

This work was supported by Semiconductor Research Corporation (SRC) / Texas Analog Center of Excellence (TxACE), under task 2810.014

Probabilistic Estimation of the Gaze Region of the Driver using Dense Classification

Sumit Jha* and Carlos Busso

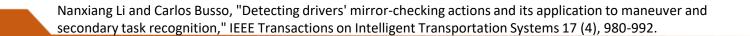
Visual Attention

Drivers' Visual Attention

- Primary driving related task
 - Mirror checking actions [Li and Busso, 2016]
 - Lane change
 - Turns and cross sections
- Secondary tasks
 - Mobile phones and in-vehicle entertainment unit
 - Co-passengers in the car
 - Billboards and other distractions from the environment

Gaze detection a challenging problem in car environment

Often approximated by head pose



THE UNIVERSITY OF TEXAS AT DALLAS

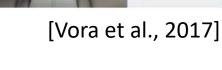
Related Work

- Studying eyes-off-the-road [Liang and Lee, 2010]
- Predicting discrete gaze zones from the head pose [Vora et al., 2017]
- Relating driving actions to head pose
 - Mirror checking actions [Li and Busso, 2016]
 - Lane change [Doshi and Trivedi, 2012]

S. Vora, A. Rangesh, and M. M. Trivedi, "On generalizing driver gaze zone estimation using convolutional neural networks," in Intelligent Vehicles Symposium (IV), 2017 IEEE . Los Angeles, CA, USA: IEEE, June 2017, pp. 849–854.
Y. Liang and J. Lee, "Combining cognitive and visual distraction: Less than the sum of its parts," Accident Analysis & Prevention , vol. 42, no. 3, pp. 881–890, May 2010.
Nanxiang Li and Carlos Busso, "Detecting drivers' mirror-checking actions and its application to maneuver and secondary

task recognition," IEEE Transactions on Intelligent Transportation Systems 17 (4), 980-992.

A. Doshi and M. Trivedi. Head and eye gaze dynamics during visual attention shifts in complex environments. Journal of vision, 2(12):1–16, February 2012.



Motivations

- Head pose Gaze relation not deterministic [Jha and Busso, 2016]
 - The variability depends on the location of gaze
- Probabilistic prediction of driver's visual attention from head pose
 - Region of gaze provides important information about visual attention

Left mirror

Right mirror

Rear mirror

Visual Attention Estimation

ID THE UNIVERSITY OF TEXAS AT DALLAS

S. Jha and C. Busso. Analyzing the relationship between head pose and gaze to model driver visual attention. In *International Conference on Intelligent Transportation Systems (ITSC 2016)*, pages 2157–2162, Rio de Janeiro, Brazil, November 2016.

Previous Work

- Predicting probability based gaze region based on the head pose on the head pose of the driver
 - Example model using GPR [Jha_2017]

$$Y = h(\vec{x})^T \beta + f(\vec{x})$$

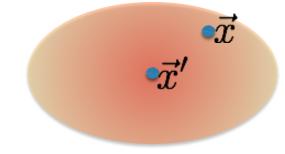
Deterministic component

nistic Probabilistic nent component

 $f(\vec{x}) \sim GP(0, K(\vec{x}, \vec{x}'))$

Aim to design a more flexible model

 Non-parametric estimation of probability



Adaptable model with more control over the parameters

S. Jha and C. Busso, "Probabilistic estimation of the driver's gaze from head orientation and position," in IEEE

Regression as Classification

Non-parametric probability estimation using softmax

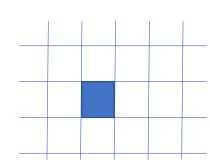
- Softmax learns a probability distribution giving confidence value for each label
- Better way of learning probability than GPR [VandenOord 2016]

Solving regression as a classification problem

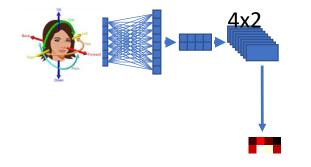
Class labels need to be ordered (error 1 < error 2)</p>

Implicit multitask learning with multidimensional features

- Classification in the grid of 2 variables
- Problem becomes dense with N² classes for high resolution



Model Architecture



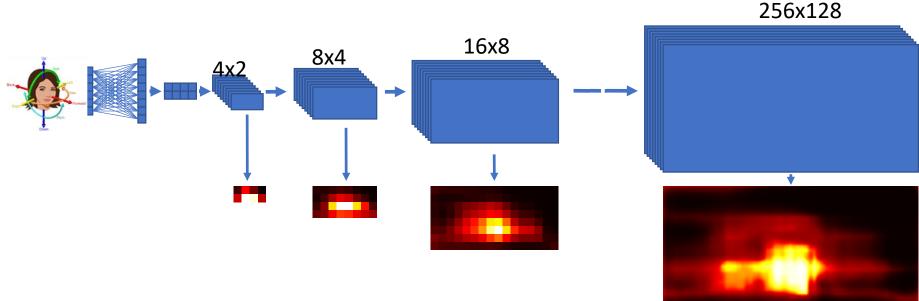
Input 6 degrees of head pose

- Head position (x,y,z)
- Orientation (α, β, γ)

Fully connected layer followed by CNN

Learn gaze representation in 4 x 2 discretized level

Model Architecture



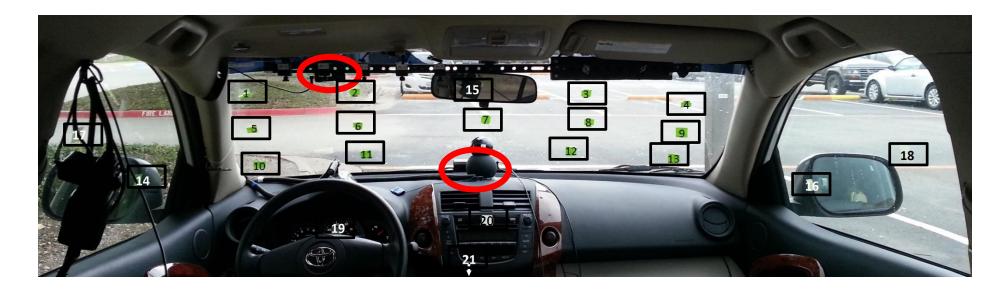
Upsample followed by CNN

Learn the gaze representation at 8x4 discretization

Repeat to get incrementally higher resolution

- Train at each resolution
- Softmax activation at the output layers to obtain probability maps that sum to 1

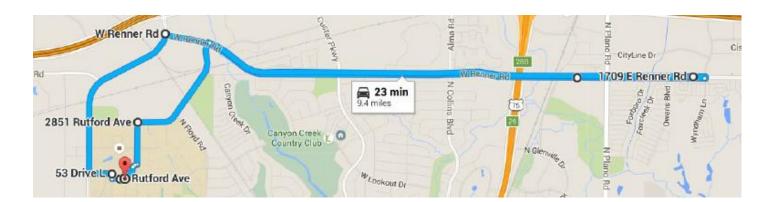
Data for the study



- Camera-1 \rightarrow Face
- Camera-2 \rightarrow Road
- Markers on the windshield
- Use Apriltags for tracking head movement
- Ask subjects to look at each point multiple times at random

Ground truth gaze data during Naturalistic Driving

- Collected when the subject is driving the car
- Subject asked to look at points
- Data collected in a straight road with minimum maneuvering task
- Data collected with 16 subjects (10 males 6 females)



msp.utdallas.edu

Dallas

AprilTags for Head Pose Estimation

- Head pose estimation challenging in driving environment
- Avoid the error in head pose estimation to affect the performance of the model
- AprilTags [Olson, 2011]

11

- 2D barcodes that can be robustly detected in an image
- Headband designed with 17 AprilTags
- Useful for robust detection of head pose across conditions

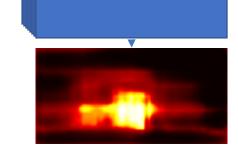
The university of texas at dallas

Implementation of the Proposed Model

- Keras on top of tensorflow to learn the model
- Final output is obtained at 256 x 128 (7 stages)
- Entire network trained at each stage
- Learning rate lowered at later stages with more number of epochs
 - 10⁻² for first 5 stages, 200 epochs
 10⁻³ for last 2 stages, 500 epochs

Driver independent partition

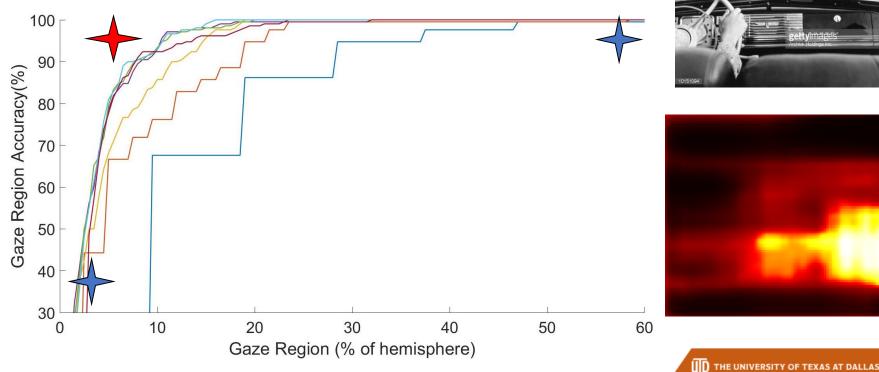
- 14 subjects for training
- I subject for validation
- 1 subject for test

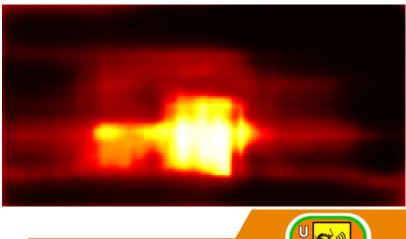


Results of Experimental Evaluation

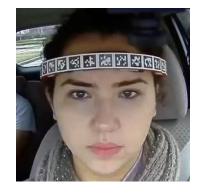
Accuracy versus resolution

- Area represented as a portion of the hemisphere in front of the driver
- Study the performance at different stages
- As we increase resolution the precision increases

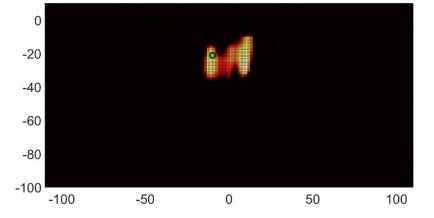




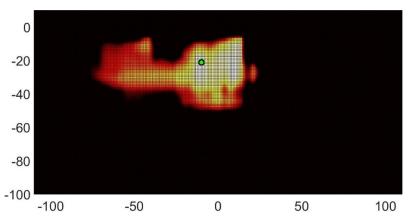
Prediction of visual attention

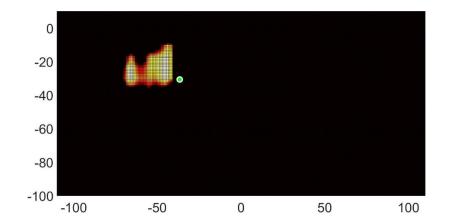


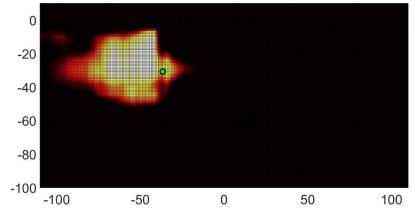
50% confidence



95% confidence

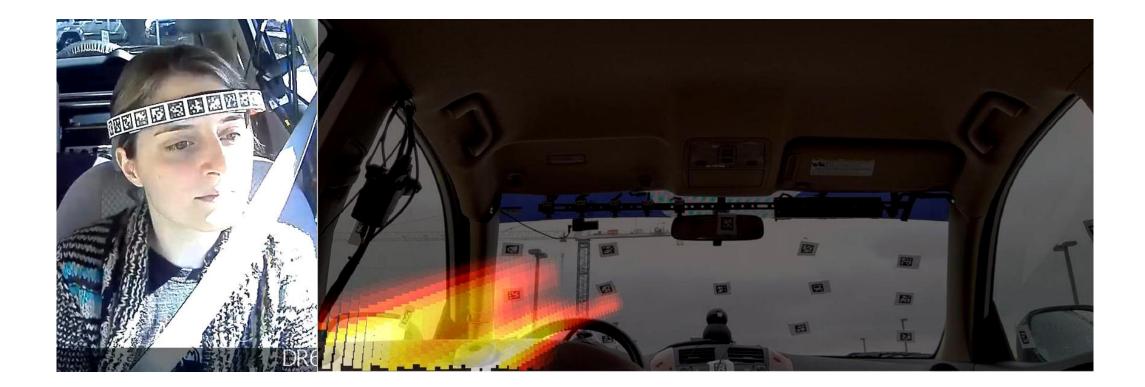






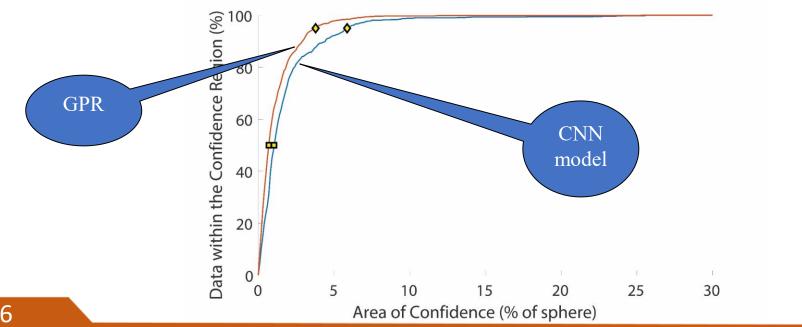
THE UNIVERSITY OF TEXAS AT DALLAS

Prediction of visual attention

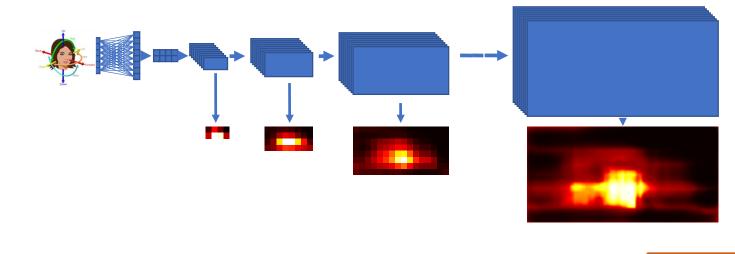


Comparison with GPR

- Performance of basic architecture slightly worse compared to GPR
- Possible improvements
 - Deeper architecture in each upsampling
 - Cost sensitive loss functions
 - Continuous and more exhaustive gaze data (as opposed to limited discrete points in the space)



- Deep learning framework to learn the probability distribution of gaze from head pose
- Incrementally learn higher resolution
- Incorporate information from the eye to increase accuracy



msp.utdallas.edu

THE UNIVERSITY OF TEXAS AT DALLAS

Thank You

Semiconductor Research Corporation

THE UNIVERSITY OF TEXAS AT DALLAS

