

D THE UNIVERSITY OF TEXAS AT DALLAS Anchorage, Alaska, USA // June 4 – 7, 2023

Motivation

Background:

- Seatbelt segmentation can help enforce correct sea usage
- Computer vision approaches require annotated trai data
- Segmentation annotations are expensive
- How can we train an accurate model with little to supervision?

Our Approach:

- Generate synthetic seatbelt images for training
- Employ semi-supervised learning techniques to im performance
- Use a small amount of annotated real images for te

Iterative Pseudo-Labeling Record performance after N iterations Iteration 0 uses only synthetic data Iterations Precision Recall F1 loU (%) 0.58 0.43 0.50 19.8 0.53 0.58 0.48 21.7 22.6 0.60 0.50 0.54 2 Labeled Images 22.8 0.51 0.55 0.60 0.61 0.51 0.55 23.0 25 Performance increases steadily, 50 especially in the recall rate 100 150 Four iterations are enough 200 These results require no annotated 5,828 (all) naturalistic samples

Seatbelt Segmentation Using Synthetic Images

Sumit Jha, Isaac Brooks, Soumitry J. Ray, Rajesh Narasimha, Naofal Al-Dhahir, Carlos Busso

	Synthetic Seatbel				
	 Observation: Most seatbelt shapes follow 				
atbelt	a similar pattern				
	Data Generation				
ining	Interpolate spline between 3 points				
	 Two corners, one arbitrary point 				
no	 Parameterize thickness, angle, and 				
	curvature				
	 Random background images (Places365 				
	 Introduces structured variations in the background 				
	Apply noise, and occlusions to simulate				
prove	real-world conditions				
	 Gaussian blur on the mask to soften 				
esting	prediction boundaries				

Results

Fine-Tuning with Real Data We fine-tune with a small set of annotated real data Compare the performance of Model-Iteration 0 and 4 With 200 labeled samples, IoU increases about 10% Performance converges with large amount of annotated data

Model-Iteration 0				Model-Iteration 4			
recision	Recall	F1	IoU (%)	Precision	Recall	F1	IoU (%)
0.58	0.43	0.50	19.8	0.61	0.51	0.55	23.0
0.63	0.47	0.54	20.3	0.64	0.55	0.59	25.7
0.67	0.51	0.58	23.3	0.68	0.57	0.62	27.9
0.70	0.57	0.62	27.3	0.71	0.58	0.64	29.9
0.71	0.58	0.64	29.4	0.71	0.60	0.65	31.4
0.68	0.58	0.62	29.9	0.75	0.60	0.67	32.1
0.79	0.71	0.75	41.7	0.79	0.73	0.76	42.7

Example Predictions

Multimodal Signal Processing Lab (MSP)

Erik Jonsson School of Engineering & Computer Science University of Texas at Dallas, Richardson, Texas - 75080, USA

Images

Correct predictions

Incorrect predictions

False negative. The seatbelt is not detected despite the high contrast with the background

False positive. The subject's arm is incorrectly identified as a seatbelt

- Step 1: training on only synthetic data

Conclusions

Model

Training

- training images
- Generate arbitrarily many seatbelt training samples with added augmentations for model robustness Using pseudo-labeling, IoU reaches 23.0% with an F1 score of 0.55 without manual annotations Adding even small amounts of annotated data (200 images) improves F1 by up to 12% and IoU by 9-10% Combine pose detection with seatbelt segmentation
- **Future Work**

- Leverage the shared context between the two problems

Pseudo-Labeling

Step 2: Run predictions on unlabeled naturalistic data Step 3: Iteratively update the model using pseudo-labels Update and replace If high confidence prediction

edge

Updated

Model

Novel seatbelt segmentation training strategy using synthetic

This work was supported by NSF under grant IIP-1950249