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Estimation of Driver’s Gaze Region From Head
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Confidence Regions
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Abstract—Visual attention is one of the most important aspects5
related to driver distraction. Estimating the driver’s visual atten-6
tion can help a vehicle understand the awareness state of the driver,7
providing important contextual information. While estimating the8
exact gaze direction is difficult in the car environment, a coarse9
estimation of the visual attention can be obtained by tracking the10
head pose. Since the relation between head pose and gaze direction11
is not one-to-one, this paper proposes a formulation based on12
probabilistic models to create salient regions describing the driver’s13
visual attention. The area of the estimated region is small when14
the model has high confidence, which is directly learned from the15
data. We use Gaussian process regression (GPR) to implement the16
framework, comparing the performance with different regression17
formulations such as linear regression and neural network based18
methods. We evaluate these frameworks by studying the tradeoff19
between spatial resolution and accuracy of the probability map20
using naturalistic recordings collected with the UTDrive platform.21
We observe that the GPR method produces the best result creating22
accurate estimations with localized salient regions. For example,23
the 95% confidence region is defined by an area covering 3.77%24
region of a sphere surrounding the driver.25

Index Terms—In-vehicle safety, advanced driver assistance26
system, driver visual attention, gaze detection.27

I. INTRODUCTION28

ROAD safety is a major concern in today’s world. The main29

cause of road accidents is the negligence of distracted30

drivers [1]. Therefore, monitoring the driver’s actions can be31

useful for estimating their behaviors, creating warnings to avoid32

impending mistakes due to lack of awareness. Smart vehi-33

cles today are equipped with multiple sensors, which provide34

relevant real-time information inside and outside the vehicle.35

The challenge is incorporating heterogeneous information to36
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provide high-level knowledge to understand the driver, the 37

vehicle, and the road. Monitoring the driver’s behaviors can 38

also serve as a tool to design advanced user interfaces for 39

infotainment and navigation systems where the drivers naturally 40

interact with the car, without using manual resources [2] (e.g., 41

interpreting commands such as “what is the address of this 42

building?,” while the driver briefly glances towards the target 43

location). With semi-autonomous cars, monitoring the driver 44

behavior can also be helpful in negotiating hand-over control 45

from the vehicle to the driver, or vice-versa. 46

Visual attention is a major factor when modeling the driver’s 47

intentions. The majority of the tasks involved while driving 48

require visual cues. The direction of the driver’s gaze strongly 49

depends on the primary driving task and the road condition. 50

Implementing a robust gaze detection system for cars can be 51

helpful in signaling the cognitive state [3], [4], situational 52

awareness [5]–[7], and attention level [8], [9] of the driver. 53

These systems can also be helpful in enhancing in-car dialog 54

systems [2]. 55

In human-computer interaction (HCI), the gaze of a subject is 56

estimated by locating the pupil using various appearance based 57

and feature based techniques [10]–[12]. However, these tech- 58

niques are not practical in a vehicle environment with challeng- 59

ing situations such as varying lighting conditions, high degree of 60

head rotations, and possible occlusions [13]. Moreover, in the de- 61

tection of the driver’s attention is often more important to achieve 62

robustness across conditions rather than high performance under 63

restricted conditions. A coarse estimation of the driver’s visual 64

attention is usually enough for many applications. Following 65

this strategy, studies have proposed the use of head pose to 66

infer the driver’s gaze [14]–[17]. Head pose has a strong cor- 67

relation with gaze, but the relationship is not deterministic [18]. 68

Taking the eyes-off-the-road during longer periods significantly 69

increases chances of accidents. Therefore, drivers tend to have 70

short glances, which involve head and eye movements. This 71

relationship changes according to the driver, primary driving 72

task, secondary driving task, and the traffic condition. Therefore, 73

the head orientation cannot uniquely determine the exact gaze 74

direction. 75

Instead of aiming to detect the precise gaze direction, this 76

paper proposes to estimate a probabilistic visual map describing 77

the region of visual attention where the driver is most likely to 78

direct her/his gaze. Building upon our previous work [19], [20], 79

we propose to create this probabilistic visual map using a two 80
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dimensional Gaussian distribution that is directly learned from81

data. The formulation relies on Gaussian process regression82

(GPR) to estimate the distribution of the gaze given a certain83

position and orientation of the driver’s head. The proposed84

model provides not only the probabilistic visual map, but also85

confidence regions, which can be extremely useful for HCI appli-86

cations for infotainment and navigation systems, and advanced87

driver assistance systems (ADAS). The size of the salient region88

decreases when the confidence of the model increases, learning89

all the parameters of the models directly from the data. We90

train and evaluate the system with recordings from real driving91

scenarios using affordable equipment that can be easily installed92

on regular cars.93

The experimental evaluation demonstrates the effectiveness94

of the proposed GPR system, analyzing the tradeoff between95

accuracy and spatial resolution of the probabilistic visual map.96

We compare our proposed solution with alternative machine97

learning methods to estimate the visual maps, including simple98

regression techniques, deep neural networks and mixture density99

networks (MDNs). The results indicate that our proposed model100

offers the best accuracy and spatial resolution in estimating the101

probabilistic region of the driver’s gaze. For example, 95% of102

the target markers lie inside the probabilistic region estimated103

by the system, where its temporal resolution includes 3.77% of a104

sphere surrounding the user’s range of vision. Finally, we105

demonstrate the benefit of the proposed probabilistic model106

by mapping the probabilistic visual map to areas on the road,107

allowing us to identify coarse regions outside the car that the108

driver is directing her/his gaze to.109

This study is organized as follows. Section II discusses related110

studies about the importance of visual attention when studying111

driver’s behavior. Section III describes the data collection pro-112

cedure that we followed to train and evaluate our algorithms.113

Section IV describes the proposed method to obtain the prob-114

abilistic salient visual map to represent visual attention. It also115

introduces the baseline methods. Section V discusses the results116

obtained from different models, comparing the tradeoff between117

spatial resolution and accuracy of the probabilistic salient visual118

maps. Finally, Section VI concludes the study, suggesting future119

research directions.120

II. RELATED WORK121

A. Visual Attention of the Driver122

Maintaining visual attention while driving a vehicle is im-123

portant to reduce hazard scenarios. Drivers obtain most infor-124

mation through vision, which is important to maintain road125

awareness and to complete driving maneuvers [5]. Therefore,126

several studies have considered the visual patterns of the driver,127

creating useful automatic tools for intelligent vehicle systems.128

Liang and Lee [21] conducted experiments by inducing visual129

distraction, cognitive distraction and a combination of both by130

asking subjects to perform distracting tasks while operating a131

driving simulator. They observed that the driving performance132

was worse when the subjects were performing visually dis-133

tracting tasks compared to the performance when performing134

a combination of visual and cognitive distracting tasks.135

Robinson et al. [22] studied the visual search patterns of a 136

driver by looking at her/his head movements during lane changes 137

and when entering a highway after a stop sign. They observed 138

longer search times at a stop sign, where the drivers had to 139

observe the whole scene before making a decision. In contrast, 140

for lane change actions the search time was shorter since the 141

driver had to make quick decisions. Underwood et al. [23] used 142

eye trackers to study the eye movement behavior of experienced 143

and novice drivers in three different types of roads: rural, sub- 144

urban and divided highways. They analyzed the most common 145

sequences of fixation in various regions of the road to compare 146

the driving behavior. They observed that a novice driver tends to 147

change her/his fixation more often, while an experienced driver 148

tends to use peripheral vision to pick up subtle information such 149

as the demarcation of lanes. 150

Understanding visual attention can also help us infer infor- 151

mation about visual and cognitive distractions. Sodhi et al. [24] 152

used a head-mounted, eye-tracker in a vehicle, where they asked 153

multiple subjects to drive a predetermined route while perform- 154

ing tasks that stimulate distractions. They used the eye-tracker 155

to obtain the position and diameter of the pupil. They studied 156

the impact of infotainment systems on driving by stimulating 157

various cognitive and visual distractions. The study observed 158

that the eye movement patterns changed when the driver was 159

distracted by a secondary task. Kutila et al. [25] recorded the 160

face of the driver with stereo cameras in a naturalistic driving 161

scenario. They used head and gaze information along with lane 162

position and controller area network (CAN)-Bus data to detect 163

visual and cognitive distraction. Gaze data was obtained using 164

a gaze tracker. The driver’s visual attention is inferred using 165

eyes-off-the-road duration. The eye movement is fused with 166

cognitive workload inferred from the driving data to obtain 167

cognitive distractions. Liang et al. [26] designed a support vector 168

machine (SVM) classifier that used measures of driving perfor- 169

mance such as steering angle and lane position, and features 170

from eye movement data such as fixations and saccades to detect 171

cognitive distraction. They obtained an accuracy of 96.1% in 172

a simulated environment. Murphy et al. [27] implemented a 173

real-time system to track the six degrees of freedom of the 174

head pose of a driver. They designed an appearance based 175

particle filter to design a 3D model of the face in augmented 176

reality. Rezaei and Klette [17] monitored both the driver and 177

the road to find possible hazard situations. They designed an 178

asymmetric active appearance model (AAM) to estimate the 179

driver’s head pose, which was used in conjunction with features 180

extracted from the vehicles detected on the road to design a 181

fuzzy logic based system to estimate the risk level of the driving 182

situation. 183

Understanding the driver’s behavior is even more relevant 184

with the advances in autonomous cars. Information and datasets 185

derived from drivers in naturalistic conditions, including their 186

visual attention, can be instrumental in the design of autonomous 187

cars [28], following the ideas of behavior cloning [29]. Likewise, 188

cars that are aware of the driver’s visual attention can more effec- 189

tively negotiate hand over situations. Zeeb et al. [30] compared 190

the take-over time and quality between a distracted driver and 191

an attentive driver. The drivers were asked to be involved in 192
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secondary tasks such as watching videos and writing emails.193

They observed that while a driver could quickly resume control194

of the car when prompted, the quality of the take over was worse195

when the driver was distracted.196

B. Estimation of Visual Attention197

Several studies have worked on estimating the visual attention198

of the driver, realizing the importance of visual attention in mon-199

itoring the behaviors of the driver. The most common approach is200

to partition the gaze region of the driver into different gaze zones.201

Then, the problem is formulated as a classification problem to202

identify the area that the driver is directing her/his attention.203

Tawari and Trivedi [14] video recorded the face of the driver from204

two different angles in the car to capture the head pose. The two205

cameras increased the angular range of the head pose estimation.206

The task was to classify the driver’s gaze into eight different gaze207

zones. They used annotations obtained from human experts as208

the ground truth for the target gaze zone, training a random forest209

classifier with the head pose as features. The zone estimations210

had high confusion between adjacent zones such as looking211

forward and looking at the speedometer. Lee et al. [15] suggested212

a robust method to estimate the yaw and pitch of the head. The213

method relied on simple edge features from the face, making the214

approach robust to rotation and illumination, and fast enough to215

be run in real time. They used the estimated yaw and pitch angles216

to identify one of the 18 predefined gaze zones using an SVM217

classifier. Chuang et al. [16] designed a gaze estimation system218

using a smartphone camera. They placed the smartphone on the219

dashboard to record the driver’s face. They used the location of220

the eyes, nose and mouth regions as features to classify the gaze221

among eight different zones. Vora et al. [31] tried a generalized222

approach to classify gaze zones which is subject invariant. They223

used convolutional neural networks (CNNs) to obtain the gaze224

zone from the driver’s facial image. The best network achieved225

a 93.36% accuracy while performing a seven class classification226

task (six gaze zones plus a class for eye closure)227

While the gaze zone provides useful information about the228

visual attention of the driver, this information is too coarse for229

several applications. However, it is challenging to design gaze230

estimation methods with high precision that work well inside231

a vehicle. Although there is a strong relationship between head232

movement and gaze direction, the relation is not one-to-one [18].233

In naturalistic driving scenarios, the driver relies not only on234

head movements to direct her/his gaze toward a target location,235

but also on eye movement. The interplay between head and236

eye movements depends on the cognitive load of the driver and237

the underlying driving task. A feasible alternative to gaze zone238

estimation or unreliable gaze algorithms that do not work in239

a vehicle is the definition of a probabilistic salient visual map240

describing the visual attention of the driver. This probabilistic241

salient visual map can be used to define spatial confidence242

regions describing the direction of the driver’s gaze. This study243

pursues this novel formulation, creating models that capture the244

relationship between head pose and gaze, creating a probability245

distribution of the gaze given the orientation and position of the246

driver’s head.247

C. Relation to Prior Work 248

The formulation of creating a probabilistic salient visual map 249

to model driver attention is novel. To the best of our knowledge, 250

the only relevant study is our preliminary work [19], [20], which 251

provided initial evidences of the benefits of using this promising 252

formulation. Jha and Busso [19] used the GPR framework to 253

estimate the gaze distribution conditioned on the head pose. Jha 254

and Busso [20] explored a nonparametric approach to create 255

this probabilistic salient visual map. This paper builds upon 256

these preliminary studies providing better modeling capabilities, 257

which are evaluated with exhaustive experiments. The contribu- 258

tions of our paper with respect to prior work are: 259
� We improve the modeling capability of the GPR framework 260

by exploring multiple configuration including implement- 261

ing the basis function with a neural network, and using 262

automatic relevance determination (ARD) for the kernel 263

function. These approaches increase the capacity and flex- 264

ibility of the models, leading to better performance. 265
� We explore multiple regression-based frameworks and 266

compare them to our method to establish the superiority 267

of the proposed approach in comparison to other methods. 268
� We demonstrate the application of using confidence maps 269

with our method to project the angular distribution onto 270

the road scene, moving us closer to deploy our solution in 271

practical applications. 272

Instead of relying on methods that assume a one-to-one 273

relationship between head pose and gaze, which has been the 274

predominant approach in previous studies, our method creates 275

a probability distribution that takes in consideration the un- 276

certainty in the predictions. This approach represents a novel 277

formulation from a theoretical perspective. The implementation 278

of the approach in a real system is feasible, but not the primary 279

goal of this paper. 280

III. DATA COLLECTION 281

This study uses recordings from real driving scenarios col- 282

lected with the UTDrive platform [32], [33], which is a vehicle 283

equipped with multiple sensors (Fig. 1(a)). The UTDrive has 284

been successfully used to study driver behaviors [34]–[36]. 285

Instead of using the specific sensors from this car, we decided 286

to only use the commercially available dash camera Blackvue 287

DR-650GW-2ch (Fig. 1(b)), which can be easily installed in any 288

regular car. The device features two cameras along with a global 289

positioning system (GPS) and accelerometer sensors. The front 290

camera was used to record the road view, while the rear camera 291

was used to record the face of the driver. The system is currently 292

implemented offline. 293

A. Data Collection Protocol 294

For the analysis, we require data where we know the ground 295

truth information about the direction of the gaze. We achieve 296

this goal by asking the driver to look at predefined markers. 297

We place 21 numbered markers on the windshield (#1-#13), 298

mirrors (#14-#16), side windows (#17-#18), speedometer panel 299

(#19), radio (#20), and gear (#21) (Fig. 1(c)). Then, we ask 300
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Fig. 1. (a) Vehicle used for data collection. (b) Dash camera (Blackvue DR-650GW-2ch) used to record the face of the driver (primary camera) and the road
(secondary camera). (c) Markers placed on the windshield (1-13), mirrors (14-16), side windows (17-18), speedometer panel (19), radio (20), and gear (21). The
subjects were asked to look at these markers.

the subjects to look at these markers multiple times, where we301

carefully annotated the corresponding timing information. We302

recruited 16 students (10 males, 6 females) with valid US driver303

licenses from the University of Texas at Dallas. We designed a304

three-phase protocol:305

Phase 1: The first phase is recorded when the vehicle is306

parked. The subject is asked to sit in the driver seat, looking307

at different markers. The numbers are called out in random308

order and the driver is asked to look at the corresponding points.309

Each number was repeated five times in random order. We did310

not provide any further instruction. The goal of this phase is311

to estimate and model the gaze-head relationship when our312

subjects are not driving. They have plenty of time to complete313

this task without worrying about visual, manual and cognitive314

demands associated with the driving tasks. The drivers can also315

get familiar with the task in a safe environment.316

Phase 2: The second phase consists of the same task while the317

subject is driving the vehicle. The subject is asked to drive on a318

straight road with low traffic. Following the protocol approved319

by the institutional review board (IRB) at UT Dallas, we carried320

out the data collection during the day, avoiding peak hours to321

reduce the cognitive load of the driver in traffic conditions. A322

passenger reads the numbers, pointing to the target location323

reducing the cognitive demand of the task. The numbers are324

requested only when the driver does not have to perform any325

maneuver. The safety of the subject is our first priority. We do326

not provide any additional instruction on how to look at the327

markers. We use this phase to estimate and model the gaze-head328

relationship while the subject is driving.329

Phase 3: During the third phase, we ask the driver to park330

the car and perform the same task again. This time, the driver is331

asked to look at each marker directing her/his head toward the332

point. In this controlled condition, the gaze of the driver is the333

same as the head pose, without the bias added by the movement334

of the eye. To enforce this requirement, we request the driver335

to wear a glass frame with a low power laser mounted at the336

center (Fig. 2). The driver is asked to point the laser towards337

the marker. The windows of the car are covered during this338

phase to reduce the lighting inside the car to make the laser339

more visible for the subject to complete the task. This approach340

also prevents the laser beam to project outside the car. Each341

number was repeated three times at random for each marker.342

This phase provides valuable data, where the gaze is exactly343

aligned with the head orientation. While this phase is not used344

Fig. 2. Laser pointer mounted on a glass frame for the controlled head pose
condition during phase 3 of the data collection.

Fig. 3. (a) Example of a AprilTag, (b) Headband with AprilTags for robust
head pose estimation.

in the experiments discussed in this study, it provides valuable 345

calibration information for other studies [18]. 346

Additionally, we asked the last three of our subjects to look at 347

specific locations on the road including billboards, street signals, 348

and buildings to validate our systems in real-world applications. 349

This data is used to assess the mapping between gaze detection 350

and objects on the roads. 351

B. Head Pose Estimation Using AprilTags 352

It is challenging to use computer vision algorithms in a 353

car environment. In our previous work [13], we demonstrated 354

that the robustness of a state-of-the-art head pose estimation 355

algorithm was low for non-frontal faces rotated more than 45◦. 356

For this analysis, we aim to have more robust estimations of 357

head poses regardless of the head orientation. We achieve this 358

goal by using a headband with AprilTags (Fig. 3(a)). For future 359
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Fig. 4. Description of the process to calibration the cameras and define a common reference system. Figures (a)-(d) show the calibration for the markers’ locations
and the face camera. Figures (e)-(f) show the calibration for the road camera.

work, we can rely on depth cameras to obtain robust head pose360

estimation [37], [38].361

AprilTags [39] are 2D barcodes primarily used for augmented362

reality applications, robotics and camera calibration. Fig. 3(a)363

shows an example of an AprilTag. The unique black and white364

patterns of each AprilTag are easy to automatically detect with365

computer vision algorithms. From the pattern, it is possible366

to accurately estimate the position and orientation of the tags.367

Instead of using a single AprilTag, we rely on many tags to368

robustly estimate the position and orientation of the head. For369

this purpose, we designed a headband with 17 square faces370

(2 × 2 cm each), separated by an angle of 12◦. Each of the371

square faces contains a 1.6 cm × 1.6 cm unique tag. Fig. 3(b)372

shows the headband worn by the participants. During the data373

collection, the subject is asked to wear the band for the entire374

recording. The selected design allows us to observe multiple375

tags for each video frame, regardless of the orientation of the376

driver’s head. Therefore, we can robustly infer the position and377

orientation of the headband.378

The AprilTags from the headband are used to obtain the379

position and orientation of the driver’s head. The AprilTag380

toolkit provides an estimate of the position and orientation of381

each tag present in an image. The structure of the headband and382

orientation of the visible bands help us estimate the pose of the383

headband.384

The use of the headband facilitates the analysis of head pose385

regardless of the orientation of the head or the environmental386

condition in the vehicle. For real-world applications, the head387

orientation will be estimated using automatic algorithms using388

either RGB cameras [40] or depth cameras [37], [38].389

C. Calibration of Camera and Markers390

A key challenge is to define a common coordinate system.391

We need the location and orientation of the driver’s head along392

with the location of each enumerated marker in a 3D space with 393

respect to a single coordinate system. Fig. 4(a) shows the view 394

from the rear camera facing the driver, and Fig. 4(f) shows the 395

view from the road camera. It is clear from these two figures 396

that most of the markers are not included in the view of either 397

of the camera. The problem is even more challenging as we aim 398

to map the gaze direction to areas on the road camera. We need 399

a calibration process to find the exact target marker location in 400

the 3D space and the transformation between the cameras to 401

represent all the coordinates in a single reference system. The 402

calibration process relies on AprilTags to find the location of the 403

markers in the 3D space and to find the relative homogeneous 404

transformation between each camera. The proposed solution 405

consists of placing AprilTags in the vehicle. The AprilTags 406

are used to establish a connection between the road and face 407

cameras, which do not have any overlap in their field of view. The 408

calibration process has two steps: create a common reference 409

coordinate system, and create a mapping between objects outside 410

the vehicle. 411

The first step in the calibration is to establish a reference 412

coordinate system. AprilTags are placed on each of the markers 413

(Fig. 4(d)), and some reference locations in the field of view 414

of the face camera (Figs. 4(a)-4(d)). These tags are only used to 415

calibrate the system, and are removed during the data collection. 416

Then, we use a third camera to take multiple pictures contain- 417

ing subsets of these AprilTags (Fig. 4). This camera captures 418

locations that are not in the field of view of either of the dash 419

cameras. The relationship between frames containing multiple 420

common tags is calculated. The face camera captures a subset of 421

these additional tags. Using the location of these tags, we create 422

homogeneous transformations to obtain the location of all the 423

tags, including the 21 markers, with respect to the coordinate 424

system of the face camera. 425

The second step in the calibration consists of estimating a 426

mapping between the reference coordinate system and objects 427
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outside the vehicle. For this step, the third camera is fixed inside428

the vehicle such that it records the windshield and the road view429

(Figs. 4(e) and 4(f) – these two images were simultaneously430

taken). As a result, we have two cameras facing the road: the431

road camera used in the data collection and the third camera used432

for calibration. We printed an AprilTag sign, which is placed433

in front of the vehicle such that it is in the field of view of434

both cameras. This process helps us to establish the relationship435

between the cameras for different points. Finally, the relation436

between the face camera and the third camera is established437

using the location of the markers. With this process, we derive all438

the transformations needed to map everything into the coordinate439

system of the face camera. The transformation matrix to relate440

each camera is calculated using the Kabsch algorithm [41].441

Since the placement of the headband slightly varies across442

subjects, we need to obtain a standard reference per subject to443

estimate the head pose from the AprilTags. For this purpose, we444

assume that the long-term average of the driver’s head pose is445

consistent across subjects. We calculate the average orientation446

of the headband in the quaternion space using spherical linear447

interpolation (Slerp). We set the origin of the coordinate system448

as the average pose of the driver’s head by subtracting the aver-449

age head position per participant and multiplying by the inverse450

of the average rotation matrix to normalize the orientation. We451

also subtract the average head position value from each of the452

target marker’s location to apply a similar transformation to453

the target gaze. Finally, the ground truth gaze vector at a given454

instant is obtained by subtracting the target gaze location from455

the head position at the given instant, calculating the horizontal456

and vertical gaze angles from this vector.457

IV. METHODOLOGY458

This paper aims to create a probabilistic salient visual map459

describing the visual attention of the driver. We project this map460

onto the windshield creating spatial distributions for the gaze461

direction. Then, we map this visual map on the road camera,462

defining areas on the road where we estimate the driver is463

directing her/his gaze. We can estimate confidence regions for464

the driver’s visual attention by creating a probabilistic map,465

which is an appealing method with more practical applications466

than methods estimating a single point for the gaze direction.467

This section proposes our main method as well as three alterna-468

tive baselines to obtain a probabilistic distribution of the gaze469

angle from the position and orientation of the driver’s head.470

These methods estimate the probabilistic salient visual map for471

the horizontal and vertical angles by modeling the mean and472

variance of the gaze angles as a function of the position and473

orientation of the head.474

A. Gaussian Process Regression475

Our proposed model is based on the original design imple-476

mented in our preliminary work [19]. It relies on Gaussian477

process regression (GPR) [42], which models the outputs as478

a Gaussian process with the co-variance defined by a kernel479

function. The model assumes that any subset of the output is a480

joint Gaussian distribution. Using the ground truth of the training481

data in the vicinity of each point, the model learns the uncertainty 482

in the estimation of any test data. This method provides a 483

promising and effective approach to learn the many-to-many 484

relationship between the head pose and the gaze. It learns a gaze 485

distribution as a function of different head poses presented in 486

the training data that are in the neighborhood of the target head 487

pose. 488

Let x ∈ Rd be the input of the system, where d is its di- 489

mension (in our case d = 6). Let Y be a Gaussian random 490

process representing the output. If y is a vector representing 491

n realizations, as a Gaussian random process, y follows a joint 492

Gaussian distribution with prior distribution fy, 493

fy = N (μ,Σ) (1)

where, y = {y1, y2, y3, . . . , yn} ⊂ Y (yi is a realization of Y ). 494

The parameters μ and Σ are functions of x. As shown in (2), the 495

mean provides the deterministic component of the model, where 496

ω ∈ Rd and ω0 ∈ R are learned while training the models. 497

μ = xTω + ω0 (2)

The probabilistic component is given by Σ, which is the 498

covariance matrix. The covariance of any point x calculated 499

jointly with the input points in the training set x′ is given by 500

the kernel k(x,x′). The covariance is modeled using a squared 501

exponential kernel ( (3)). The correlation is learned with respect 502

to the input data from the training set in the neighborhood of 503

the data of interest. This kernel imposes that the outputs will be 504

more correlated to the points in the training data that are closer 505

to the test input data as the covariance matrix will have higher 506

values for points that are closer. 507

k(x,x′) = σ2
f exp

(−‖x− x′‖2
2 l2

)
(3)

In (3), the parameter σf represents the amplitude of the 508

covariance. This parameter defines the autocovariance of the 509

data points (i.e., k(x,x) = σ2
f ). The parameter l represents the 510

length scale value, which defines how much the distance between 511

the training and estimated data affects the cross-covariance 512

between two data points. If l is high, k(x,x′) slowly reduces, 513

as the distance between the points increases (‖x− x′‖2). These 514

parameters decide the size of the confidence interval of our esti- 515

mation as the covariance matrix is a function of these parameters. 516

We also explore the use of automatic relevance determination 517

(ARD). Using ARD, the kernel learns different length scale 518

parameters for each input variable. The kernel function with 519

ARD is given in (4). 520

k(x,x′) = σ2
f exp

(
−1

2

d∑
i=0

‖xi − x′
i‖2

l2i

)
(4)

Using different values for l may be useful, since the input to 521

our models include position and orientation of the head, which 522

may have different scales. We learn the values for σf and l (or 523

li) while training the models by maximizing the log-likelihood 524

of the ground truth data in the train set. 525

To obtain the posterior distribution from the prior model, the 526

model is conditioned on the given training data. Let, Xtr ∈ 527
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RL×d be the training dataset and ytr ∈ RL be the output Gaus-528

sian random variables, where L is the number of frames in the529

train set. Let y∗ be the random variable we are trying to estimate530

for the input vector x∗. From (1), the joint distribution is given531

by,532 [
fytr

fy∗

]
= N

([
XT

trω + ω0

xT
∗ ω + ω0

]
,

[
Σ(Xtr,Xtr) Σ(Xtr,x∗)

Σ(x∗,Xtr) Σ(x∗,x∗)

])

(5)

Using (5), the posterior distribution can be calculated with the533

conditional probability when ytr = yobs:534

fy∗|ytr=yobs
= N (μ̂∗, Σ̂∗) (6)

μ̂∗ = xT
∗ ω + ω0 +Σ(x∗,Xtr)[Σ(Xtr,Xtr)]

−1

× (yobs −XT
trω − ω0) (7)

Σ̂∗ = Σ(x∗,x∗) − Σ(x∗,Xtr)[Σ(Xtr,Xtr)]
−1Σ(Xtr,x∗)

(8)

where yobs is the ground truth value (i.e., observed y). We use535

four different settings for the deterministic function. The first536

setting is a GPR model without the deterministic component537

(i.e. ω = 0, ω0 = 0). The mean of the posterior distribution is538

purely estimated from the kernel function ( (9)).539

μ̂∗ = Σ(x∗,Xtr)[Σ(Xtr,Xtr)]
−1yobs (9)

The second setting is with a constant deterministic compo-540

nent. The model learns ω0 as a single constant mean for the541

distribution (i.e., ω = 0). The third setting estimates both ω542

and ω0 during training. We refer to this setting as linear model.543

The fourth setting estimates the deterministic component of the544

model with a neural network (NN). We implement this approach545

by training NN (x), using back propagation. The network is546

implemented with two hidden layers, following the architecture547

used for our second baseline (Fig. 5(a)). Then, we estimate the548

residual error, r(x) = yobs − NN (x), which is modeled with549

the GPR formulation, without the deterministic component (ω=550

0,ω0=0). The conditional mean for this implementation is given551

by (10).552

μ̂∗ = NN (x∗) + Σ(x∗,Xtr)[Σ(Xtr,Xtr)]
−1(yobs − NN (Xtr))

(10)

Using this framework, we learn two separate models for the553

horizontal angle (θ) and the vertical angle (φ). An important554

feature of our formulation is modeling the output as a het-555

eroscedastic process, where the variance of the output salient556

map varies depending on the input variables. Therefore, the size557

of the probabilistic salient visual map increases for regions with558

higher uncertainty, and decreases when the model is confident559

in its estimation.560

B. Baseline Methods561

We compare the model with three methods. Two of these base-562

lines are based on normal regression functions designed with the563

mean square error loss. We adapted these regression models to564

create a probability map as the output by assuming a Gaussian565

Fig. 5. Architecture of baseline methods to estimate the probabilistic salient
visual map describing visual attention. The same architecture is used for both
horizontal and vertical angles.

distribution. For the third baseline, we explore a variation of 566

mixture density network (MDN) that uses the log-likelihood as 567

the loss function to model the conditional probability density of 568

the gaze given the input head pose. This section provides the 569

details of these baseline models. 570

1) Linear Regression: The first baseline is the most basic 571

regression model. The gaze is obtained as a linear function of the 572

head pose parameters (orientation and position). The dependent 573

variables are the six degrees of freedom of the head correspond- 574

ing to its position (x,y,z) and orientation angles (α, β, γ). Two 575

separate models are created for the gaze angle in the horizontal 576

and vertical directions. Equations 11 and 12 show the models, 577

where, θgaze and φgaze are the horizontal and vertical gaze 578

angles, respectively. 579

θgaze = a0 + a1x+ a2y + a3z + a4α+ a5β + a6γ (11)

φgaze = b0 + b1x+ b2y + b3z + b4α+ b5β + b6γ (12)

This model is similar to the one trained in Jha and Busso [18], 580

but instead of obtaining the gaze location, we obtain the angles 581

representing the gaze vectors. To create a probability distribution 582

as our estimation, we consider a Gaussian distribution with the 583

mean value provided by the regression models. The variance is 584

obtained from the mean square error estimated on the train data. 585

Notice that this model is homoscedastic, where the variance is 586

constant across the data. 587

2) Regression With Neural Network: For the second baseline, 588

we design a neural network to perform the regression task. 589

Fig. 5(a) shows the model. The neural network contains two 590

fully connected layers, each of them implemented with twelve 591

nodes. The activation used for the hidden layers is the rectified 592
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linear unit (ReLU) activation using a linear function at the output593

layer. The neural network is optimized to minimize the mean594

square error between the true gaze angle and the estimated gaze595

angle from the model. Similar to our previous baseline model,596

the probabilistic distribution is obtained by assuming a Gaussian597

distribution for the output, where the mean is the estimated gaze,598

and the variance is estimated with the mean square error in the599

train data. This approach is also homoscedastic.600

3) Neural Network for Density Estimation: The third base-601

line is inspired by the MDN proposed by Bishop [43]. MDN602

can directly learn the standard deviation of the output as a603

non-linear function of the input data. MDNs are used to model604

the output as a Gaussian mixture model (GMM) by optimizing605

the log-likelihood function in (14).606

p(y) =

M∑
k=1

πkN (y|μk, σk) (13)

Lllk(y, πk, μk, σk) = −log(p(y)) (14)

The network has 3×M nodes in the output layer, where607

M is the number of components. The output represents the608

component weights πk, mean μk and standard deviation σk609

with k ∈ 1, . . . ,M . Since we assume that our output is a single610

Gaussian distribution, we design a model with one component,611

reducing the number of parameters to two. Therefore, the output612

layer has two nodes that provide the mean μ and the standard de-613

viationσ. Our objective is to estimate a Gaussian distribution that614

maximizes the probability of the ground truth data. To achieve615

this, we use as our loss function the negative log-likelihood of616

the ground truth gaze with respect to the estimated mean and the617

standard deviation.618

Lllk(y, μ, σ) = − log

(
1√
2πσ

exp

(
(y − μ)2

2σ2

))
(15)

The variable σ is obtained as the exponential of the cor-619

responding output node to avoid the standard deviation from620

being negative. With this formulation, we estimate not only the621

mean, but also the variance in each estimation, providing an622

appropriate scaling to the uncertainty of each output estimation.623

This baseline is a heteroscedastic method, where the variance624

changes according to the input data.625

Fig. 5(b) shows the network architecture, which has two626

hidden layers implemented with 12 nodes. The network uses the627

Adam optimizer [44] with a learning rate of r = 0.001, using628

mini batches of size 32. The neural network is implemented in629

Keras [45] with Tensorflow [46] as backend. The networks is630

trained for 1,000 epochs, and the model with minimum loss in631

the development set is chosen as the final model to be evaluated632

in the test set.633

V. EXPERIMENTAL EVALUATION634

This section evaluates the proposed solution and baselines to635

estimate the probabilistic salient visual map. The models are636

separately trained and evaluated for data collected in phase 1637

(parked vehicle) and phase 2 (driving condition). The database638

is partitioned into train, test and development sets using a leave- 639

one-driver-out cross-validation approach. Data from one subject 640

are used for the development set, data from one subject are used 641

for the test set, and data from the remaining fourteen subjects are 642

used for the train set. The development set is used to optimize the 643

hyperparameters and decide on the best model. The best model 644

is evaluated on the test set. This approach is repeated sixteen 645

times, where we report the results across the 16 folds. Note that 646

all the data are, at some point, part of the test set. 647

We need to analyze the estimated probabilistic salient visual 648

map in terms of accuracy and spatial resolution to evaluate 649

and compare the effectiveness of the baseline and proposed 650

models. Accuracy is measured as the percentage of the target 651

gaze directions included in a given confidence interval. If the 652

majority of the data do not lie within the confidence interval, 653

the model is not accurate. The spatial resolution determines 654

how large the confidence interval is. Likewise, if the spatial 655

resolution is too high, the estimation is not very useful even 656

if most data lies within the interval. To evaluate the spatial 657

resolution of the system, we evaluate the size of the confidence 658

interval created by each model. The outputs of the model are 659

horizontal (θ) and vertical (φ) angles. Therefore, we express the 660

area of the confidence region in terms of the fraction of a sphere 661

surrounding the driver’s head. An ideal approach will create a 662

confidence interval that is both accurate and with reduced spatial 663

resolution. To analyze the tradeoff between accuracy and spatial 664

resolution, we present plots with the accuracy of our model at 665

different spatial resolution (Figs. 6, 7, 11). 666

The first evaluation considers different implementations of 667

the GPR model with different parameters to establish the best 668

method for our purpose (Section V-A). Then, we compare the 669

best performing GPR models with the three alternative baselines 670

(Section V-B). Then, we demonstrate the features of the model 671

by projecting the confidence regions onto the windshield (Sec- 672

tion V-C), and road camera (Section V-D). Then, we study the 673

performance when we have the orientation of the driver’s head, 674

but limited information about the head’s position, which is a pos- 675

sible scenarios if regular cameras are used to estimate the head 676

information (Section V-E). We also evaluate the time required for 677

training and inference as a function of the train set size (Section 678

V-F), and the performance as a function of the train set size 679

(Section V-G). 680

A. GPR Model Selection 681

Fig. 6 shows the accuracy of our model within different 682

confidence interval for the different GPR models. Fig. 6(a) 683

reports the results for phase 1 (parked condition) and Fig. 6(b) 684

reports the results for phase 2 (driving condition). We zoom 685

these figures between the 75% and 95% confidence intervals 686

for better visualization. We observe that different models work 687

better for parked and driving conditions. We have shown that 688

the relationship between head movements and gaze changes 689

when a person is driving [18]. There is more uncertainty in 690

the relationship between head pose and gaze, where drivers 691

tend to use more eye movements to glance at a target object. 692

The increase in uncertainty explains the differences in patterns 693
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Fig. 6. Comparison of the accuracy versus temporal resolution of different
implementations of the GPR model. We zoom the plots for better visualization.
The results are separately reported for parked and driving conditions. The figure
is better viewed in colors. Accuracy is calculated within a confidence interval
(CI) given by the area.

across phases 1 and 2. During the driving condition (phase 2),694

implementing the deterministic component with a linear model695

leads to the best performance. For this case, the use of ARD in696

the kernel function leads to improvements for all four models.697

Since the relationship between head pose and gaze is more am-698

biguous when driving, as noted in Jha and Busso [18], a stronger699

probabilistic component helps to better describe the relationship700

( (3)). Since ARD encodes a separate length scale parameter for701

each variable (variable l in (3)), this model provides a more702

sophisticated description of the variance of the gaze random703

variable. Therefore, it is expected that the best model for the704

driving condition uses the ARD framework. The deterministic705

part of the model is dictated by the mean (variable μ in (2)).706

The results show that adding a more sophisticated mean model707

does not provide a gain in performance while increasing the708

complexity in learning. Therefore, a linear mean function with709

ARD function provides the best performance in the driving710

condition. During the parked condition (phase 1), in contrast,711

the best GPR model is when the deterministic part is imple-712

mented with a neural network, and the kernel is implemented713

without ARD. This result shows that adding a more powerful714

deterministic function is enough to achieve good performance.715

We consistently observe lower performance when using ARD,716

regardless of the implementation of the deterministic function.717

The gaze has a strong predictability since the variance is reduced718

Fig. 7. Comparison of the accuracy versus temporal resolution of GPR and
baseline models. We zoom the plots for better visualization. The results are
separately reported for parked and driving conditions. The figure is better viewed
in colors. Accuracy is calculated within a confidence interval (CI) given by the
area.

compared to the driving condition case. Hence, the deterministic 719

part of the model is more important. A neural network provides 720

a better estimate of the mean. Given the more straightforward 721

relation between head pose and gaze, the kernel function without 722

ARD provides a better estimate of the variance. 723

For the rest of the evaluation, we will consider the two GPR 724

models that led to the best performance for phase 1 (GPR with 725

neural network model without ARD) and phase 2 (GPR with 726

linear model with ARD). The case when the ego vehicle is 727

static can be used for modeling gaze when the car is stopped 728

at intersections, or traffic signals. In these cases, the driver will 729

take more time to asses the environment compared to cases when 730

driving the car. 731

B. Comparison With Baselines 732

This section compares our proposed models with the three 733

baselines described in Section IV-B: linear regression (LR), 734

neural network regression (NN) and mixture density network 735

(MDN). 736

1) Accuracy Versus Spatial Resolution: Fig. 7 shows the 737

accuracy of our models at different spatial resolutions, compar- 738

ing with results with the curves of different baseline models. 739

We observe that both GPR models perform better than all 740

the baseline models. They are consistently above other curves 741

showing not only higher accuracies, but also smaller regions. The 742

linear regression baseline is the model with higher performance 743

from the baselines. The values are constantly below our two 744

implementations of the GPR models. 745
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TABLE I
AVERAGE AREA OF THE CONFIDENCE INTERVALS FOR 50%, 75% AND 95%

ACCURACY. THIS AREA IS MEASURED AS THE FRACTION OF A SPHERE

SURROUNDING THE DRIVER’S HEAD

TABLE II
AVERAGE ACCURACY OF THE CONFIDENCE INTERVALS FOR PROBABILISTIC

SALIENT VISUAL MAPS OF DIFFERENT SIZES (1%, 2% AND 4% OF THE SPHERE

SURROUNDING THE DRIVER’S HEAD)

To quantify the spatial resolution of the models, Table I746

lists the area of the confidence interval at 50%, 75% and 95%747

accuracies for the baseline and GPR models. We observe that the748

areas of the confidence interval for the GPR models are smaller749

than the areas for the baseline models. In phase 1, GPR NN has750

the smallest area for the 95% confidence interval (3.76%). In751

phase 2, GPR Linear has the smallest area for the 95% confidence752

interval (3.77%). The ability to provide high accuracy within a753

small region makes the GPR models more efficient.754

To quantify the accuracy of the models, Table II lists the755

accuracy observed when the fractions of a sphere surrounding756

the driver’s head is 1%, 2% and 4%. This analysis quantifies the757

performance of the proposed and baseline models when their758

confidence intervals have consistent area. We observe that we759

can get 86.2% accuracy in phase 2 within an area of 2% with760

the GPR Linear model. Similarly on phase 1, we can obtain an761

accuracy of 83.7% with the GPR NN model.762

2) Theoretical Versus Empirical Cumulative Density Func-763

tion: Since our proposed and baseline models assume that the764

estimated gaze follow a Gaussian distribution, it is important to765

analyze how well this Gaussian assumption holds with respect766

to the empirical distribution of the ground truth data around the767

estimations. For this analysis, we plot the fraction of the data768

observed within the confidence region (y-axis) as a function of769

the theoretical cumulative density function (CDF) of the region770

(x-axis). Fig. 8 shows the results for the parked and driving con-771

ditions. Ideally, we should observe the curves as close as possible772

as the reference diagonal curve (black curve). We measure the773

absolute area between each curve and the reference diagonal774

curve using (16). The legend in Fig. 8 reports the results.775

area =
1

N

∑
|cdf theoretical − cdf empirical | (16)

Fig. 8. Theoretical versus empirical cumulative distribution function for the
GPR and baseline models. This figure evaluates whether the resulting proba-
bilistic salient visual maps cover the target gaze direction as estimated by the
Gaussian assumption in the models. The numbers in the legend quantify the fit
using (16).

In the parked condition, the LR model is the closest to the 776

reference diagonal curve. Since the distribution of the data is 777

structured, a simple linear regression model with constant mean 778

square error is enough to properly match the theoretical distribu- 779

tion for the confident intervals, although with lower accuracies 780

and spatial resolutions than our proposed models (Tables I and 781

II). In the driving condition, the two GPR models are very close 782

to the theoretical curve. The absolute areas from the reference 783

diagonal curve are smaller than the corresponding absolute area 784

for the baseline models. Therefore, the GPR models not only 785

provide better tradeoff for accuracy and spatial resolution, but 786

also offer confidence intervals that are closer to the theoretical 787

confidence intervals for the most important condition (phase 2). 788

C. Mapping the Confidence Regions Onto the Windshield 789

This section projects the estimated confidence regions onto 790

the windshield. We have the marker position, which is used as the 791

ground truth for the gaze. We only use the targets markers from 792

#1 to #13 for this purpose (Fig. 1(c)). We model the windshield as 793

a plane by fitting the best plane containing these thirteen points. 794

Small errors are introduced because the windshield is slightly 795

curved so the points do not exactly lie on a plane. Therefore, 796
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Fig. 9. Two examples of projections of the probabilistic salient visual maps
into the windshield. The target marker is highlighted with a black diamond. The
darkened curves represent 50% confidence intervals.

when we project the original points back to the camera, they797

do not exactly match the target marker location (Fig. 9). From798

the gaze angles (α and β), the gaze direction is obtained by799

estimating the line from the position of the head ([xhp, yhp, zhp])800

towards the direction provided by the gaze vector. Equation 17801

provides the projection used in the study. We estimate the region802

where a line meets the windshield plane. The probability density803

function at each point is calculated based on the probabilistic804

salient visual map created by the models.805

[x, y, z] = [xhp, yhp, zhp]

+ [sin(α), cos(α) sin(β), cos(α) cos(β)] (17)

Fig. 9 shows two examples for the confidence regions created806

with the GPR model. While these are just two examples, they are807

representative of the probabilistic salient visual map created by808

the models. These figures also demonstrate how the estimated809

angles can be mapped onto the real world coordinates. The figure810

shows that the confidence regions in front of the drivers are811

smaller than the confidence regions on the side of the windshield,812

signaling more uncertainty. The size of the regions is learned813

from the data.814

D. Mapping Confidence Regions Onto the Road815

We also projected the estimated confidence regions onto the816

road view. As explained in Section III-A, we asked three of817

the subjects to look at multiple targets on the road. For these818

cases, we approximate the gaze distribution in the road by pro-819

jecting the confident regions at different distances from the car,820

ranging from 10 to 200 meters in increments of 10 meters (i.e.,821

20 different projections). Then, we calculated the unweighted822

average of the probabilities for each pixel creating a 2D visual823

map projected on the road camera.824

Fig. 10 gives three examples, showing the driver’s face, the825

road view, and the estimated salient visual map created with826

the GPR models. The target object is highlighted with a black827

ellipse. We observe that the GPR models perform reasonably828

well providing an estimation around the target regions attracting829

Fig. 10. Three examples of projections of the probabilistic salient visual maps
onto the road. These regions are estimated at different distance, combining the
results into a single probabilistic map. The target marker is highlighted with a
black ellipse.

the attention of the driver. Notice that in this study we only 830

consider the position and orientation of the head. 831

We observe that the estimated probabilistic salient visual maps 832

do not always include the true gaze target. These cases are useful 833

to identify some limitations of our model to project the region on 834

the road. First, we add some distortion during the projections, as 835

discussed before. Second, some subjects may depend on subtle 836

eye movements that our models do not capture. Notice that the 837

eye information is not used by our models, which is used in most 838

of the gaze detection system designed for HCI in controlled 839

environment. Third, the inter-driver variability can impact the 840

results, as differences in height and driving behaviors can affect 841

the relationship between head movements and gaze. In spite of 842

these limitations, the results in this paper demonstrate that our 843

models effectively capture the visual attention of the drivers by 844

just modeling their head pose. We include a video with the results 845

as a supplemental document. 846

E. Gaze Angle Estimation With Limited Head Pose 847

Information 848

RGB cameras are the most common sensors that are used to 849

capture the driver data in the car. Since regular cameras lack 850

depth information, it is not possible for algorithms to reliably 851

estimate the head position in all three degrees of freedom. Our 852

GPR models require this information to estimate the probabilis- 853

tic salient visual maps. Therefore, we retrain our GPR models by 854

using only head orientation, or by augmenting head orientation 855

with partial head position. We consider two conditions. The 856
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Fig. 11. Comparison of the accuracy versus temporal resolution of GPR
models implemented with limited head pose information. We zoom the plots
for better visualization. The results are separately reported for GPR linear and
GPR NN. The figure is better viewed in colors. Accuracy is calculated within a
confidence interval (CI) given by the area.

first condition only considers the head orientation (i.e., 3D857

vector). The second conditions is head orientation plus the x858

and y position of the head, estimated with the AprilTag-based859

headband. These models are compared with the GPR models860

trained with the 6D vector, including full orientation and position861

of the head.862

Fig. 11 presents the results for the GPR models on the test863

set in phase 2 (driving condition). The GPR linear model with864

orientation and partial position information achieves results865

that are very close to the results achieved by the full model866

(Fig. 11(a)). The GPR NN model implemented with partial head867

position even outperforms the results of the model with full868

information (Fig. 11(b)). We conclude that the distance between869

the driver and the camera is not critical to build an effective870

model. We hypothesize that this results is due to the reduced871

head movements along the z-direction observed while a driver is872

operating a vehicle. The performances of both models drop when873

they are exclusively trained with head orientation, indicating that874

some information about the head position is needed.875

F. Training and Inference Time Versus Train Set Size876

This section discusses the complexity of the algorithm and877

its dependency on the train set size. This analysis uses the GPR878

linear model with ARD kernel using phase 2 of the corpus. We879

use a single computer with a 64-bit Intel Xeon CPU and 32 GB880

RAM. We study the training and inference time of our approach881

when only a portion of the training data is used.882

Fig. 12(a) shows the training time when we gradually increase883

the training data from 10% to 100% of the training data. We884

randomly select the data that we add to the training set. As885

expected, there is a consistent increase in the training time when886

adding more training data. However, Fig. 12(a) shows that our887

Fig. 12. Analysis of the training time, inference time and performance of the
model as a function of the training set size. The analysis is implemented with
the GPR linear model with ARD kernel using phase 2 of the corpus.

model can be trained in less than one minute, as opposed to deep- 888

learning models that are computationally intensive. Similarly, 889

Fig. 12(b) shows the inference time to evaluate one sample as 890

we increase the size of the training set. We observe a similar trend 891

seen in Fig. 12(a), where the inference time increases as we add 892

more data for training. Since we model a joint Gaussian process 893

with the training data ( (5)), the complexity during inference 894

increases with the training data size. However, a closed form 895

solution is available, so the inference model is practical. We 896

observe that even when using all the training data, the inference 897

of a sample takes about 6 milliseconds. Our approach is 5.56 898

faster than real-time for a video stream at 30 fps. 899

G. Performance Versus Training Set Size 900

Finally, we study how the performance of the model changes 901

when using part of the training data. For this purpose, we cal- 902

culate the accuracy within 4% of the sphere around the driver’s 903

head (Fig. 12(c)) We observe that, as we increase the training 904

data, the performance of the model gets better, as expected. 905

We observe dramatic changes in the performance gain while 906

adding data to a small fraction of the training set. However, 907

the performance gain is minimum with additional data, when 908

the data is sufficiently large. This result leads us to conclude 909

that while adding a large amount of data with added diversity 910

may increase the performance, the amount of data that we have 911

used in the current experiment is reasonable to demonstrate the 912

benefits of the proposed framework. 913
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VI. CONCLUSION914

This paper proposed a novel probabilistic model based on915

GPR to define a salient visual map to estimate the driver’s916

gaze location. The proposed method estimates confidence re-917

gions containing the gaze direction of the driver using only918

the position and orientation of her/his head. The size of the919

confidence region is determined by the uncertainty of the model920

in the estimated region (heteroscedastic model). To demonstrate921

the potential use of the proposed method, we projected this922

salient visual map onto the windshield and the road images.923

The results demonstrated reasonable performance, achieving924

accuracies higher that the baseline models. An appealing feature925

of having a distribution describing the driver’s visual attention926

is the opportunity to operate with different tradeoffs between927

accuracy and spatial resolution. For example, the GPR Linear928

model implemented with ARD can reach a 86.2% accuracy in929

phase 2 (e.g., driving condition) within an area of 2% of the930

sphere around the driver’s head.931

There are open challenges to accurately estimate the six de-932

grees of freedom for the driver’s head in real driving conditions.933

We use AprilTags for this purpose in our analysis. Using a single934

RGB camera, it can be difficult to track the head pose in a vehicle935

when the rotation is higher than a given threshold (e.g., when936

the face is not completely visible [13]). We also need to estimate937

the distance of the driver’s head from the camera, which will938

affect the gaze angle. To address this challenge, we are working939

on using depth sensors to reliably estimate the orientation and940

position of the head [37], [38]. One of the limitations of the941

head band used in this study is that it covers parts of the face.942

We are working on an alternative design that addresses this943

limitation [47]. This type of data collection protocol serve as944

a valuable resource to train and evaluate head pose algorithms945

in real driving scenarios, advancing algorithm development in946

this area.947

This study opens various potential areas for research where948

the predicted driver visual attention can be used as a starting949

point to improve the safety on the road. The proposed technology950

can play an important role in vehicle applications for security,951

infotainment, and navigation. The study relies on a commercial952

dash camera that can be easily installed on regular vehicles. This953

setting is ideal for in-vehicle solutions in all cars, regardless of954

their proprietary built-in sensors. Once the salient visual map955

is created and projected onto the road scene, we can leverage956

computer vision algorithms to detect target objects within the957

highlighted area. For example, patterns of changes in visual958

attention can be correlated to the external environment and/or959

driving anomalies detected on the car [48], [49]. We can look960

more closely at the region and estimate what possible objects the961

driver is directing her/his gaze (other vehicles, pedestrians, or962

billboards). We can also determine important objects that a driver963

fails to attend, creating an appropriate warning. Furthermore,964

unnecessary warnings to drivers can be avoided if we infer that965

the driver is aware of specific objects/people on the road (e.g.,966

a pedestrian crossing the street). The probabilistic saliency map967

can be used by an ADAS to identify cases where the driver is968

performing a maneuver without paying attention to other vehi-969

cles. This approach can also be used for multimodal navigation970

systems [2], where the predicted probabilistic saliency map is 971

used to understand navigation commands (e.g., queries such as 972

“what is that store?” while looking at a given building). The 973

predicted probabilistic maps can be ideal for these scenarios. 974

Likewise, we expect that a model adapted to a given driver 975

can lead to better performance, as the variance in the relation 976

between head pose and gaze will be reduced. As a future work, 977

we will explore adaptation schemes using unsupervised methods 978

that take unlabeled data from the target driver to adapt the 979

model, leading to better personalized systems. Another possible 980

improvement is to rely on temporal modeling by constraining 981

the network on previous frames. We have seen improvements in 982

head pose estimation by adding temporal modeling [38], so we 983

expect similar improvements for gaze prediction. To achieve 984

this goal, we need continuous gaze movements with ground 985

truth information, which was not collected in our data. We 986

are collecting new recordings with an improved protocol that 987

includes continuous gaze [50]. 988
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