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Abstract—Recent advancement in deep learning has led to
an increased interest in image processing and computer vision
applications for driver monitoring systems. One of the appli-
cations where these techniques can be useful is in segmenting
and tracking seatbelts. A seatbelt is an important safety feature
in the vehicle that if properly used can save lives. Efficient
segmentation of the seatbelts in an image provides important
information about the correct use of seatbelts. The challenge in
developing deep learning algorithms for seatbelt detection and
segmentation is the manual annotations required for this task,
which is cumbersome. This paper explores a novel formulation
to efficiently train a seatbelt model with minimal supervision. We
exploit the textureless and shape characteristics of the seatbelts
to programmatically synthesize images. Our proposed method
synthetically creates images that resemble seatbelt patterns. After
training a model exclusively with synthetic images, we iteratively
fine-tune it using naturalistic images extracted from online video-
sharing websites. The labels for these images are pseudo-labels
assigned by the model to confident predictions. Fine-tuning helps
adapt the model to better work on real naturalistic images,
improving the performance of the system. We obtain an F1-
score of 0.55 in segmenting the seatbelt with this approach. We
also experiment with fine-tuning the model with a small number
of naturalistic images with annotated labels. After pretraining
on synthetic samples and pseudo-labeled naturalistic images, we
achieve an F1-score of 0.67 using only 200 annotated images.

Index Terms—Seatbelt detection, training with synthetic data,
in-vehicle safety system.

I. INTRODUCTION

Advances in computer vision have led to better vision-
based solutions for monitoring driver behaviors. Recent ad-
vancements have explored various areas relevant for in-vehicle
systems including detecting visual attention [1]–[5], tracking
upper body activity [6], [7], inferring visual and cognitive
distractions [8], [9] and recognizing emotions [10]. These
solutions help a smart system to understand the state of the
driver. The use of seatbelts is one of the important aspects that
are relevant for driver safety inside the car [11], [12]. While
there are mechanisms in modern cars to check if a seatbelt is
latched, it is easy to trick a system by just connecting the belt
behind the driver. Additionally, these systems are not able to
detect if the driver is correctly wearing the seatbelt, which is
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also important [13]. A promising alternative to determine if a
driver or a passenger is wearing a seatbelt is using computer
vision solutions. Studies have attempted to detect seatbelts
with image-based solutions from either inside or outside the
vehicle [14]–[17]. Some of these methods were intended as a
solution for traffic enforcement systems.

Our objective is to segment the seatbelt pixels from the
image that captures the driver’s upper body. The information
provided by the proposed model can be valuable to assess
not only whether the driver is using the seatbelt, but also
whether she/he is properly using the seatbelt. Developing a
robust seatbelt detector poses the following challenges: (a)
camera pose invariance, (b) occlusion, (c) image modality
(color or infrared), and (d) environmental conditions. There-
fore, any data used for training a machine learning model,
such as convolutional neural networks (CNNs), has to capture
these variations. The straightforward approach to address this
problem involves collecting and annotating large amounts of
images. The annotation involves assigning to each image a
binary mask that identifies the placement of the seatbelt (Fig.
1). This approach is expensive and time-demanding. It often
overfits the training data. It is also susceptible to environmental
variations that may not be well represented in the data such as
color variations, twists, or unexpected positions of the seatbelt.

We propose a seatbelt segmentation method relying on
minimal supervision to circumvent challenges associated with
seatbelt detection and segmentation by following a synthesis
approach. We propose to create synthetic images resembling
seatbelt patterns. We exploit the textureless and shape char-
acteristics of the seatbelts to programmatically synthesize
images. We create these stripes using cubic splines with varied
thicknesses, adding random colors and random textures. We
also add random backgrounds to the images to simulate varied
clothing textures that a driver/passenger may be wearing. This
approach does not require manual annotation and can be scaled
to create a large training set. Using the location of the seatbelts
in the image, we can construct the ground truth for these
synthetic images. Instead of using binary masks, we propose to
use a Gaussian mask as heatmaps, so seatbelts do not have hard
boundaries, resembling patterns observed in natural conditions.



(a) Image Example

(b) Mask

Fig. 1: Example of a seatbelt annotation. A binary mask is
needed to identify the pixels included in the seatbelt.

Using the generated images, we train a segmentation model
based on CNNs, using the U-net model [18] with a single
channel. Since the patterns in the training data have a similar
appearance to seatbelts, the convolution filters are expected to
learn weights that activate when a similar pattern is observed.
Hence, we expect to get high activation in the seatbelt regions
when the model processes real images showing the driver’s
upper body. Using only the synthetic data, we obtain an F1-
score of 0.50 in predicting seatbelts. After training a base
model exclusively with synthetic data, we add realistic images
extracted from video-sharing websites to fine-tune our model
with pseudo-labels using an iterative approach. First, the
current model is used to predict seatbelts in real images. Then,
the images with confident seatbelt predictions with areas above
a given threshold are included in the training set to fine-tune
this model. This process is repeated multiple times, updating
the model in each iteration. The model achieves an F1-score
of 0.55 with just four iterations. This result is promising, since
this unsupervised approach does not require manual annotation
of images. Finally, we demonstrate that the proposed approach
trained with synthetic images can also be used as a pre-trained
model when limited labeled images are available to train the
model. With only 200 images, we are able to significantly
improve the model with an F1-score of 0.67.

II. RELATED WORK

A. Seatbelt Detection and Segmentation

Studies have attempted to detect seatbelts from images taken
from outside the car using road cameras. This is particularly
important for automatic seatbelt enforcement strategies. Zhou
et al. [14] extracted important edge features from the salient
gradient map of an image containing the driver’s upper body
from surveillance images. These features were then used to
train a neural network based on the radial basis function
(RBF), which detected if the seatbelts were present in the
image. Guo et al. [15] extracted the direction information from
the hue, saturation, value (HSV) color space. They performed
edge detection followed by the Hough line detection to identify

different lines in an image. They used the lengths and the
number of lines in the image to define if an image contained
a seatbelt. Zhou et al. [16] trained a model based on AlexNet
[19] with batch normalization [20]. This model had a binary
output that predicted if a subject was wearing a seatbelt. Elihos
et al. [17] evaluated different algorithms for seatbelt detection
using traffic images taken with a camera outside the car. They
reported that the best model was achieved by a system using
the single shot multi box detector (SSD) [21].

Studies have also addressed the detection and segmentation
of seatbelts using images taken inside the car. Chun et al. [22]
train a feature pyramid network (FPN) with different heads to
estimate the body pose of the driver or passenger. The model
also included the task of seatbelt segmentation. They trained
the seatbelt using a manually annotated dataset recorded from
100 different subjects in 50 different sessions.

B. Use of Synthetic Training Data
Some approaches have also explored the use of synthetic

data to train models. For example, Ward et al. [23] generated
images of ships using a Unity game engine to train a model
for ship classification from top view images. They adapted
the model to real-world data by fine-tuning the model using
a small real-world data set. Similarly, Jaderberg et al. [24]
used synthetic data for text recognition in natural scenes (e.g.,
billboards). To the best knowledge of the authors, this paper
is the first study that uses an approach based on synthetic data
generation for seatbelt segmentation.

C. Pseudo-Labels and Semi-Supervised Learning
Semi-supervised learning (SSL) is a learning approach that

is useful for problems with a low amount of labeled data.
In SSL, the aim is to formulate a training pipeline that
requires only a small amount of labeled data. This data-
efficient approach is appealing for the problem of image
segmentation, since pixel-wise annotations are expensive to
annotate. Pseudo-labeling is an iterative SSL approach that
involves using model predictions in one iteration as labels in
the next iteration [25]. Some implementations, such as the
one described by Zou et al. [26], use a consistency loss and
image augmentation strategy to improve performance in low-
data scenarios.

III. PROPOSED APPROACH

Our proposed approach generates synthetic data to train a
seatbelt segmentation model. Instead of manually annotating a
large dataset to train our models, we rely on synthetic data to
learn the patterns associated with the seatbelt. Our approach
does not require labeled data, so our solution is an appealing
approach to address this problem. The available information
from these patterns is used to train a CNN-based semantic
segmentation model. Furthermore, the models are fine-tuned
with real unlabeled data using pseudo-labels generated from
the learned model. This section explains the generation process
to create synthetic data (Sec. III-A), the proposed DNN model
(Sec. III-B), and the fine-tuning approach using pseudo-labels
(Sec. III-C).
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Fig. 2: Synthetic strip-like patterns resembling seatbelts cre-
ated to train our models. The figure also shows the Gaussian
masks associated with the synthetic images.

A. Synthetic Data Generation
Our approach creates synthetic data resembling seatbelt

patterns. We exploit the textureless and shape characteristics
of a seatbelt to programmatically synthesize images. Our
approach relies on third-order polynomial approximation to
generate stripes that resemble seatbelts. A curved line is drawn
by performing a spline interpolation between three arbitrary
points. Two points are selected in the two opposite corners
and the third point is chosen in the lower half of the frame.
Using this line as a reference a strip of uniform thickness is
drawn. The strip goes from the top right corner to the bottom
left corner, or from the top left corner to the bottom right
corner. The strips are parametrized with thickness, curvature,
orientation angle, and position on the image. Twists are also
added in a few examples. This approach is flexible where we
can easily change the thickness of the stripes. We change the il-
lumination to simulate different conditions. The background of
the seatbelts can significantly vary depending on the clothing
of the driver or passengers in the car. Therefore, we incorporate
this variability by adding the generated stripes in images with
random backgrounds. This approach allows our deep neural
network to focus on seatbelt patterns, regardless of the clothes
of the driver or passengers. By incorporating randomness in
the background, we discourage the model from learning any
particular background pattern for a seatbelt.

An important step in our model is to simulate conditions
often observed with seatbelts, including different textures and
occlusions. The images generated with our approach lack
(a) noise associated with the image formation process in an
image sensor, and (b) variation in different environmental
illumination conditions. Therefore, we add noise drawn from
different models to simulate camera noise and environmental
changes. Some examples of such camera noises are image
sharpening, camera gain noise, and image blur. Similarly,
examples of environmental changes are specularity and occlu-
sion. We can recreate these challenges in the created seatbelts
by adding random occlusions, removing portions of the strips,
and changing the location of the specular reflection.

Fig. 3: Proposed U-Net model to segment seatbelts using
CNNs. The input is an image with the seatbelts and the output
is the predicted masks.

The proposed approach of generating synthesized data does
not require manual annotation. Using the location of the
belt in the image, we can construct the ground truth for
these synthetic images. Instead of using binary masks, we
use a Gaussian mask as heatmaps, so seatbelts do not have
hard boundaries, resembling challenges observed in natural
conditions. Some examples of the synthetic seatbelts with
the Gaussian masks are shown in Figure 2. An advantage
of this approach is that it can be easily scaled to create a
large training set. Using this method, we create a dataset with
500,000 grayscale images with varying seatbelt patterns on
random background images taken from the places365 dataset
[27]. The images are grayscale to reduce both the size of the
dataset and the computational intensity required for training
the model. The size of each image is 256× 256.

B. Seatbelt Segmentation Model

The dataset with the synthetic images is used to train the
segmentation models to locate these stripe-like patterns in the
image. Using the generated images, we train a segmentation
model based on CNNs. We use a U-Net model [18] with a
single channel input and a single channel output. Figure 3
shows the proposed model. This model consists of a sequence
of convolution with maxpooling followed by transposed con-
volution with half-stride that acts as upsampling. Each convo-
lution block consists of two 3×3 convolutions. We use lateral
connections to transfer information from the downsampling
layers to the corresponding upsampling layers.

The input of the model is the synthetically created seatbelt
patterns and the output is a Gaussian mask around the seatbelt
region. The model is optimized with the mean absolute error
(MAE) loss between the predicted mask and the ground
truth. Since the patterns in the training data have a similar
appearance to seatbelts, the convolution filters are expected to
learn weights that activate when a similar pattern is observed.
Hence, we expect to get high activation in the seatbelt regions
when the model processes real images. We train the base
model for 50 epochs with the synthetic data. This model is
then fine-tuned with unlabeled data from naturalistic driving
images using pseudo-labels (Sec. III-C). We select the model
created on the last epoch.



C. Fine-Tuning with Pseudo-Labels

We fine-tune our final models after training the models
exclusively with synthetic images. Our proposed approach is
inspired by deep-learning frameworks trained with pseudo-
labels [25]. This approach helps the model to learn information
pertaining to the driving environment. Iteration zero starts with
the model trained with the synthetic images. Then, we use
real data with images inside the car. Section IV-A presents the
database used for this purpose. We use a total of 5,828 images
for fine-tuning the models with pseudo-labels in each iteration.
While we have labels for these images, we do not use them
for our unsupervised approach. Instead, we select the images
with high-confidence predictions and use these predictions as
labels for the next iteration of training. We set a threshold
to select images only if the seatbelt prediction has a positive
area of at least 1,000 pixels, avoiding training our model with
unreliable data with small activated regions. We rely on data
augmentation by creating multiple variations of these images
using the imgaug tool [28]. This approach ensures consistency
in the model performance against variations in the image. This
approach of training the models with real data using pseudo-
labels can be applied multiple times. We follow four iterations
of fine-tuning. After each iteration, new data with pseudo-
labels is selected and added to the database to train the model.

IV. EXPERIMENTAL SETTING

A. Database

We require annotations to evaluate the performance of our
model. We also need real unlabeled images to implement the
pseudo-label approach described in Section III-C. Therefore,
we collect data from various video-sharing websites, where a
camera is placed inside the vehicle cabin. These videos are
obtained from shows and various driving vlogs. The videos
are first automatically clustered into different views. Then, we
select images captured from views where the driver’s upper
body and seatbelt are visible. This is a challenging data set,
given the variability across the quality and placement of the
cameras. Figure 4 illustrates the process implemented in each
image. For each of these images, we run OpenPose [29] to
find the shoulder location of each subject. Then, the images
are rotated and cropped around each subject. These square
images are rotated, resized, and zero-padded to a resolution
of 256× 256.

We manually annotate a subset of this data set with binary
masks for seatbelts similar to the masks shown in Figure 1(b).
We select a total of 5,164 images taken from multiple videos at
various angles, which are annotated with masks for seatbelts.
Since each image may have more than one subject, the total
number of seatbelt samples is greater than the original number
of images. The total number of annotated seatbelts is 8,129.
These seatbelt images are split into two sets. The first set
has 5,828 segmented seatbelts, which are used to train our
unsupervised approach. In Section V, we also demonstrate that
our approach can serve as a pre-trained model for training
with limited data. We also use this set for this evaluation. The

Fig. 4: Pipeline to process real driving images. OpenPose is
used to extract shoulder location. The shoulder is the reference
to rotate and crop images pertaining to each person.

second set includes the remaining 2,301 segmented seatbelts,
which are reserved to evaluate the performance of our model.

V. EVALUATION RESULTS

We are interested in the correct segmentation of seatbelts,
not just a binary classifier that determines whether a driver or
passenger is using a seatbelt. Our performance metric reflects
this goal. The implementation of our U-Net model creates a
heatmap for the detected seatbelt. Our first step is to transform
this heatmap into a binary mask by thresholding the value.
This step is implemented with a score threshold set to 0.2.
A prediction is counted as a true positive (TP) if the overlap
between the true map and the predicted map is greater than
20% of the area of the true seatbelt. Otherwise, it is considered
as a false negative (FN). Similarly, a false positive (FP) is
counted if a false prediction of a size similar to the seatbelt
is present (80% in area compared to the true seatbelt). Using
these metrics, we estimate the precision rate, recall rate, and
the F1-score of the predictions.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-score = 2 Precision·Recall
Precision+Recall =

TP
TP+ 1

2 (FP+FN)
(3)

Table I shows the precision, recall, and the F1-score of the
predictions at different steps. Iteration 0 shows the result of
the base model trained only with the synthetic data. Using
only synthetic data, the model is able to achieve a F1-score
of 0.51. The results for iterations 1, 2, and 3 correspond to
the results for the model trained by adding naturalistic driving
data with pseudo-labels. We observe a consistent improvement



TABLE I: Performance of the seatbelt segmentation model at
different iterations. The iteration 0 corresponds to the base
model trained with synthetic images. In iterations 1, 2 and 3,
naturalistic driving images are added with pseudo-labels.

Ite. Precision Recall F1-score IoU (%)
0 0.58 0.43 0.50 19.8
1 0.58 0.48 0.53 21.7
2 0.60 0.50 0.54 22.6
3 0.60 0.51 0.55 22.8
4 0.61 0.51 0.55 23.0

in performance as we introduce naturalistic data with pseudo-
labels. As we keep adding more data during the training of
the model, we observe steady improvement in the model. We
observe false positives caused by objects present in the image
with similar shapes to seatbelts, such as arms and steering
wheel (Fig. 6). The pseudo-labels may include some of these
errors, affecting the model’s effectiveness. Despite these false
positives, the F1-score increases with each iteration.

Our model can also be used as a pre-trained model to
be fine-tuned with limited labeled data. This evaluation can
also determine the performance gain achieved by adding a
small amount of annotated naturalistic samples to a pre-trained
model. The evaluation considers two pre-trained models: the
model exclusively trained with synthetic data (Model-Iteration
0), and the model from the fourth iteration trained with
real images using pseudo-labels (Model-Iteration-4). Then, we
randomly select different amounts of training data to fine-tune
each base model. We perform this fine-tuning with 25, 50,
100, 150, and 200 training samples, using the same samples
for both base models. We also fine-tune using the entire
annotated training set (5,828). Table II shows the results of
these experiments. In both cases, we notice an increase in
model performance as the amount of natural data introduced
in the training process increases. Using the Model-Iteration-
4 approach consistently outperforms the model starting with
the Model-Iteration 0, especially in the low-data regime.
Pre-training with real images using pseudo-labels increases
the performance of the segmentation model. In both cases,
the F1-score increases by roughly 4% by adding just 25
annotated naturalistic samples, and by over 10% by adding
200 annotated samples. We train a model from scratch using
a set of 200 labeled images and observe no valid predictions
under the same training conditions. In contrast, our proposed
approach can achieve high segmentation accuracy, bridging
the performance gap with a model fine-tuned with the entire
5,828 images.

Figure 5 shows some examples of images where the seat-
belt is segmented with reasonable accuracy. We observe the
seatbelt is predicted with high confidence. There is minimum
activation in areas where the seatbelt is not present. We
observe the model works well with different views (e.g., Figs.
5(c) and 5(f)). It also works with passengers in the rear seat
when the seatbelt is visible (Fig. 5(d)). Figure 6 shows some
examples where our model fails. Figures 6(a), 6(b) and 6(c)
show examples of false negatives. Here, the images have
seatbelts that were not predicted by the model. We observe

TABLE II: Performance of the seatbelt segmentation approach
after fine-tuning the model on annotated natural images. The
pre-trained models include the iteration 0 (synthetic images),
and iteration 4 (synthetic + real images with pseudo labels).
LI represents labeled images.

Model-Iteration 0 Model-Iteration 4
LI Prec. Rec. F1 IoU (%) Prec. Rec. F1 IoU (%)

0 0.58 0.43 0.50 19.8 0.61 0.51 0.55 23.0
25 0.63 0.47 0.54 20.3 0.64 0.55 0.59 25.7
50 0.67 0.51 0.58 23.3 0.68 0.57 0.62 27.9
100 0.70 0.57 0.62 27.3 0.71 0.58 0.64 29.9
150 0.71 0.58 0.64 29.4 0.71 0.60 0.65 31.4
200 0.68 0.58 0.62 29.9 0.75 0.60 0.67 32.1
5,828 0.79 0.71 0.75 41.7 0.79 0.73 0.76 42.7

(a) (b) (c)

(d) (e) (f)

Fig. 5: Examples of successful prediction of seatbelts using
our proposed approach.

that the model fails in these cases because of strong occlusions
or reflections in the image. The contrast difference between
the background and the seatbelt also plays a role. It is a more
challenging problem when the color of the clothes of the driver
or passengers is similar to the color of the seatbelt. Figures
6(d), 6(e) and 6(f) show images with false positive predictions.
In these examples, the model incorrectly predicts a seatbelt
where there is none. False positives appear in places where
similar stripe-like patterns are present, such as the person’s
arm (Fig. 6(d)) or steering wheel (Fig. 6(f)).

VI. CONCLUSIONS

This paper presented a method to predict the seatbelt of a
driver or passenger from an image that shows the upper body.
This model can be used to predict if the driver is wearing the
seatbelt, as well as to predict if the seatbelt is properly worn.
We proposed a novel method to segment seatbelts that require
minimal manual annotations. The model generates synthetic
data resembling seatbelt patterns, which is used to train the
base model. Naturalistic data is added in the training set with
pseudo-labels to fine-tune the model, adapting the model to
more efficiently work on real driving data. This pipeline of
synthetic pre-training and iterative training with pseudo-labels
requires no manual annotations or oversight. The addition of
small amounts of annotated data for further fine-tuning the
model increases the performance. The best performance is
reached with a combination of synthetic pre-training, fine-



(a) (b) (c)

(d) (e) (f)

Fig. 6: Examples of incorrect seatbelt prediction. Figures (a)-
(c) are false negatives, and Figures (d)-(f) are false positives.

tuning with pseudo-labels, and further training with labeled
images. Adding even small amounts of labeled images (200
or less) increases the F1-score by up to 12%.

In the future, we will explore methods to merge an upper-
body joint model and a seatbelt detection algorithm using
multi-task learning approaches. Completing both tasks with
a single network will provide computational flexibility to
our system, making our solutions more appealing for in-
vehicle applications. We observe some false predictions in
the image due to similar patterns from other objects (e.g.,
the steering wheel). We can remove some false detections by
adding contextual information about seat placement, ignoring
predictions located in areas where seatbelts are not expected.
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