ASSESSMENT OF DRIVER’S DISTRACTION USING PERCEPTUAL EVALUATIONS, SELF ASSESSMENTS AND MULTIMODAL FEATURE ANALYSIS

JINESH JAIN
CARLOS BUSSO
September 6th, 2011
Long-Term Goal: Monitoring Driver Behavior

First step is to define metrics to characterize driver distraction
Definitions

• Types of Distraction
 • Visual, cognitive, auditory and physical distractions

• Report by Australian Road Safety Board
 • Voluntary or Involuntary diversion from primary driving task
 • Not related to impairment due to alcohol, fatigue and drugs
 • While performing secondary task focusing on a different object, event or person
 • Reduces situational awareness, decision making abilities
Metrics for Distraction

- Secondary task performance
 - Complete artificial detection tasks (e.g., math problem)
 - Effectiveness (accuracy) and efficiency (required time)
- Surrogate schemes
 - The lane change test (LCT) [Mattes & Hallén, 2008]
 - Visual occlusion approach [Foley, 2008]
- Primary task performance metrics
 - Lateral control, longitudinal control, brake response
Metrics for Distraction

- Eye glance behavior
 - Detailed eye-control metrics (e.g., within-fixation metrics, eye closure pattern, eye-off-the-road duration)
 - Coarse visual behavior metric (e.g., head movement)
- Subjective assessments [Victor, 2008]
 - Subjective mental workload (NASA-TLX)

Not all these metrics can be directly used to define labels to train machine learning
Our Goal

• To define reference labels for distracted drivers
 • Facilitate the training of classifiers
 • Real driving conditions

• To explore and compare 3 different approaches:
 • Self evaluations (post driving questionnaires)
 • Perceptual evaluations (external raters)
 • Multimodal feature analysis (deviation from normal behaviors)
UTDrive

- Front facing camera
 - PBC-700
 - 320 x 240 at 30fps
- 4 - channel Microphone array
 - 25kHz
- CAN Bus for Steering wheel, Vehicle speed, Brake, Gas
- Road facing camera
 - 320 x 240 at 15fps
Protocol

- 2 runs of driving per subject
- First run – with 7 tasks
 - Operating a Radio
 - Operating Navigation System (GPS)
 - Operating and following
 - Cell phone
 - Operating and talking
 - Describing Pictures
 - Conversation with a Passenger
- Second run – neutral driving (without tasks)

20 drivers
Good Day light, dry weather conditions to reduce environmental factors
Self Assessments

- Assumption:
 - Drivers are aware of the distractions induced by common secondary tasks

- Questionnaires completed by drivers after the recording
 - They rate how distracted they felt while performing tasks
 - 1 – less distracted, 5 – more distracted

Secondary tasks:
- Radio
- GPS - Operating
- GPS - Following
- Phone - Operating
- Phone - Talking
- Pictures
- Conversation
Self Assessments

- More Distracting
 - GPS - Operating
 - Phone - Operating
- Less Distracting
 - GPS - Following
 - Conversation

Visual intensive tasks are perceived more distracting
Perceptual Evaluations

• Procedure:
 • Videos segmented into 5 sec videos
 • Subset of videos randomly chosen (480 videos)
 • 3 samples x 8 tasks x 20 drivers = 480
 • Twelve evaluators - UTD students ($\rho = 0.63$)
 • Three independent evaluations per video

• Advantages
 • Labels assigned to localized segments
 • Videos can be assessed by many raters

Secondary tasks
• Radio
• GPS - Operating
• GPS - Following
• Phone - Operating
• Phone - Talking
• Pictures
• Conversation
Perceptual Evaluations

- More Distracting
 - Radio
 - GPS - Operating
 - Phone - Operating
 - Pictures

- Less Distracting
 - GPS - Following
 - Phone - Talking
 - Conversation

Visual intensive tasks are perceived more distracting
Multimodal Feature Analysis

- What features can be used to characterize distractions?

- Approach:
 - Contrasting features from task and normal conditions (for each route segment)
 - Hypothesis testing (matched pairs)
Multimodal Feature Analysis

- **CAN-Bus Information**
 - Steering wheel angle (Jitter), Vehicle Speed, Brake Value, Gas pedal pressures

- **Frontal Facing video Information:**
 - Head pose (yaw and pitch), eye closure
 - Extracted with AFECT

Courtesy: Machine Perception Laboratory, University of California, San Diego
Multimodal Feature Analysis

- Matched pairs Hypothesis Testing ($p = 0.05$)
The mean of head - yaw is an important feature
Multimodal Feature Analysis

- Error plot for the mean of head - yaw

More distracted
 Multimodal Feature Analysis

- Some tasks produce higher deviation in the features from normal conditions
Multimodal Feature Analysis

- Other tasks produce small or no deviation in the features from normal conditions
Conclusions

• Three methodologies to describe drivers’ distraction
 • Self evaluations
 • Perceptual evaluations
 • Multimodal feature analysis

• Consistent results are observed across approaches
 • Visual distractions are better described than cognitive distraction (e.g., Phone - Talking [Strayer et al., 2004])

• Current work: we are conducting subjective evaluations with mental workload scales
Discussion & Questions

THANK YOU!