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Abstract—Head pose is an important feature to understand
the driver’s behavior and their level of attention. While cur-
rent head pose estimation (HPE) algorithms are suitable for
many applications under controlled conditions, the performance
drops in driving environments where images commonly have
varying illumination, occlusions, and extreme head rotations.
It is important to understand the limitations of current HPE
algorithms to create computer vision solutions that target in-
vehicle applications. This paper analyzes the HPE algorithms
OpenFace, IntraFace and ZFace, with images recorded under
natural driving environment where the goal is to find consistent
conditions that affect the performance of current HPE systems.
The key feature of the recordings is the use of a headband
with AprilTags, which are used to estimate reference head pose
angles. We study the effect of different factors including head
pose angles, illumination in the frames and occlusions due to
glasses. We identify the range of yaw and pitch rotations for
which these HPE algorithms provide reliable estimations. While
the HPE algorithms work reasonably well for normal/rimless
glasses, occlusion due to thicker glasses is a major problem. We
identified frames where all the HPE algorithms failed to provide
an estimate. We are releasing the data to serve as a benchmark
for future HPE algorithms in naturalistic driving conditions.

I. INTRODUCTION

The driver’s head pose is one of the most important cues
in designing smart human vehicle interfaces. The information
about the head pose of the driver can facilitate the coarse
estimation of gaze [12], and the detection of driving actions
such as checking the mirrors [15] or changing lanes [5].
The ability to monitor driver behavior can prevent hazardous
situations on the road, where estimating visual attention of
the driver is key to assess awareness and distraction. Head
pose estimation can also help in designing more accessible
in-vehicle infotainment systems that respond to the driver’s
gesture (e.g., pulling out information on landmarks in the
driver’s view, helping locating places) [16].

Head pose estimation has been a very important part of face
analysis, where many studies have attempted to formulate ac-
curate and robust algorithms for general applications [2], [11],
[19], [24], as well as for specific driving environments [6], [7],
[18], [25]. However, many of the proposed solutions for in-
vehicle applications have limited scope, where the methods
are specific to the experimental setup [9], [17], are difficult to
reproduce [4], [22], [25], or rely on experimental evaluation
conducted in simulation environment [8], [23], which do not
replicate the challenges observed under naturalistic conditions.
Varying illumination, wide head pose variations and occlusions

(a) High head rotation (b) Occlusion/Glasses (c) Illumination
Fig. 1. Challenges in head pose estimation in naturalistic driving conditions.

affect the efficiency of state-of-the-art head pose estimation
tools (see Fig. 1). It is important to understand the limitations
of current stand-alone tools for head pose estimation when
applied to naturalistic driving conditions. By analyzing the
conditions where current solutions tend to fail, we can create
algorithms that work in vehicle environments.

This paper analyzes three state-of-the-art head pose estima-
tion tools in naturalistic recordings (IntraFace [24], OpenFace
[2], and ZFace [11]). These tools are either completely or par-
tially available to researchers for a wide array of applications.
Hence, several research groups have used these algorithms
across applications, including solutions for in-vehicle systems.
The analysis relies on a database with real driving recordings.
16 drivers wore a headband with AprilTags [20], providing
ground truth for the head poses of the drivers (5h and 51m
of data). The data collection setting is ideal for evaluating
head pose algorithms for in-vehicle applications. We study
different scenarios in which the algorithms work well, and
the conditions where the algorithms either do not provide
estimations (e.g., face is not detected), or the estimations
are not accurate. We study the performance of the tools
with respect to various head rotation angles, illumination, and
occlusions, discussing the range of conditions where current
systems provide accurate information.

II. RELATED WORKS

Estimating head pose is an important problem in computer
vision (see review by Murphy-Chutorian and Trivedi [19]).
Algorithms that work on controlled environments tend to
fail under the challenging conditions imposed by in-vehicle
applications. As Figure 1 illustrates, common problems in-
clude changes in illumination, occlusions and extreme head
orientations. Even detecting faces is a challenge in these cases.
We review proposed approaches for in-vehicle applications.

Features are important in building robust head pose estima-
tion (HPE) algorithms for applications in naturalistic driving
conditions. Walger et al. [23] analyzed the reliability of
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four feature sets in estimating the head pose in a setting
with varying illumination: Histogram of Oriented Gradients
(HOG), Gabor filters, Active Shape Models (ASM) and a
weak perspective geometry. They concluded that ASM con-
sistently performed better than other feature sets. Most of the
algorithms use appearance-based features. Murphy-Chutorian
et al. [17] employed Localized Gradient Orientation (LGO)
histograms with support vector regression (SVR) to design a
light-invariant system that predicts the yaw and pitch angle
of the driver. Fridman et al. [6] used HOG and Linear
support vector machine (SVM) to detect the face, predict 56
landmarks, and estimate three head rotation angles. Lee et al.
[13] proposed a system that is robust to lighting conditions
and occlusions. They used the vertical edge at the boundaries
and the center of the face to detect the yaw angle, and the
normalized mean and standard deviation of the horizontal edge
for the pitch angle.

Some studies have implemented hybrid methods so one
algorithm overcomes the limitation of another. Murphy-
Chutorian and Trivedi [18] presented a hybrid approach to
detect head pose that combines the static pose estimator
proposed in Murphy-Chutorian et al. [17] with a head tracker
based on a sampling importance resampling (SIR) particle
filter. They mapped the face into a 3D model. Zhu and
Fujimura [25] proposed a hybrid method to estimate the
driver head pose that combines an appearance-based method
using principal component analysis (PCA) with a 3D motion
estimation method using optical flow. More recently, Breidt et
al. [3] used depth cameras to obtain a robust estimate of the
head pose of the driver in all 6 degrees of freedom.

An alternative solution consists of using multiple cameras
in driving environments. Some studies have focused on aug-
menting the driver’s information with the road information [9],
[21], while others have used multiple cameras to record the
driver’s face from different perspectives [8], [22]. Rezaei and
Klette [21] used a Fermat point transform to model a 3D shape
from the 2D face image and relate it with the information from
the road. Tawari et al. [22] proposed a head pose estimation
method with three cameras placed at different angles. The
head pose is estimated using a constrained local model (CLM)
and mixture of pictorial structures (MPS). The best view is
chosen to obtain the final value for the yaw, pitch, and roll
angles. Hoffken et al. [8] proposed a method to estimate
the head pose from 3D information obtained from a stereo
camera setup. They stated that this method is robust in the
driving environment, since it does not depend on appearance-
based features that tend to work poorly in varying illumination.
Cheng et al. [4] used a multi-camera array with LWIR cameras
and RGB cameras to track the driver’s body.

Many of the previous algorithms require special equipments,
the algorithms are not available, or they are difficult to
reproduce. Therefore, this study relies on three HPE algo-
rithms developed for general applications showing reliable
performance: IntraFace [24], OpenFace [2], and ZFace [11].
We discuss the effect of various factors commonly observed
in driving conditions in the performance of these algorithms.

(a) AprilTag (b) Headband with AprilTags

Fig. 2. Headband with AprilTags used for head pose estimation.

III. DATABASE

A. Protocol
The study uses naturalistic recordings collected with the

UTDrive platform [1]. The motivation in recording this corpus
was to evaluate the relation between head pose and visual
attention [12]. The driver’s face and the road scene are
recorded using a commercial two-channel dash camera (Black-
vue DR650GW-2CH), which can be easily installed in any
vehicle. Following a fixed protocol, 16 subjects participated in
the recording where the main task was to look at predefined
markers in the windshield, mirrors, side windows, speedometer
panel, radio, and gear. All the sessions were collected between
noon and 4pm. The database has three phases: (1) driver looks
at the markers while the car is parked, (2) driver looks at
the markers while driving, and (3) driver directs his/her head
toward the markers while the car is parked. The study only
uses recordings from phase 2, which includes not only cases
when participants look at target markers while driving, but
also natural head movements related to driving tasks.

A key feature of this corpus is the headband with AprilTags
worn by the drivers (Fig. 2(b)). The AprilTags, which are
discussed in Section III-C, give reliable information about the
location and orientation of the driver’s head, providing an ideal
dataset for the study of automatic HPE algorithms. We have
632,347 frames with head pose estimations with AprilTag (5h
and 51m). We collected seven additional recordings using the
same protocol without the headband to evaluate the effect of
the headband in the performance of HPE algorithms.

B. Distance Metric between Two Rotation Matrices
This paper uses the geodesic distance between two rotation

matrices [10] to calculate the difference between the HPE and
headband angles.

�(R1 ,R2 ) = klog(R1R
T
2 )k (1)

C. Head Pose Estimation with AprilTags
AprilTags are 2D fiducial markers with unique black and

white patterns [20] (Fig. 2(a)). These patterns and their relative
orientation are easy to detect in an image, since the shape and
size of the markers are known. AprilTags find applications
in areas such as robotics, augmented reality, and camera
calibration. We use AprilTags to benchmark the orientation
of the head pose of the drivers. We designed a rigid headband
with 17 square faces, each containing a 2cm x 2cm AprilTag
(Fig. 2(b)). Since the geometry of the headband is fixed,
we can infer the position and orientation of the headband
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(a) High Quality (b) Regular Quality (c) Regular Quality
with Illumination

Fig. 3. 3D rendering of talking head with AprilTags based headband.

even with one visible AprilTag. In most cases, more than
one AprilTag are visible giving a robust estimate of the head
pose (we use the median value of the estimates). From the
position and orientation of the headband, we derive the head
orientation of the drivers with homogeneous transformations.
We individually estimate the head orientation for each frame
without tracking, avoiding propagating errors across frames.
We temporally smooth the estimation of the head orientation
with a median filter of order five.
Evaluation of AprilTag-based headband: We create a synthetic
dataset to assess the performance of the AprilTag-based head-
band. We render a head model wearing the headband with
given head rotation (figure 3). The virtual headband has the
same AprilTag as the one used in the evaluation. We created
multiple frames by changing the angles as follows: yaw = (0�,
±30�, ±60�, ±90�), pitch =(0�, ±30�), roll =(0�, ±20�). We
also evaluate frames with combinations of angles (e.g., pitch +
yaw). We create three sets of data. The first set corresponds to
high quality renderings using 3850⇥2160 images. The second
set includes rendering with 960⇥540 images, approaching the
resolution in our corpus (the size of the AprilTags in these
renderings was ⇡ 20⇥ 20, which is equivalent to their size in
our recordings). The third set also has 960⇥540 images, but it
includes high illumination and shadow, replicating challenges
in real driving conditions (Fig. 3(c)). In spite of the extreme
rotations, the median angle errors for each set are:

• High Quality (3840 x 2160p) 0.89�

• Med Quality (960 x 540p) 1.26�

• Data with added illumination 2.69�

The estimates are reliable, with reduced accuracy only in the
presence of high illumination falling directly on the headband.

D. Distribution of Head Orientation

We estimate the head orientation of the drivers for each
frame using the AprilTags. While roll angle provides dis-
criminative information about cognitive distractions [14], we
focus the analysis on pitch (vertical) and yaw (horizontal)
angles, since it is difficult to visualize results with 3D plots,
and the yaw and pitch angles are the more important angles
to determine in in-vehicle applications. Figure 4 shows the
distribution of head orientation for pitch and yaw angles across
frames. As expected, most of the frames have reduced yaw and
pitch values as the drivers tend to look at the center of the
road most of the time. We observe that most of the data range
between -20� and 20�, for yaw and -30� and 10�, for pitch.
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Fig. 4. Distribution of head orientation for yaw and pitch movements across
frames.

This is the critical range that HPE algorithms should robustly
estimate. Some key driving tasks require head movements
beyond this range, which will challenge HPE algorithms, as
discussed in Section V.

IV. HEAD POSE ESTIMATION ALGORITHMS

A. Selected Head Pose Estimation Algorithms

This paper studies the performance of three state-of-the-art
algorithms in detecting head orientation in our corpus.
IntraFace [24]: This algorithm uses the supervised descent
method (SDM) to perform face alignment. Using SDM, a non-
linear least squares (NLS) function of the image features is
minimized to obtain the face landmarks.
OpenFace [2]: This algorithm uses constrained local neural
field (CLNF) to detect facial landmarks. It uses probabilistic
patch expert to learn the spatial alignment of the landmarks.
From the landmarks, head pose is obtained using a perspective-
n-point (PnP) method.
ZFace [11]: This algorithm builds a dense 3D mesh with a
manageable size by storing only the updated landmark dis-
placements. The algorithm uses cascade regression to perform
face alignment based on the mesh.

We evaluate the algorithms with the default settings, without
attempting to optimize the implementation for the task at hand.
The objective of this study is not to compare these algorithms,
but to understand better the challenges that we need to solve
before using HPE algorithms in vehicle applications. We
evaluate each video sequence in the corpus with these HPE
algorithms. We unify the coordinate reference system for
these algorithms as follows. We normalize the data from each
HPE algorithm by subtracting its mean and dividing by the
standard deviation. Then, we translate the data, matching the
first and second order statistics of the AprilTag angles. This
normalization process unifies the angles’ coordinate system
across HPE algorithms and AprilTag headband. The yaw angle
is positive in the right direction and negative in the left
direction, and the pitch is positive looking up and negative
looking down. The output of IntraFace has a few false positive
faces where the size is too small or the location is not correct.
We use contextual information to eliminate these detections.
B. Effect of the Headband on Head Pose Estimation

We can benchmark the performance of the HPE algorithms
with precise metrics by adding the headband in the recordings.
An implicit assumption in the analysis is that the headband
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(a) IntraFace - detection failure
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(b) IntraFace - angular error
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(c) OpenFace - detection failure
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(d) OpenFace - angular error
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(e) ZFace - detection failure
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(f) Zface - angular error

Fig. 5. Detection failure rate and angular error of the HPE algorithms as a
function of pitch and yaw angles.

does not dramatically affect the performance of the HPE
algorithms. The headband occludes a portion of the face, so it
is important to quantify its effect on HPE algorithms. For this
purpose, we compare the recordings with the headband (16
participants) and without the headband (7 participants). We
only estimate the percentage of frames that the HPE algorithms
fail to detect, since we do not have ground truth angles for
the head poses when the driver does not use the headband.
Table I lists the percentage of frames that were not detected
by each method. We cannot estimate the head orientation from
the AprilTags in 5.3% of the frames due to saturated images,
blurred images, or significant head rotations. Without the head-
band, ZFace provides head orientation estimates for 91.1% of
the frames, which is remarkable. The table shows that the
headband affects the HPE algorithms. The most significant
case is for ZFace, where the percentage of frames without
head orientation estimates increases from 8.9% to 21.9% when
we include the headband. ZFace constructs a 3D mesh of
the whole face, and the addition of the headband affects
this process. For OpenFace (21.8% to 24.1%) and IntraFaces
(19.0% to 27.3%), the problem is not as important. Notice that
over 72% of the frames are available for the comparison (over
550K frames), so we can still study the performance of the
HPE algorithms under the proposed experimental evaluation.
Notice that once the face is detected, the headband should
not affect the accuracy of the algorithms in estimating the
head pose of the driver, since they depend on multiple facial
landmarks. Only the facial markers near the eyebrows may be

TABLE I
PERCENTAGE OF FRAMES WHERE THE HPE METHODS FAILED TO PROVIDE

AN ESTIMATE.

Estimation Method AprilTag IntraFace OpenFace ZFace
[%] [%] [%] [%]

Without Headband - 19.0 21.8 8.9
With Headband 5.3 27.3 24.1 21.9

slightly affected, therefore, the head pose estimations should
be accurate for detected faces.

V. ANALYSIS OF HEAD POSE ESTIMATION

The robustness of HPE algorithms is affected by various
variables such as head rotation, occlusion, or illumination. This
section studies the effect of these factors in the performance
of the HPE algorithms.

A. Performance as a Function of Yaw and Pitch Angles
One of the most important variables that affects the robust-

ness of HPE algorithms is the variation of head pose. While
it is widely accepted that drivers tend to look at the center
of the road, it is important to estimate cases where the head
pose is not frontal, which convey important information. The
plots in the left column in Figure 5 show the percentage of
frames when the HPE algorithms were not able to provide an
estimate. We do not include the bins which have fewer than 10
frames in our analysis. The robustness of the HPE algorithms
decreases when the driver turns his head away from the road,
especially for extreme values of yaw. Almost all the frames
do not have an estimate for a yaw angle less than -40� and
greater than 40�. OpenFace provides an estimate for 40-60%
of the frames, even with yaw angles close to 60� (Fig. 5(c)).

We also compare the estimations of the HPE algorithms
with the estimations derived from the headband. While the
head pose angles derived from the AprilTag is not perfect, it
gives reliable values across conditions, providing a reasonable
benchmark to evaluate the HPE algorithms. The plots in
the right column in Figure 5 show the difference between
the angles estimated by each HPE algorithm and the angles
estimated with the headband. For pitch angles between -40�

and 20� and yaw angles between -60� and 60� the difference
in estimation is very low. The figures show that the HPE
algorithms are very precise for yaw angles, which is very
important for many in-vehicle applications. The performance
drops when the pitch angle is below -20�. While pitch angles
below -40� are highly unlikely (Fig. 4), the error at these
angles is more than 60�, so they are completely unreliable.

B. Occlusion Due to Glasses
The presence of glasses affects the performance of HPE

algorithms. In our database, we had eight subjects out of 16
who wore eye glasses during the recordings. Three of them
wore thick frame glasses, which caused major occlusion of the
face (see Fig. 1(b)). Table II lists the performance for three
groups of participants: drivers wearing thick-frame glasses (3),
drivers wearing normal/rimless glasses (5), and drivers without
glasses (8). We measure performance with the percentage of
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TABLE II
PERCENTAGE OF MISSED FRAMES WITH AND WITHOUT GLASSES

Method Intraface Openface Zface
Failed � Failed � Failed �

[%] [�] [%] [�] [%] [�]
TF Glasses 67.7 10.0 67.5 12.9 64.1 12.3
NF Glasses 18.5 14.0 13.7 11.3 13.8 11.5
No Glasses 15.4 9.0 12.1 9.0 8.8 8.5

[TF:Thick-frame Glasses; NF: Normal-frame/rimless Glasses; No: No Glasses]

frames where HPE algorithms failed to provide an estimate.
We also estimate the average difference between the predicted
angles and AprilTag-based angles (�).

The percentage of frames missed by the HPE algorithms
significantly increases when drivers use thick-frame glasses
(over 64%). we do not observe this problem for drivers using
normal or rimless glasses, where the percentage of frames
without detection is only slightly worse than the ones for
drivers without glasses. For frames where the head pose is
detected, the average deviation from the reference head pose
(AprilTag) is between 6.8� and 14.1�, where drivers with
thicker glasses have the larger angular error.

C. Effect of illumination
Varying illumination is one of the important challenges

in computer vision algorithms for vehicle applications, as
shadows and rapid changes in illumination are commonly
observed (see Fig. 1(c)). When the vehicle turns, the lighting
condition can dramatically change, which negatively impacts
the performance of HPE algorithms to detect faces. We quan-
tify illumination with the third quartile (Q3) of the pixels’
intensity over the facial region (i.e., square region under the
detected headband). Q3 provides useful information about
illumination. Q3 increases for bright images, so we expect
lower performance for high values of Q3. Also, if the image
is too dark, the value for Q3 will decrease.

Figure 6(a) shows the percentage of frames where the head
pose was not detected using each of the HPE algorithms as
a function of Q3. As a reference, the bars represent the Q3
intensity distributions of frames detected by the AprilTag-
based headband, showing the general values observed for Q3
in natural driving conditions. The HPE algorithms are not
reliable when Q3 is above 240, since the image is too bright.
This is important as we have many samples with high values
of Q3. We also evaluate the difference between the head pose
estimated by the headband and each of the HPE algorithms.
Figure 6(b) shows the average angular error as a function of
Q3, where the bars represent the distribution of frames in the
corpus. When the HPE algorithms provide an estimate, the
performance is consistent for Q3 between 140 and 255. The
angular error increases for lower values of Q3 less than 150,
where the image becomes too dark.

D. Ideal Scenarios (IS) versus Challenging Scenarios (CS)
The final analysis identifies two groups of frames. The first

group is referred to as Ideal Scenarios (IS), and consists of
frames where the three HPE algorithms provide the head pose

0 50 100 150 200 250
0

5

H
is

to
gr

am
 fo

r A
pr

ilT
ag

s

×104

0
10
20
30
40
50
60
70
80
90
100

Fr
am

es
 m

is
se

d[
%

]

Frequency of occurence IntraFace OpenFace ZFace

80 100 120 140 160 180 200 220 240
Intensity Q3

0

5

H
is

to
gr

am
 fo

r A
pr

ilT
ag

s ×104

0
10
20
30
40
50
60
70
80
90
100

Fr
am

es
 m

is
se

d[
%

]

(a) Percentage of frames missed by the PHE algorithm
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Fig. 6. Performance of HPE algorithms as a function of the third quartile
(Q3) of the pixel’s intensity. The figures show the role of illumination.

(a) Ideal Scenarios (IS) group (b) Challenge Scenarios (CS) group
Fig. 7. The percentage of frames per cell that belong to either the IS or
CS groups. Bright colors indicate that most of the frames in the corpus for a
given head pose belong to the corresponding group.

of the driver and the estimates do not deviate more than 10�

from the reference angles derived from the headband. The
IS group has 214,261 frames (33.9% of the corpus). The
second group is referred to as Challenging Scenarios (CS),
and consists of the frames where none of the HPE algorithms
was able to estimate the head pose of the drivers. The CS group
has 80,785 frames (12.8% of the corpus). Figure 1 shows three
frames from this group.

We study the distribution of IS and CS frames as a function
of yaw and pitch angles. Figure 7 shows the percentage of
frames for each cell that belong to either the IS group (Fig.
7(a)) or the CS group (Fig. 7(b)). On the one hand, most of
the frames with yaw angles between -20� to 20�, and pitch
angles between 40� and -20� are included in the IS group.
The HPE algorithms provide reliable information within this
range. On the other hand, Figure 7(b) shows that most of the
frames with yaw angles below -20� or above 20� are included
in the CS group.

We also analyze whether the illumination conditions are
different for the IS or CS groups. We estimate the third quartile
of the intensity across frames around the face. For a given
value of Q3, we estimate the percentage of frames belonging
to either the IS or CS groups. Figure 8 shows that almost 50%
of the frames belong to the CS group when Q3 is above 240
(saturated frames). This percentage also increases for frames
with Q3 values lower than 140 (dark frames).
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VI. CONCLUSIONS

This paper analyzed the performance of three HPE algo-
rithms in naturalistic driving conditions. We studied multiple
factors that strongly affect the robustness of these tools such
as extreme head orientations, occlusion and illumination. We
used a novel corpus which provides head pose estimation
for each frame using a headband with AprilTags. The anal-
ysis identified conditions under which current state-of-the-art
frameworks are effective in recognizing the head pose of the
driver. By studying the weaknesses of current HPE algorithms,
more robust solutions can be created addressing the computer
vision challenges imposed by these conditions. To facilitate
this task, we will release the database with this paper, so
other research groups can evaluate their solutions in these
challenging conditions.

While the performance without the headband may be
slightly better, we expect that the trends are representative of
the capabilities provided by state-of-the-art HPE algorithms.
We use the headband to estimate the reference head pose of the
driver, which was key to visualize the range of yaw and pitch
angles where the HPE algorithms provide reliable information.
Likewise, there are other challenges that reduce the efficiency
of HPE which were not considered in this study (presence of
beard, caps, makeup, jewelry, and driving during night). We
plan to extend our database adding more realistic scenarios.
Our future work also includes the developments of robust HPE
solutions for vehicle applications. Advances in this area can
have clear benefits in in-vehicle safety systems that can detect
when the attention of the drivers is not on the road, indicating
lack of situational awareness.
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