model
that uses the same architecture as the eye decoder. The output
is then connected to a global average pooling (GAP) layer
followed by a fully connected layer to give the horizontal
and vertical gazes as the outputs. The mean squared error
on the development set is taken as the variance of the model
to construct a Gaussian distribution of the gaze around the
mean value estimated by the model.

B. Implementation Details
All the CNN based models are trained using Tensorflow. We
use a subject independent partition for training, development
and testing. Out of the 59 subjects, data from 39 drivers
are used for the train set, data from 10 drivers for the
development set, and data from 10 drivers for the test set.
Each partition is balanced in terms of gender and whether
or not the subjects are wearing glasses. The training data
consists of both the continuous gaze set (Sec. 2) as well as
the discrete gaze set (Sec. 1). Since there are more samples
in the continuous part, we oversample the discrete gaze set
by five. We obtain the final training set by combining both
sets. We use the ADAM optimizer with a learning rate set to
10−3. The models were trained on an NVIDIA RTX 2080
Ti.

VI. Experimental Results
This section presents the extensive evaluations conducted
to study the proposed model, which we refer to as fusion
upsample NN. Since our model estimates a confidence region
(CR) of visual attention as opposed to a single gaze location,
we study the accuracy of our model as a function of the area
within which the accuracy is obtained. A model can have
good accuracy, but poor spatial resolution (e.g., a confidence
region that includes the entire windshield). It can also have
a good spatial resolution, but poor accuracy (e.g., a small
confidence region that is incorrectly located). The ideal case
is when a model achieves high accuracy within a small
area. We present the performance with curves describing
the tradeoff between accuracy and spatial resolution. The
accuracy is measured by estimating the proportion of the
gaze targets in the test set that are inside of the estimated
confidence region. Since the estimations are in the horizontal
and vertical angles, the spatial resolution is represented as a
fraction of a sphere (360°(θ)×180°(φ)). As we increase the
spatial resolution, we increase the accuracy as more target
gazes are included. In the curves, the most relevant parts
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(b) Discrete gaze markers

FIGURE 8. Comparison of the head pose only model using the upsampled
neural network (Fig. 7(a)) and the GPR model. While the models are
trained with discrete and continuous gaze data, we separately report the
performance of the models in the test set for both sets.

are small areas with high accuracy. We provide a zoomed
snippet of these regions in Figures 8 to 14 to compare the
results in more detail.

The continuous data and the discrete marker data pose
different sets of challenges in the estimation. The continuous
gaze target cover less range in terms of angles, because the
recordings are limited to the front of the vehicle where the
road camera can see the marker. In the vertical direction, the
range is further limited by the extent to which the researcher
can move the marker. The discrete markers have higher
range, as we have placed the target markers on the side
windows, mirrors and the gear of the car. However, the points
are grouped only around the markers, providing a more
sparse coverage of possible gaze directions. For this purpose,
we separately report our test results for the continuous and
the discrete gaze markers. The training, however, is done on
a combination of both datasets, with the exception of the
results in Section E.

A. Performance of the Proposed Approach
Before we present the results of our proposed gaze model, we
present the models implemented with only head pose or eye
appearance data. We compare these models with alternative
baselines.

We start our analysis with the performance of the head
pose only model. For this purpose, we compare the HP
upsample NN with the GPR model. Figures 8(a) and 8(b)
show the performance for the continuous gaze targets and the
discrete gaze markers. In the continuous gaze targets, we
observe that the HP upsample NN shows an improvement
in performance compared to the GPR model. Looking at
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(a) Continuous gaze data
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(b) Discrete gaze data

FIGURE 9. Comparison of the eye only model using the upsampled neural
network (Fig. 7(b)) and the regression models using eye appearance.
While the models are trained with discrete and continuous gaze data, we
separately report the performance of the models in the test set for both
sets.

the discrete gaze markers, while the performance of the
two models are very close, the GPR model has a slightly
better performance. The GPR model is a regression function
that learns a representation of the gaze distribution, while
the HP upsample NN is a classification function that learns
the target distribution purely based on data. Therefore, the
model learns a rich representation in the continuous space
where the gaze distribution is denser but with a limited range.
The HP upsample NN achieves a non-parametric map that
does not make assumptions about the distribution of gaze.
This architecture also helps us in obtaining a representation
that can be fused with the eye patch information to obtain
a single model. In contrast, the GPR model learns better
when the data is limited and the learning depends on the
extrapolation of the available data. The parametric nature of
the GPR model is suitable for this case.

We also analyze the model using only eye appearance
information. We compare the eye upsample NN with the
regression model with eye image input. Both models have
an identical encoder architecture. Figure 9 shows the result
of the evaluation. We observe a clear performance gain in
continuous gaze targets (Fig. 9(a)) when the area of CR is
under 2%. The regression model performs better for the test
data associated with the discrete gaze markers (Fig. 9(b)).
The eye upsample NN model shows poor performance for
discrete gaze data because of the spatial sparsity of the data
points, where the data is centered around few markers.

After evaluating the models trained with either head pose
or eye appearance, we consider our proposed approach that
combines both types of information (fusion upsample NN).

TABLE 1. Accuracy for all the models for a given confidence region (1%,

2% and 4% of the sphere surrounding the driver’s head).

Method
Continuous gaze data Discrete gaze data
1% 2% 4% 1% 2% 4%
[%] [%] [%] [%] [%] [%]

HP GPR 53.22 74.95 96.73 69.99 83.46 92.78
HP upsample NN 71.33 89.53 94.70 62.55 74.40 94.20
Eye regression 48.27 87.35 99.42 45.77 78.72 87.21
Eye upsample NN 73.18 89.61 95.60 28.30 46.95 73.78

Fusion upsample NN 78.79 86.49 92.53 78.96 86.74 93.28

Figure 10 shows the performance, which demonstrates the
clear advantages of combining head pose and eye appearance
information. We observe clear improvements for continuous
gaze data and discrete gaze data. The head pose can only
provide limited information about the gaze. The information
provided by the appearance of the eye is also needed, which
is clearly observed in the figure. Likewise, head position also
provides complementary information about the gaze. The
models can better interpret gaze information inferred from
the eye appearance by having the location and orientation of
the head. Hence, combining both sets of information helps
our proposed model provide a better estimation of the driver
visual attention.

We compare all five models in Table 1. We obtain the
accuracy of each model by fixing the size of the confidence
region. We use three sizes corresponding to 1%, 2% and 4%
of the sphere around the driver’s head. The table separately
reports the results for the continuous and discrete data.
For the discrete gaze data, the fusion model shows the
best performance for all the confidence regions, with the
exception of the 4% CR condition, where the HP upsample
NN performs marginally better. For the continuous gaze
data, our proposed approach shows high accuracy for small
CRs (1%). At higher CRs, some of the baseline models
show superior performance, particularly the regression model
based on eye patch. Overall, Table 1 shows that our proposed
approach offers the best tradeoff between accuracy and
spatial resolution for small CR, which is appealing for
practical applications.

B. Fusion Model Performance at Different Resolutions
This section discusses the performance of our model at
different resolutions. The output can be obtained at any
desired resolution, since an output layer is connected after
every upsampling stage. The resolution of the output at layer
1 is 3× 7. The resolution is doubled after each upsampling
step. The resolution at the final layer is 96 × 224. Figure
11 shows the performance achieved at different layers. The
results in the continuous gaze data show that the performance
gets consistently better as the resolution increases. The
performance saturates at higher resolutions. We observe a
reduced improvement when we compare the performances
at layer 5 and layer 6. We observe a similar pattern for the
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FIGURE 10. Comparison of the proposed gaze model (Fig. 4) that uses
head pose and eye appearance information and the upsampled neural
networks using either head pose (Fig. 7(a)) or eye appearance (Fig. 7(b)).
While the models are trained with discrete and continuous gaze data, we
separately report the performance of the models in the test set for both
sets.

results on the discrete gaze data. The performance saturates,
showing similar performances at layers 5 and 6. Since we
are looking at discrete points, the output at layer 5 is
discriminative enough to provide enough information for
gaze estimation. Increasing the resolution even more does
not give additional benefits.

C. Performance of Proposed Model Without Eye
Information
The fusion model takes both head pose information and
an image of the eyes. The eye patch detection might not
work in cases when the illumination is not ideal or the head
pose is extreme, which are common problems in naturalistic
driving conditions [59]. In these cases, our model takes a
blank image as input and only uses the head pose to provide
information about the visual attention. In this situation, we
expect the model to perform with a similar accuracy as
a model trained with only head pose information. Figure
12 compares the performance of the proposed model when
only head pose is available. For comparison, we include the
performance of the model trained with only head pose (Fig.
7(a)), and the proposed approach evaluated with both inputs
(head pose and eye appearance information). We observe that
the model shows similar performance when we black out
the eye input as the model trained with only head pose. For
the discrete gaze data, Figure 12(b) shows that the proposed
approach with missing eye information can achieve even
better performance than the model trained exclusively with
head pose information. Figure 12(a) shows that there is small
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(b) Discrete gaze data

FIGURE 11. Comparison of the performance of the proposed gaze model
(Fig. 4) at different resolutions. While the models are trained with discrete
and continuous gaze data, we separately report the performance of the
models in the test set for both sets.
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(b) Discrete gaze data

FIGURE 12. Comparison of the proposed gaze model (Fig. 4) when the
eye information is missing (i.e., missing a modality). While the models are
trained with discrete and continuous gaze data, we separately report the
performance of the models in the test set for both sets.

difference between both conditions for the continuous gaze
data.

D. Effect of Wearing Glasses on the Performance
Jha and Busso [59] discussed that the use of glasses is
another important challenge in naturalistic conditions. The
presence of glasses can affect the model, as our model
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(b) Discrete gaze data

FIGURE 13. Analysis of the performance of the proposed approach for
data collected from subjects wearing glasses and subjects without
wearing glasses. While the models are trained with discrete and
continuous gaze data, we separately report the performance of the
models in the test set for both sets.

depends on the appearance of the eyes. Five out the ten
subjects included in the test set wore eye glasses. This sec-
tion analyzes the differences in performance observed when
the subjects wore or did not wear glasses. Figure 13 shows
that the model works slightly better with subjects who did
not wear glasses. This difference is minimum because our
training data also contain a mix of subjects with and without
glasses. Therefore, our models learn the representations well.
Methods that compensate for challenges caused by glasses
[67] can potentially improve the performance of our model.

E. Training with Matched and Mismatched Datasets
Our model is trained with data collected using two different
data sets: the continuous gaze data and the discrete gaze data.
For all the previous results presented in this paper, the train-
ing set includes data collected from both sets. This section
evaluates the performance of the models when training only
with the continuous or discrete gaze data. Figure 14 shows
the performance of these different models. We observe that
the model trained using the discrete gaze data shows low
performance on the continuous gaze data on the test set.
Similarly, the model trained using the continuous gaze data
shows low performance on the discrete gaze data on the test
set. These results show that a model trained on a single type
of data tends to overfit on similar data. For example, the
model trained only on the discrete data tends to estimate
only gaze targets around the numbered markers. Similarly,
since the continuous data is limited to the frontal region of
the windshield, the model fails when the test samples contain
data outside the range of its distribution (e.g., looking at the
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FIGURE 14. Analysis of the performance of the proposed approach
trained with either the discrete or continuous gaze data. The performance
drops for mismatched train and test conditions, indicating the need for
using discrete and continuous gaze data to train the model.

side windows). The performance of the model trained with
both datasets comes very close to the model trained and
tested with matched datasets. This evaluation demonstrates
the need to train our model with both continuous and discrete
gaze data. This is not the case in many related studies, which
use broad gaze zones or limited target markers [26], [52].

F. Projecting Probabilistic Maps onto the Road
As an example, we illustrate the benefit of our proposed
model by projecting the estimated distribution by our model
onto the road to correlate the visual attention with targets
on the scene. The model estimates the visual attention
in terms of angles with respect to the reference of the
driver’s head frame. Since we aim to project this region onto
the camera view, we make some approximations. First we
realize multiple planes at different distances from the camera
ranging from 2 meters to 20 meters in one meter intervals.
Figures 15(a), 15(b) and 15(c) show examples for projections
at 2, 10, and 20 meters. For each of these planes, we calculate
the angle subtended at the head for each pixel, which helps us
in calculating the gaze given by the model. The distributions
obtained for each map at different distances are added and
normalized to obtain the final map. Figure 15(d) shows the
final probability distribution map after combining the results
at different planes.

We obtain continuous estimations for data when the sub-
ject looks at landmarks on the road, as described in Section
3, for all the test subjects. The output of the model is a
2D probability distribution. Starting from the mean value,
we can define a confidence region by increasing the area
until reaching a target probability. For example, we can
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(a) Projection 2 meter (b) Projection 10 meter

(c) Projection 20 meter (d) Final Projection

(e) 50%,75% and 95% probability re-
gions

FIGURE 15. Illustration of the estimated confidence regions projected on
the road. The figure shows the projections at 2, 10 and 20 meters, which
are combined to create the final projection. The figure also shows
example of 50%, 75% and 95% probability regions estimated from the
estimated map. The figure is best viewed in color.

TABLE 2. Accuracy of the model estimation when using 50%, 75% and 95%

confidence regions.

50% 75% 95%
[%] [%] [%]

Total Accuracy 80.51 92.54 98.16
Horizontal Accuracy 94.49 98.16 100
Vertical Accuracy 85.29 93.38 98.16

define a 50% probability map, where it is equally likely
that the gaze is inside or outside this region. Using this
approach, we define 50%, 75% and 95% gaze regions for this
analysis. Figure 15(e) shows an example of these regions.
The 95% gaze region is naturally larger than the 50% gaze
region. The estimation region is evaluated against the ground
truth landmark that the subject was asked to look at during
the recordings. We consider success if there is an overlap
between the ground truth target and the visual attention map.
We evaluate a total of 272 examples from the 10 subjects in
the test set.

Table 2 shows the accuracy at different regions. We
observe that the model could correctly estimate the gaze
within the 50% region for most examples (80%). Increasing
the area to 95% region gave us an accuracy of 98.16%,
Only a few outliers were missed in this region. We also
explore if the error is caused by the horizontal or vertical
gaze estimations. We separately evaluate the performance for

horizontal and vertical directions. We observe that the model
failed more often to estimate the vertical gaze direction. Our
model correctly estimates the horizontal visual attention with
an accuracy of 94.49%, using the 50% gaze region. The
accuracy increases to 100% when we use the 95% region
for the horizontal gaze direction. Figure 16 shows some
examples of correct estimation maps projected onto the road.
We highlight with a red circle the target gaze location. Figure
17 shows examples where our algorithm fails. Some of the
reasons for failure are highly reflective glasses, anomalous
gaze patterns, and some distortion caused by our projection
method.

VII. Conclusions
This paper proposed a novel architecture to estimate the
driver visual attention using probabilistic maps from head
pose and eye appearance information. The approach relies
on the use of upsampling based blocks implemented with
CNNs. We obtained a driver independent representation
of the gaze that can be directly obtained from the eye
appearance and the head pose of the driver without any
calibration. The maps are non-parametric and, hence, purely
learned from the data. The approach provides an efficient
way to estimate visual attention, and helps in designing an
efficient fusion mechanism. The variance of the maps is non-
parametric and depends on the gaze direction that is learned
directly from the data. Therefore, the size of the confidence
regions will vary according to the underlying uncertainty.
Our evaluation results showed that models implemented with
either head pose or eye appearance information outperformed
their respective regression baselines in estimating continuous
gaze targets. The fusion model was found better than the
models based on single modalities in both continuous and
discrete gaze data, showing the complementary information
provided by eye images and head pose values. One crucial
advantage of the proposed model is that it can provide
a coarse estimation of the visual attention when only the
head pose is available, adding finer details when the eye
appearance information is added. This feature is important
when accurate eye patches cannot be reliably obtained due
to challenging naturalistic driving conditions. Therefore, this
architecture can have many potential applications in active
safety systems.

Every vision-based solution for in-vehicle applications
needs to be robust against car movements. Vibrations can
lead to imaging problems that may interfere with the instant
appearance of the face for a given frame (e.g., blurred
images, and head movements that are not associated with
visual attention). While our approach is sensitive to these
issues, we expect that the results reported in this study are
representative given that the MDM corpus was collected in a
real car capturing common driving conditions. We predict the
gaze direction relative to the driver’s head location, instead of
predicting the absolute gaze location. Therefore, our model is
reasonably robust to upper body movement. The robustness
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(a) (b) (c)

(d) (e) (f)
FIGURE 16. Examples of road projection of the visual attention estimation where the ground truth overlaps with the model estimation. The red circles
indicate the target gaze direction. The figure is best viewed in color.

(a)

(b)

(c)

FIGURE 17. Examples of road projection of the visual attention estimation
where the ground truth does not overlap with the model estimation. The
red circles indicate the target gaze direction. The figure is best viewed in
color.

shown against glasses provides confidence that our proposed
model can deal with some of these challenges.

In this paper, we defined visual attention as a heat
map representing the distribution of the driver’s gaze. This
definition does not capture the broad concept of visual
attention (e.g., driving context, saccade movements, time
spent looking at a place or object). First, the approach
focuses mostly on eye fixations. Saccadic motions are more
challenging to track because of the inherent randomness
associated with them. Additionally, since the attention is not
focused on a specific place, it is challenging to describe the
ground truth gaze. Second, the definition does not consider
cases of inattention due to cognitive distractions (e.g., seeing
but not noticing the driving environment). This contextual
information can be added to the attention map provided by

the proposed model to obtain a more comprehensive safety
system.

There are areas of potential improvement in the algorithm.
We observed sub-optimal results for a few subjects. Factors
that affect the performance include error in calibration be-
tween cameras, appearance variations with subjects wearing
highly reflective glasses, and difference in gaze behaviors
across subjects. Various methods can be used to improve
our algorithm. For example, we can implement adaptation
methods to personalize the system, addressing the variability
problem across subjects. Some semi-supervised methods can
also be used that leverage natural data where the ground
truth gaze is not available. Another limitation of our work is
that it does not consider temporal information. The discrete
gaze marker section of the MDM corpus only considers
gaze information when the drivers were looking at the
target markers and objects. Since the data only has gaze
information for those moments, we do not have continuous
gaze information describing the trajectories that led one
driver to focus on a particular position. Currently, this option
can only be done with the continuous gaze data since the
MDM corpus provides gaze labels for only some frames in
the discrete gaze data. Lastly, we rely on the Fi-Cap data to
obtain the head pose for our method. This limitation can be
easily addressed by using automatic head pose estimation
algorithms. While current RGB based algorithms do not
reliably provide the head pose in all 6 degrees of freedom,
the MDM database also has point cloud images collected
with a time of flight (TOF) camera. This modality was used
by Hu et al. [62] to estimate the orientation of the driver’s
head. This method can be easily enhanced to also estimate
the head position of the driver, providing the necessary
information our model requires.
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