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Abstract— Head pose estimation is an important problem as it
facilitates tasks such as gaze estimation and attention modeling.
In the automotive context, head pose provides crucial information
about the driver’s mental state, including drowsiness, distraction
and attention. It can also be used for interaction with in-vehicle
infotainment systems. While computer vision algorithms using
RGB cameras are reliable in controlled environments, head pose
estimation is a challenging problem in the car due to sudden
illumination changes, occlusions and large head rotations that are
common in a vehicle. These issues can be partially alleviated by
using depth cameras. Head rotation trajectories are continuous
with important temporal dependencies. Our study leverages this
observation, proposing a novel temporal deep learning model for
head pose estimation from point cloud. The approach extracts
discriminative feature representation directly from point cloud
data, leveraging the 3D spatial structure of the face. The frame-
based representations are then combined with bidirectional long
short term memory (BLSTM) layers. We train this model on the
newly collected multimodal driver monitoring (MDM) dataset,
achieving better results compared to non-temporal algorithms
using point cloud data, and state-of-the-art models using RGB
images. We further show quantitatively and qualitatively that
incorporating temporal information provides large improvements
not only in accuracy, but also in the smoothness of the predictions.

Index Terms— Driver head pose estimation, deep learning,
point cloud, temporal modeling.

I. INTRODUCTION

THE era of fully autonomous vehicles is unquestionably
approaching. However, according to the National High-

way Traffic Safety Administration [1], the road map for devel-
oping autonomous vehicle technology before 2025 includes
only “partially automated safety features” and that “[auto-
mated vehicles] are a future technology rather than one that
you’ll find in a dealership tomorrow or in the next few
years.” Many safety issues facing autonomous vehicles remain
unresolved [2]. These statements emphasize the importance of
developing advanced driver assistance system (ADAS) while
the technologies for fully autonomous vehicles are still being
developed. A key component of ADAS is to estimate the
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head pose of the driver. The driver head pose is useful for
tasks such as driver attention and distraction detection [3]–[7],
interaction with in-vehicle infotainment system [8] and driver
drowsiness detection [9]. Even after the technology for fully
automated vehicle matures, there is still a need for head pose
estimation algorithms to monitor driver attention during take-
over decisions, and to clarify commands using multimodal
navigation or infotainment systems (e.g., “what is the address
of that store?”, while a passenger glances at a given building).

While research in head pose estimation using RGB data
has been an active research problem for a long time, esti-
mating head pose using depth data is relatively recent. The
solutions have relied on several algorithms including random
forest (RF) [10], particle swarm optimization (PSO) [11],
iterative closest point (ICP) [12], a combination of the PSO
and ICP algorithms [13], 3D histogram of oriented gradients
(HOG) [14], support vector machine (SVM) [15], triangular
surface patch (TSP) features [16], and deep learning solu-
tions [17]–[20]. While these approaches have reliable per-
formance in constrained domains, the challenging conditions
inside a vehicle limit the use of these approaches [21]. The
driver head pose is not necessarily frontal and may change
quickly, where non-frontal faces are often associated with
segments of interest (e.g., eye-off-the-road events). Other
challenging conditions in the vehicle include frequent changes
in illumination, affecting the quality of the data, and common
facial occlusions.

A key observation inspiring our work is that head pose
trajectories are continuous, where previous frames provide
valuable information to assess the head pose of a new frame.
Incorporating temporal models can attenuate some of the chal-
lenges in head pose estimation inside a vehicle. Studies have
considered head pose estimation from depth data by exploring
temporal modeling. These approaches usually involve tracking
with algorithms such as ICP with a face model [22]–[27].
These approaches usually use the estimation of one or a limited
number of previous frames as the starting points to estimate the
head pose on a new frame, without using the inherent motion
information present in the data [22], [23], [25], [26]. Moreover,
the target applications of these approaches are usually cases
where the user performs confined head rotation in a controlled
laboratory setting [22], [23], [25]–[27]. These approaches also
often rely on precise facial landmark detection [22]–[24],
[26], [27] and require RGBD data [22]–[24], [26], [27].
Some of these methods require complex and hard-to-construct
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face models as prior information [22], [24]–[27]. There are
many studies showing success in temporal modeling in videos
using deep learning in tasks such as video action recog-
nition [28], [29], video summarization [30], video emotion
recognition [31], [32], video object segmentation [33], point
cloud refinement [34], and future frame prediction [35]. Deep
learning models can leverage longer temporal dependencies,
and benefit from increasing the size of the corpus, without
requiring handcrafted features or face models.

This study proposes a temporal deep learning head pose
estimation algorithm from point cloud designed specifically to
track the orientation of the driver’s head while he/she operates
a vehicle. The approach has two main components: feature
extraction and temporal modeling. The first component is the
feature extraction module, which builds on the framework
proposed in our preliminary work [20]. It extracts a feature
representation directly from the point cloud data. The approach
relies on a modified version of the set abstraction layer used
in the PointNet++ framework [36]. The feature extractor has
three main building blocks: sampling, grouping and PointNet.
In sampling, we perform iterative farthest point sampling
(IFPS) to get anchor points from the input, which will be
used in the grouping step. The points are selected to reduce
the dimensionality of the data while keeping their structure.
In grouping, we use the ball query algorithm, in which
neighboring points within a distance of each anchor point are
grouped together. In PointNet, we use a parameter-shared mul-
tilayer perceptron (MLP) to capture local features from each
point. The PointNet layer also has a max pooling operation
that selects the most representative feature for each neighbor-
hood. The sequence of sampling, grouping and PointNet is
repeated five times to form deeper feature representations to
predict the head pose. The second component is the temporal
modeling module, which leverages the dependencies across
frames, improving the accuracy and smoothness of our pre-
dictions. After extracting the feature representation of each
frame, we model temporal information using bidirectional
long short term memory (BLSTM) layers to explicitly capture
the movement of the head. This approach differs from previous
studies that merely use a limited number of previous frames as
initialization of tracking based methods [22], [23], [25], [26].
The BLSTM layers can extract longer temporal information
from previous and future frames. The contextual window
is around 2.84 seconds in our implementation. While this
study targets automotive applications, our proposed approach
can also be applied in other domains that require head pose
estimation in challenging environments such as human-robot
interaction (HRI) in crowded spaces.

We evaluate our approach on the multimodal driver mon-
itoring (MDM) database [37], which is a naturalistic driving
corpus. The corpus was specifically collected to directly assign
head pose labels to each frame by using the Fi-Cap device [38]
(i.e., a helmet with 2D fiducial markers worn on the back of
the head to avoid occlusions with frontal cameras). As a result,
we have millions of frames that can be used to train our pro-
posed models. We achieve angular errors of 5.63◦ or less in all
three rotation axis. We show large improvements in prediction
accuracy by using this model compared to the state-of-the-art

RGB head pose estimation algorithms OpenFace 2.0 [39],
Hopenet [40], and ZFace [41]. The improvements over these
baselines are especially large in the challenging frames where
the ground truth rotation angles are large, showing the benefits
of estimating head pose using point cloud data. We also
demonstrate the importance of modeling temporal information
by comparing our proposed approach with a static framework
that only has the feature extraction component. The results are
consistently better by using the temporal modeling component.
Furthermore, the experimental evaluations qualitatively and
quantitatively show the additional benefit of improved smooth-
ness in the predicted trajectories by using the proposed tempo-
ral model compared to the static counterpart. We also evaluate
the proposed approach on the BIWI database, achieving better
results than alternative approaches. The contributions of this
paper are the following:

• To the best of our knowledge, we propose the first deep
learning temporal head pose estimation algorithm from
point cloud data, targeting automotive applications.
• The approach directly extracts discriminative head pose
information from the point cloud data without handcrafted
features, leveraging temporal information across frames.
• We build and evaluate the proposed approach using the
MDM database, which was specifically collected to derive
annotations of head pose for each frame using the Fi-Cap
helmet, allowing us to train our deep learning models.

The rest of the paper is organized as follows. Section II
reviews the related studies on head pose estimation from depth
cameras, with and without temporal modeling. Section III
describes the proposed model. Section IV describes the MDM
database used for building and evaluating the models, and
the inter-subject calibration algorithm used to estimate the
head pose results. Section V describes the implementation of
our proposed approach. Section VI presents the experimental
results of the proposed model compared with various RGB
and depth based baselines. Section VII concludes the paper,
summarizing the contributions of this study and describing
future research directions.

II. RELATED WORK

A. Head Pose Estimation From Depth Camera

While there have been important advances in head pose
estimation from RGB data [42], most studies in this area
using depth cameras are relatively recent, as a consequence
of the developments of depth cameras. These studies can
be classified into the following two categories: template-
matching based and feature based approaches. A typical
template-matching based approach would require a face model
that is either acquired online or offline. Then, algorithms
such as ICP or PSO are used to find the transformation
between the template and each frame to derive its head pose.
Bär et al. [12] proposed a multi-template ICP approach for
head pose estimation of a driver. In this work, they noted
that depth cameras mounted on the dashboard of a car may
only capture the driver’s face partially in non-frontal poses.
Therefore, they used three different face templates, performing
three ICP operations per frame. Padeleris et al. [11] proposed
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a PSO based algorithm. They first collected a reference image
for each user. During run time, they used the PSO algorithm
to search a pose in the 6-dimensional pose space such that
the frame after the transformation is the most similar to the
reference. Meyer et al. [13] proposed an algorithm that reg-
isters a morphable face model for the depth data in question,
using a hybrid framework that combines the PSO and ICP
algorithms. While their method does not require a subject-
specific face model, they initialized the morphable model with
a meticulously created 3D Basel Face Model [43]. A somewhat
different approach is proposed by Jiménez et al. [44]. They
proposed a head pose estimation method based on a stereo
camera. They construct a 3D face model with stereo images,
estimating head pose by solving a nonlinear least squares
problem.

The second type of approaches for head pose estimation
using depth cameras is the feature-based approach, which
takes the depth data, usually represented as depth maps, and
extracts features at different scales. The features are then
used to estimate the head pose trajectories. Fanelli et al. [10]
proposed an algorithm using RF regression. They assumed
that face detection is already done. They use random patches
on the depth maps as the input. The random forest model
maps the input patches to the output head pose. Saeed and
Al-Hamadi [15] first performed face detection. Then, they
extracted HOG features from both the RGB images and
the depth maps. These features are used to train a SVM
to predict the head pose. There are many recent studies
utilizing deep learning for head pose estimation. For example,
Venturelli et al. [19] and Schwarz et al. [17] treated depth
images as RGB images, extracting feature representations with
convolution neural networks (CNNs).

Studies have shown the benefits of extracting discriminative
features directly from point cloud data [36], [45]–[47]. To the
best of our knowledge, the only study using this approach for
head pose estimation is our preliminary study [20], which is
the building block of our proposed approach in this paper.

B. Temporal Head Pose Estimation From Depth

Head pose trajectories are continuous and smooth, which
has motivated the research community to explore temporal
modeling for head pose estimation using depth images. Several
of these studies are simple extensions of approaches presented
in Section II-B by adding a tracking component. Li et al. [26]
used a person-specific face model to estimate the initial head
pose. The next frames are established by tracking consecutive
frames. They predicted the head pose by performing ICP on
the current and previous frames after subtracting head motion
with a Kalman filter based motion predictor. Sheng et al. [25]
proposed a statistical 3D face model with uncertainty esti-
mation using the ray visibility constrain (RVC) algorithm for
tracking. Compared to ICP, RVC can identify overlapping parts
of a head that are visible in both frames, making the model
less vulnerable to local minima. Yu et al. [24] proposed to fit
a 3D morphable model (3DMM) online, reconstructing a 3D
full head model. For tracking, they used the Kanade–Lucas–
Tomasi (KLT) feature tracker on the projected 2D images.

They argued that explicitly exploiting visual motion is better
than simply using the estimated head pose in frame i − 1 as
initialization for frame i . Borghi et al. [48] proposed a deep-
learning based model with CNN as a feature extractor. They
used depth images, treating them as normal RGB images. The
temporal modeling is captured with long short-term memory
(LSTM) [49] from high-level features. While they claimed
that this model is designed for driver head pose estimation,
they only tested their model on datasets recorded in controlled
laboratory settings.

C. Temporal Point Cloud Processing With Deep Learning

There are very few studies exploring temporal deep learn-
ing modeling for point cloud, which motivates this study.
Liu et al. [50] proposed a temporal point cloud processing
framework with deep learning for classification, segmentation
and scene flow estimation (i.e., non-automobile applications).
The approach was based on PointNet++ [36]. In this work,
Liu et al. [50] treated a sequence of point cloud as one big
point cloud. They efficiently constructed spatiotemporal neigh-
borhoods at different scales to process point cloud sequences.
Since this approach collects information from multiple point
clouds in time to give one output, it is not effective in tracking
temporal movement. Therefore, in our work, we take a differ-
ent approach by separately processing individual point cloud
frames, which are later combined by performing temporal
feature refinement on higher level features.

III. PROPOSED METHOD

We propose an algorithm that directly processes temporal
point cloud sequences, predicting head poses for the entire
sequence. Our proposed approach for head pose estimation
automatically extracts discriminative features directly from
point cloud, modeling temporal information with recurrent
models that have access to future and previous features.
We make the assumption that the driver’s head is present in
every frame. Therefore, we do not use any head detection
algorithm.

We consider a point cloud sequence X of length N . For a
frame t , the point cloud data is denoted by Xt, which consists
of the 3D coordinates of nt points (nt ,3). The model finds a
mapping f such that

f (X, t) = yt, yt ∈ R
6 (1)

where yt is a vector representing the head pose estimation for
frame t , which depends on the values of an N-length point
cloud sequence (X). In this study, we use a 6D vector to
represent the head rotation, as suggested by Zhou et al. [51].
This 6D vector is the first two columns extracted from the
full rotation matrix and can be easily converted back to a
full rotation matrix via the Gram-Schmidt process. In our
implementation, we downsample the point cloud data to obtain
a fixed number of points per frame (i.e., nt is a constant).

In our preliminary work, we evaluated head pose estimation
by directly processing point cloud data, instead of treating
point cloud data as images [20]. Our study builds upon this
preliminary work, leveraging temporal information to estimate
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Fig. 1. Proposed temporal model for head pose estimation from point cloud data. The feature extraction module extracts feature representation for each
frame, which are combined by the temporal modeling module.

head pose trajectories. Figure 1 illustrates our model, which
has two main parts, namely feature extraction and temporal
modeling. This section describes our proposed solution for
head pose estimation.

A. Feature Extraction

The feature extraction approach is inspired by the Point-
Net [45], and PointNet++ [36] frameworks. Both of these
approaches proposed models that target general point cloud
classification and segmentation tasks (i.e., non-automobile
applications). The method directly operates on point clouds,
without projecting the 3D points into 2D images. There-
fore, they preserve the spatial resolution of the point cloud
data. In particular, we use the set abstraction layer in the
PointNet++ framework.

The feature extractor has three building blocks: sampling,
grouping and PointNet (left side of Fig. 1). The sampling block
reduces the dimension of the point cloud data. We downsample
the input point cloud data using the iterative farthest point
sampling (IFPS) algorithm, choosing a preset number of the
most representative points from the entire point cloud. Xt =
{P1, P2, . . . , Pnt } represents the set of nt points in the input
point cloud. The goal is to obtain a reduced yet representative
set with m points that describes the data, where nt � m.
First, the IFPS algorithm selects a point at random, Pj1 .
Then, it searches for Pj2 , the point that is farthest away
from Pj1 . The algorithm continues iteratively selecting points
that are farthest away from the selected set of points until
reaching the desired number of points m. The process selects
XAnchor

t = {Pj1, Pj2, . . . , Pjm }. We refer to these selected
points as anchor points. A benefit of this step is the reduction
of the computational cost of the algorithm, while maintaining
useful information about the structure of the point cloud data.

The grouping block aims to aggregate neighboring points to
the anchor points by selecting samples within a certain radius
centered at the anchor points. This step uses the set Xt, which
includes all the points in the point cloud. The size of this set
is (nt , 3). For each anchor, we select l points that we want
to associate with the anchor. The algorithm looks for points
where the distance to the anchor is less than the radius. The
search finishes when l points are found. This step defines the

spatial region around anchor points, over which we extract
features. The outputs of the grouping block is XGroup

t , which
consists of m sets of l points in a 3 dimensional space (m, l, 3).

The PointNet block takes the points in each spatial neigh-
borhood as the input of a weight-shared multi-layer perceptron
(MLP) network. Mathematically, the PointNet block can be
written as a mapping g,

g(XGroup
t ) = POOL(h(XGroup

t )) (2)

h : R
m×l×3 �→ R

m×l×K (3)

P O O L : R
m×l×K �→ R

m×K (4)

where K is the desired output feature dimension, h is a set
of MLP functions, and P O O L is a pooling function applied
to each group. This network transforms the points in the
selected region into a feature representation that is trained to
be discriminative for head pose estimation. There is a pooling
operation after the MLP layers, which combines the feature
from all the points in each spatial neighborhood such that there
is one representation per spatial neighborhood. One may use
multiple radii in this step to capture spatial neighborhoods of
different size, achieving a better representation of the input.

The sequence of sampling, grouping and PointNet can be
repeated multiple times to obtain high level features. During
grouping, the feature maps of the previous PointNet layer,
with dimension d , are concatenated with the representation.
Therefore, the dimensions of the input and output of the
grouping block are (nt , 3 + d) and (m, l, 3 + d), respectively.
We implement the sampling-grouping-PointNet blocks five
times. The last block groups and unifies the information across
the anchor points. The details of the implementation are given
in Section V. The output vector from the feature extractor
has a dimension 256D. Notice that the original PointNet and
PointNet++ frameworks were designed for classification and
segmentation problems. In contrast, we use this formulation to
extract features from a point cloud for a regression problem.

B. Temporal Modeling

We hypothesize that capturing temporal information is
important for head pose estimation in the vehicle, which
can attenuate the problem associated with missing frames
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Fig. 2. Experimental vehicle used for collecting the multimodal naturalistic
data. The figure also shows the Fi-Cap helmet, which provides frame-based
ground truth information for the head pose.

due to occlusions, bad illumination or intense head rotations.
As shown in Figure 1, each frame is processed by the feature
extraction module. The output of this module is fed to our
temporal modeling block. We aim to use recurrent neural
networks (RNNs) to capture the temporal relationship between
consecutive frames. BLSTMs are the concatenation of LSTM
layers implemented in forward and backward directions, con-
straining the current frame on previous and future frames,
respectively. BLSTMs can leverage short and long time depen-
dencies. They also avoid the vanishing gradient problem of
RNNs. Notice that the approach can be alternatively imple-
mented with regular LSTMs if a causal model is needed.
We implement the proposed approach with a different number
of BLSTM layers. Section VI-D evaluates the best setting for
our model. The output of the last BLSTM is connected with a
fully connected layer with linear activation. The output layer
has six nodes, representing the head orientation.

IV. MULTIMODAL DRIVER MONITORING DATABASE

A. Description of the Corpus

The multimodal driver monitoring (MDM) database [37] is
a large-scale naturalistic driving corpus with various sensors,
including four RGB cameras, a time-of-flight camera, and a
microphone array. We also collect the controller area network-
bus (CAN-Bus) recordings of the vehicle. Figure 3 shows
examples of the images collected with the RGB and time-
of-flight sensors for one frame. We use GoPro Hero 6 Black
cameras to record RGB videos at 60 fps, capturing the driver’s
head from the back (Fig. 3(a)), the road (Fig. 3(b)), the driver’s
face (Fig. 3(c)), and the driver’s face as seen from the rearview
mirror (Fig. 3(d)). In addition, we place a CamBoard pico flex
camera close to the face camera recording point cloud data at
45 fps. We acquire depth and gray-scale (Fig. 3(e)) data from
this depth camera. The depth data and the gray-scale data are
perfectly aligned. We use a clapping board to synchronize
the sensors. Figure 2(a) shows the UTDrive (2006 Toyota
RAV4) [52]–[54], which is the experimental vehicle used to
collect the data.

A key feature of this corpus is the use of the Fi-Cap [38]
device, which is shown in Figure 2(b). Fi-Cap is a helmet
with 23 predefined 2D fiducial markers. Subjects are asked
to wear the Fi-Cap helmet during the data collection. The
2D fiducial markers can be easily tracked since they have
predefined patterns with fixed sizes. By tracking these markers,

Fig. 3. Examples of images and point cloud data collected from multiple
sensors in the MDM database.

we have continuous per-frame head pose annotations. This
feature is very important for our study, since we can potentially
train our model with each frame in the corpus. Because the
Fi-Cap helmet is worn on the back of the driver’s head, it does
not create occlusions of the driver’s face when recorded with
frontal cameras. The RGB camera at the back of the vehicle
is added to collect the placements of the 2D fiducial markers.
The reader is referred to Jha and Busso [38] for more details
about the Fi-Cap helmet, and the approach to convert all the
detected 2D fiducial markers into head pose angles.

Each driver is instructed to perform the following tasks in
the recordings of this corpus:

• In a parked car, the driver is asked to look at markers
placed at various locations inside the car. Afterwards,
the driver is asked to follow a moving target outside the
car held by one of the investigators conducting the data
collection.
• While driving the vehicle, the driver is asked to look
at the same set of markers inside the car. This step is
conducted only when it is safe.
• The driver is asked to follow a predefined route. During
this process, the investigator asks the driver to look at
street signals, shops, buildings and other vehicles on the
road.
• The driver is asked to follow a predefined route shown
in a navigation application on a smartphone. The inves-
tigator asks the driver to change the radio stations.

The MDM is a naturalistic driving dataset with a large
range of head poses and gazes, given the aforementioned
protocol. Figure 4(a) shows the distribution of the head
orientation angles for yaw and pitch for the MDM dataset.
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Fig. 4. The distribution of the frames as a function of yaw (horizontal) and
pitch (vertical) angles of the MDM dataset compared to the DDPose dataset.
The figure is in logarithmic scale for better visualization. The lighter the color
is in each bin, the more frames are found in each rotation range. The bins
in white color and no number means no frame is available in the specific
rotation range.

As a reference, we compare the distribution of our corpus
with the head orientation angles from the DDPose dataset [55],
shown in Figure 4(b). Overall, the MDM corpus provides
larger head rotation coverage, including an order-of-magnitude
more frames in most regions. It is a relatively large database,
where we currently have recordings from 59 subjects. This set
consists of 48.9 hours of recordings (10,541,166 frames). The
train set has recordings from 39 drivers, the development set
has recordings from 10 drivers and the test set has recordings
from 10 drivers. The partitions are balanced in terms of gender,
and use of glasses. We used all the scenarios of the recordings,
including the driver following markers in a parked car, and
naturalistic driving recordings, as defined in the data collection
protocol. The readers are referred to Jha et al. [37] for more
details about this corpus. For this study, we build and evaluate
the proposed model with point cloud data obtained from the
depth camera. The RGB cameras are only used in this study
for (1) calibrating the coordinates across drivers (Sec. IV-B),
(2) extracting the frame-based head pose labels, and (3) eval-
uating the RGB baselines.

B. Calibration

In the recording of the MDM dataset, we asked every sub-
ject to wear the Fi-Cap helmet [38] to acquire the frame-level
ground truth for his/her head pose. We conduct per-subject
calibration to obtain the head pose labels, compensating for
small placement variations of the Fi-Cap helmet.

Fig. 5. Calibration process to compensate for the different variations across
subjects in wearing the Fi-Cap helmet. A global reference is used across
subjects, where one or multiple local reference frames are used to normalize
the head pose values.

We evaluate two alternative calibration approaches. The first
approach is the method presented in our previous study [20].
We first identify a global reference frame from one of our
subjects with frontal pose (frame labeled as “Global Refer-
ence” in Fig. 5(a)). This frame is used as a global reference
for all the frames across the drivers. Then, we estimate a
local reference frame (LRF) for each driver, which is the
frame with the closest head rotation to the global reference
frame, based on the estimations from OpenFace 2.0 [39]
on the gray-scale image of the CamBoard pico flex camera.
We make the assumption that the global and local reference
frames have the same rotation. Let the head rotation matrix
of the local reference frame given by Fi-Cap be RLRF . Then,
the calibration matrix for that driver is Rc = RLRF . For a
new frame belonging to this subject with a head rotation of
RFiCap given by Fi-Cap, the final head rotation of this frame
is Rt = R−1

c RFiCap. We refer to this approach as the single
LRF calibration, since this approach uses one local reference
frame per driver.

In our analysis of models trained with this calibration
approach, we noted drifts between the ground truth and
the predictions using a single local reference frame per
driver. These drifts are due to slight movements of the Fi-Cap
helmet during the data recording. A second problem is that
the head rotations of the local reference frame and the global
reference frame are unavoidably different, which challenges
the assumption made in our first approach. To address these
limitations, we implement a second approach that relies on
more than one local reference frame per driver to avoid drifts
and uses the ICP algorithm to compensate for the rotation
differences between the local and global reference frames.

Figure 5(a) shows the second calibration approach. This
approach finds multiple frames that are closest to the global
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reference frame determined by OpenFace 2.0. Notice that the
local and global reference frames do not have to have the
exact head rotations, where the differences are compensated
with the ICP algorithm. Figure 5(b) shows an example where
three images are selected as local reference frames. With the
local and global reference frames, we perform face detection
on the gray-scale data. Because the depth and gray-scale data
acquired by the CamBoard pico flex camera are perfectly
aligned, we can directly crop the face area around the depth
data. We also implement this approach for the global reference
frame. The cropped depth images for the global and local
reference frames are the input of the ICP algorithm to find a
transformation between them. We refer to this transformation
as RLocalGlobal. This transformation compensates for differ-
ences between the local and global reference frames. Then,
we estimate the rotation matrix of the LRF given by the Fi-Cap
helmet (RLRF). The final calibration matrix Rc is given by
multiplying RLocalGlobal and RLRF .

Rc = RLocalGlobal RLRF (5)

Rt = R−1
c RFiCap (6)

From a given frame at time t , we obtain the final rota-
tion matrix of this frame by multiplying the inverse of the
calibration matrix (R−1

c ) with the rotation matrix given by
the Fi-Cap helmet (RFiCap). To avoid selecting a noisy local
reference frame, we average the calibration matrices from
nearby local reference frames. We rank-order the frames based
on the increasing distance to the global reference frame.
We only consider frames where the angular distance to the
global reference frame is less than a given threshold (i.e., the
summed squared distance from all three angles should be less
than 16.41◦ – empirically set). We select up to 250 frames
from the ranked list, estimating their respective calibration
matrices (Rc). We group these candidate local reference frames
if they are within 10 seconds from each other. We only
consider groups of three or more candidate local reference
frames to attenuate the impact of a bad estimation of a single
Rc. The average of Rc for each of the selected groups are
used as LRF. For a given frame t , we select the calibration
matrix Rc from a local reference frame that is the closest to
frame t in time. We refer to this approach as the multiple LRF
calibration, since this approach uses several local reference
frames per driver.

V. EXPERIMENTAL SETTINGS

This section describes the experimental settings used to
train and evaluate the models. For consistency, all the models
are trained on the train set, optimizing the performance on
the development set. The test set is only used to evaluate
the best models. We describe implementation details for the
proposed approach (Sec. V-A) and the details of the baseline
models (Sec. V-B).

A. Implementation of the Proposed Approach

The first step in our approach is to downsample the point
cloud sequence by four for faster processing. The feature
extractor approach is implemented with five repetitions of

TABLE I

IMPLEMENTATION DETAILS FOR THE FEATURE EXTRACTION MODULE.
m IS THE NUMBER OF SAMPLE CHOSEN AS ANCHOR POINTS. dc = 3

IS THE DIMENSION OF THE INPUT COORDINATE SYSTEM (I.E., x , y
AND z). r REPRESENTS THE RADIUS OF THE BALL QUERY FOR

THE GROUPING OPERATION. l REPRESENTS THE NUMBER
OF POINTS WITHIN r TO BE CHOSEN IN THE GROUPING

STEP. d f IS THE FEATURE DIMENSION OF THE

PREVIOUS SET. FOR THE FIRST
SET, d f = dc = 3

the sampling-grouping-PointNet sequence. Table I shows the
details of the parameters of the proposed network. In each
sampling-grouping-PointNet block, we first sample m anchor
points from the input using the IFPS algorithm. Notice that the
sampling is always done on the 3D coordinates (x , y, and z),
as opposed to the outputs from the previous layers. This
approach is implemented even in later layers. In the grouping
layer, we use ball query to group the features of dimension
d f around each of the m anchor points. We group up to a
maximum of l points that lie within a radius of r . We use
multiple grouping radii to cover different spatial resolutions
(e.g., the first grouping block has r ∈ {0.1, 0.2, 0.4}). We use
MLP with three layers for the PointNet block. We use a MLP
for each of the alternative radii configuration in the grouping
block. The number of nodes per layer is given in Table I.

As an example, we further describe the details of the
first sampling-grouping-PointNet block. We start by sampling
512 points from the input S1. Then, we group l = 4, 8 and
16 points, creating G1, G2, and G3, respectively. The outputs
of G1, G2, and G3 are processed by three MLP. For G1,
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the MLP has three layers with 8, 8 and 16 nodes, respectively.
For G2, the MLP has three layers with 16, 16, and 32 nodes,
respectively. For G3, the MLP has three layers with 16,
24 and 32 nodes, respectively. The output of the MLP are
T1, T2 and T3, which are concatenated to form T4. For
the second sampling-grouping-PointNet block, the sampling
operation selects 256 out of the 512 point clouds used in the
first block. The input of the grouping operator is the 80D
feature representations from T4, corresponding to the selected
256 point clouds. This vector is concatenated with the x ,
y and z coordinates of the selected points, creating a 83D
representation (G4-G6).

The first four sampling-grouping-PointNet blocks are sim-
ilar. However, we only sample one point in the last block.
All the points are grouped together (i.e., infinite radius r ).
The output of the grouping block is the input of the three
layer MLP, where each of the layers is implemented with
256 nodes. The final embedding for the feature extraction
module is T5, which is a 256-D vector. This vector is the
input for the temporal model.

The temporal model takes as input the 256D feature vector
from the feature extractor. It is implemented with two BLSTM
layers. Section VI-D investigates the performance of the model
based on different number of BLSTMs. The BLSTMs are
trained with 256 nodes per direction (512 in total). The output
of the BLSTM layers is a 512D feature vector. The length of
the sequence is 32-frames (i.e., N = 32). At 45 fps, 32 frames
corresponds approximately to 2.84s after downsampling the
point cloud data by four. The length of the sequence can be
increased, but the complexity to train and evaluate the model
will also increase.

We use the ADAM optimizer with a learning rate
of 0.001 and a learning rate decay of 0.7 per 75,000 steps.
The model is implemented with the L2 loss as the cost
function. For the BLSTM models, we use a batch size of four
with a sequence length of 32 frames. Section VI-E analyzes
the performance for different sequence lengths. We train our
models on a NVIDIA Quadro RTX 8000 GPU. For the
BLSTM models, we first train the model with one BLSTM
layer. This model is used to train the proposed model with two
BLSTM layers. In Section VI-D, we evaluate the model with
three BLSTM layers. Following a similar strategy, we train
this model starting from the pre-trained two BLSTM model.

B. Baselines

To demonstrate the effectiveness of our proposed temporal
algorithm, we compare it to its static counterpart as well as
some commonly available state-of-the-art head pose estimation
algorithms form RGB images.

The static version of our models corresponds to the algo-
rithm proposed in our preliminary work [20], which relies
exclusively on the feature extraction module in Fig. 1. This
approach processes one frame at a time, without considering
temporal information. We refer to this approach as the static
model. We implement the feature extraction block using the
same parameters described in Table I. The 256D embedding
from the feature extractor is directly connected to the output

TABLE II

ANALYSIS OF THE CALIBRATION APPROACHES OF THE FI-CAP HELMET.
THE TABLE PROVIDES THE MSE FOR THE STATIC AND PROPOSED

APPROACHES USING A SINGLE OR MULTIPLE

local reference frame (LRF)

layers, implemented with a linear activation function to predict
the 6D head pose representation. For the static model, we use
a batch size of 128. This model will illustrate the benefits
of using temporal modeling to estimate head pose from point
cloud data.

OpenFace 2.0 [39] is a state-of-the-art face behavior analy-
sis toolkit. For head pose estimation, it first utilizes con-
volutional experts constrained local model (CE-CLM) [56]
to detect and track facial landmarks. Then, it solves the
Perspective-n-Point Problem to acquire the head pose.

Hopenet [40] is one of the state-of-the-art deep learning
based methods for head pose estimation using RGB images.
This model is based on the ResNet50 architecture [57] trained
on the 300W-LP dataset [58]. The 300W-LP dataset is a large-
scale synthetically expanded dataset. They use standardized
face images from multiple databases with medium poses. They
are rotated in a 3D space after being fitted to a face model
to obtain large poses for yaw rotations. Hopenet is a fully
end-to-end model without using facial landmark detection.

ZFace [41] is another state-of-the-art automatic face analysis
tool, which provides head pose estimation. It first uses a Viola
and Jones [59] face detector. Then, it estimates the location of
a set of dense face landmarks, fitting a part-based 3D model.
They estimate the head pose as part of the fitting process.

For OpenFace 2.0, Hopenet, and ZFace, we use the full
1920 × 1080 RGB video from the frontal GoPro camera as
the input (Fig. 3(c)).

VI. EXPERIMENTAL RESULTS

This section describes the experimental evaluation to assess
the strengths of the proposed framework.

A. Effectiveness of Calibration

The first part of the evaluation aims to determine the best
calibration approach. We train the proposed model and the
static model using the two calibration methods described in
Section IV-B (i.e., use of one or multiple local reference
frames). Notice that the calibration changes the ground truth
labels, and, therefore, it has an important effect on the results.

Table II lists the mean square error (MSE) between the
prediction and the group truth values provided by the Fi-Cap
helmet. For the static model, we observe important overall
improvements when using the multiple LRF framework. Most
of the improvements are associated with the detection of pitch
rotations, where the MSE is 7.59◦ lower. The results for yaw
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TABLE III

PERFORMANCE OF THE PROPOSED AND BASELINES SYSTEMS. THE
TABLE LISTS THE MSE OF THE MODELS. FOR THE RGB BASELINES,

WE COMPARE THE RESULTS ONLY ON THE FRAMES THAT THE

RGB ALGORITHMS PROVIDED AN ESTIMATION

movements also improve by 2.43◦ and the results for roll
rotation are similar using both calibration methods. For the
proposed model, we observe similar results. Using multiple
LRF in the calibration provides improvement of over 8◦ in
pitch estimation. While using a single LRF leads to slightly
better performance for roll rotation, on average, using multiple
LRF leads to 2.66◦ improvements. We notice that the Fi-Cap
slipping problem happens mostly in the pitch axis. Therefore,
using multiple LRF for the calibration provides much better
results in the pitch axis, which demonstrates its effectiveness
as a solution to the problem. Based on the results from this
section, we adopt the calibration approach using multiple LRF
for the rest of the paper.

B. Comparison With Baselines

The first comparison is with the static model. The difference
between the static and proposed models is the addition of
the temporal information by using BLSTM layers. Notice that
both of these approaches generate head pose predictions for
all the frames. Therefore, the test set used for this evaluation
includes all the frames in the test set. Table III shows that the
addition of temporal information provides clear improvements
over the static method. On average, the MSE error decreases
by 0.78◦ by using the proposed model, which corresponds
to a 13% relative improvement. Interestingly, Table II shows
that the proposed model with BLSTM is better using either
of the calibration methods. The improvements are consistently
observed for roll, yaw and pitch rotations.

We also compare our model to the OpenFace 2.0, Hopenet
and ZFace toolkits in head pose estimation. The first block
in these methods is detecting the face. For some frames,
these methods fail to detect the face, so they cannot provide
head pose information. The percentage of missing frames
are 3.08%, 3.35% and 8.71% for OpenFace 2.0, Hopenet
and ZFace, respectively. In contrast, our point cloud based
approach does not require face detection, so we have pre-
dictions for all frames. This is another advantage of our

approach. Since the frames that are missed by the RGB based
methods are often the most challenging cases, it is not fair to
compare these approaches with our model using the entire test-
ing set. Instead, we reevaluate the performance of our method
using only the frames that were successfully processed by the
RGB approaches. For example, the OpenFace set in Table III
corresponds to all the frames that were successfully processed
by the OpenFace 2.0 toolkit. Our proposed temporal model
clearly outperforms all baselines using RGB images, especially
for roll rotations. For yaw and roll rotations, we observe
consistent improvements over all the baselines. For pitch rota-
tion, ZFace is the only method that outperforms our proposed
model. However, our method provides a 19.6% reduction in
the average angular error across the three rotations. Another
important observation is that ZFace does not provide results
for as many as 8.71% of the frames, which may cause it to be
unreliable in critical segments. As a result, the angular range
for pitch rotation for Zface is more limited than the range
provided by our model (see Figs. 6(c) and 6(e)).

Figure 6 visualizes the results for the proposed and baseline
methods. The figures plot the average error across the three
angles as a function of yaw and pitch angle. The yaw-pitch
space is split into bins. Each bin contains all the frames
with head pose labels lying within the yaw and pitch ranges
defined by the bin. Darker bins indicate a lower error in the
head pose predictions. Empty bins indicate that no frames
are available in the specific rotation range. This visualization
helps us understand how each method performs in each angle
range. Figure 6(e) shows that the proposed model provides
comparable or better results across angles than the results
obtained with OpenFace 2.0, Hopenet and ZFace. The benefits
of using our approach is especially clear in frames with large
rotations. The proposed model provides the most competitive
results in all rotation ranges. This is an important strength
of our model compared to state-of-the-art head pose esti-
mation algorithms. OpenFace 2.0 is very competitive in the
central region, which has frames with small head pose angles
(Fig. 6(a)). However, the performance drops significantly as
the head rotation becomes larger. The results for Hopenet
shares a similar trend. (Fig. 6(b)). The algorithm does not
provide results for many frames with pitch rotation above
60◦. Figure 6(d) shows that ZFace provides competitive results
in the center region of the heatmap, where the overall head
rotation is mostly frontal. However, it provides results in
a much smaller angle range compared to other approaches,
in particular, our proposed approach. While the improvement
from the static model is present across all ranges, it is espe-
cially noticeable in frames with yaw angles bigger than 50◦.

C. Failure Examples

Figure 7 shows some examples where the model does
not perform well. In Figure 7(a), we believe the model has
large error because the face is severely occluded from the
left, resulting in visibility of less than half of the face.
In Figures 7(b) and 7(c) the ground truth rotation is relatively
large. In the training data, frames with large rotation tend
to appear less frequent than frames with smaller rotations.
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Fig. 6. Performance of the proposed algorithm compared to the baselines as a function of yaw and pitch angles. The figure shows the per bin average
geodesic distance between the true and predicted head rotation. Darker color indicates lower errors. The bins that have white color and are empty indicate
that no frames are available in the specific rotation range.

Fig. 7. Examples of frames in which the proposed model does not work
well. The figure lists the Euler angles of the ground truth and predicted head
orientation for roll, yaw and pitch (in that order).

Therefore, it is more difficult for the model to predict large
rotations.

D. Effect of the Number of BLSTM Layers

This section studies the optimal number of BLSTM layers.
We implement our proposed approach with one, two and
three BLSTM layers. We keep all the other hyperparameters
the same, reporting the MSE results on the test set of the
MDM database. Table IV shows the results. The proposed
model outperforms the static model in terms of MSE even
with one BLSTM layer (see Table III). This result illustrates
the importance of temporal modeling for head pose estima-
tion, especially in challenging environments such as inside a
vehicle. On average, Table IV shows that we have relative
improvements of 4.76% when we increase the number of
BLSTM layers from one to two. The performance gains are

TABLE IV

COMPARISON OF THE PROPOSED MODEL IMPLEMENTED

WITH ONE, TWO OR THREE BLSTM LAYERS

TABLE V

STUDY OF SEQUENCE LENGTH USED TO TRAIN THE BLSTM
LAYERS. THE TABLE COMPARES THE PROPOSED MODEL

TRAINED WITH SEQUENCES OF 16, 32 OR 48 FRAMES

on roll and yaw rotations. The accuracy in yaw estimation for
a head pose estimation system in a vehicle application is often
more crucial than the other two angles. Therefore, the 7.67%
relative improvement in yaw estimation is important. On aver-
age, we observe a 5.76% relative drop in performance when we
increase the number of BLSTM layers from two to three. Roll
and pitch rotations are the angles that are more affected. Two
BLSTM layers are enough to model the temporal relationship
in the data for this problem.

E. Effect of Sequence Length

We conduct an additional experiment on the proposed
approach implemented with two BLSTMs trained to evaluate
the impact of the sequence length in the model. We com-
pare the model trained with sequence length of 16, 32 and
48 frames, using a batch size of 8, 4 and 3 while keeping
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all other hyperparameters the same. The results are shown
in the Table V. We observe that the model trained with a
sequence length of 48 frames performs the best, and the model
with 16 frames performs to worst. The improvement from
16 to 32 frames is slightly bigger than from 32 to 48 frames.
The result from this table is in line with our expectation.
Adding longer sequences to train the BLSTM leads to better
results as longer contextual windows enable the model to
better fit the data. Using 32 frames, as proposed in this study,
is a good compromise between computational complexity and
performance.

F. Smoothness of the Head Pose Trajectories

In addition to improving the accuracy in head pose estima-
tion, modeling temporal information also provides smoother
trajectories. Figure 8 compares the prediction of the static
and proposed models for a segment in the test set. The
figure also includes the prediction of the static model after low-
pass filtering the output to smooth its trajectory. The curves
provide the yaw rotations as an example. We observe that the
predictions from the proposed model are much smoother than
the predictions of the static model, providing a better fit for
the ground truth trajectory. While using a low-pass filter can
effectively smoothen the trajectories, Figure 8(b) shows that
the filtered predictions are not as good as the predictions by
the temporal model with BLSTM layers (Fig. 8(c)).

We present two metrics to quantify the smoothness of
the trajectories in the entire test set. The first metric is the
lag-1 autocorrelation of the curves. We shift the time-series
by one frame and compute the Pearson correlation between
the original and the shifted time series. For smooth trajec-
tories, the correlation between both sequences will be high.
The second metric is the root mean squared of the difference
(RMSD) of the trajectories. We find the difference in the
predictions of consecutive frames. Then, we estimate its root
mean square values. For smooth trajectories, the difference
between consecutive frames should be small. Therefore, they
will have smaller RMSD value.

Table VI shows the results for the static and proposed
model implemented with two BLSTMs evaluated on the test
set. Compared to the static model, the proposed temporal
model provides a large improvement in both of the smoothness
metrics, which confirms the qualitative findings observed from
Figure 8. As expected, the low-pass filter applied to the output
of the static model clearly improve the smoothness in the
predictions. However, despite the smoothness improvement,
Table VI shows that using low-pass filter only provides limited
improvements in terms of MSE. The model with BLSTM fits
the data better than this static model.

G. Computational Resource

We train and test our models on an NVIDIA Quadro RTX
8000 GPU. We present the computational resource required,
both in terms of time and GPU memory to train and test one
batch of 32 frames of our proposed model as well as the static
model without the BLSTM layers in Table VII. The proposed
model with LSTMs has more parameters and requires more

Fig. 8. Example of a head pose trajectory predicted by the static model,
static model with low-pass filter, and the proposed temporal model for yaw
movements (in degrees). The trajectories are compared with the ground truth
trajectories obtained with the Fi-Cap helmet.

TABLE VI

SMOOTHNESS ANALYSIS OF THE PREDICTED HEAD POSE TRAJECTORIES.
THE TABLE PRESENTS THE LAG-1 AUTOCORRELATION AND RMSD

FOR THE STATIC MODEL, STATIC MODEL WITH LOW-PASS FILTER

AND PROPOSED TEMPORAL MODEL. THE TABLE ALSO LISTS
THE PERFORMANCE OF THE MODELS IN TERMS OF MSE

memory and time during both training and testing. However,
the inference time is merely 52ms or equivalently 615 FPS.
This speed is faster than the typical 30 or 60 FPS video
streams, so real time implementation is feasible. If latency is a
problem, we can also replace the BLSTMs layers with simpler
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TABLE VII

COMPUTATIONAL RESOURCE REQUIRED FOR THE STATIC MODEL AND
PROPOSED MODEL FOR A BATCH OF 32 FRAMES

TABLE VIII

RESULT OF THE PROPOSED TEMPORAL APPROACH

IN THE BIWI DATASET

LSTM layers. While a mobile platform currently has less
computational power compared to our GPU, we are confident
that by pruning and optimizing the model, our approach can
run in real-time in an embedded in-vehicle system.

H. Result on Biwi

Finally, we evaluate our approach in a second database to
validate the proposed approach in a different set of recordings.
We consider the Biwi Kinect head pose database [60], which
has been widely used for head pose estimation. The recordings
are captured with a Microsoft Kinect from 20 subjects, who
were asked to create 24 sequences. In total, the corpus has
about 15k frames, with both RGB and depth data. The
rotations are in the range ± 50◦ for roll, ± 75◦ for yaw
and ± 60◦ for pitch. We crop out the face of the depth data
using the provided bounding box and convert the depth data
into point clouds. We follow the train-test split defined in
Borghi et al. [18]. We train the proposed temporal approach
with two BLSTM layers on the Biwi dataset, starting with
a pre-trained model built with the MDM dataset. Table VIII
presents the result of our method on the test set, and the results
from other two depth-based methods. We report the results in
term of the mean absolute error (MAE) for consistency with
previous studies. Our proposed model clearly outperforms the
approach from Meyer et al. [13] and Borghi et al. [18]. The
only exception is in the yaw axis, where the model from
Borghi et al. [18] has a slight margin. Another advantage
of our model is the lower standard deviation in the error,
indicating that our model is more consistent.

VII. CONCLUSION

This paper presented a novel temporal deep learning based
head pose estimation model for point cloud data, targeting
automotive applications. The approach consists of a frame-
based feature extractor module that creates representations,
which are later connected by a temporal modeling module. The
feature extractor extracts discriminative feature representation
directly from point cloud by sampling the data, grouping the
points, and extracting local features that are later combined.

The temporal modeling block takes the frame-based feature
representations capturing the important relationship in head
pose across nearby frames. To demonstrate the effectiveness of
our proposed algorithm, we collected a naturalistic multimodal
database from multiple drivers. This corpus provides head pose
information for the driver for each frame, providing an ideal
platform to train and evaluate our proposed approach. The
experimental section showed that our proposed temporal
model outperforms a static model using point cloud data
that does not leverage temporal information. The predicted
head pose trajectories are not only more accurate, but also
smoother. Moreover, we compared the proposed algorithm
with state-of-the-art RGB-based head pose estimation algo-
rithms, achieving superior performances. The improvements
in performance are particularly clear for frames with non-
frontal head rotations. Furthermore, our proposed temporal
solutions can provide reliable head pose estimations even when
the head pose is extreme. These are challenging cases for
RGB-based solutions that tend to work only with limited head
rotations. These results are crucial for in-vehicle applications,
as non-frontal head poses are particularly important for mon-
itoring driver attention (e.g., eyes-off-the-road [61], mirror
checking actions [6], visual and cognitive distractions [5]).
The computational analysis demonstrated that the system can
process 650FPS, which is enough for real-time implementa-
tion. Finally, the model was validated with the BIWI dataset,
obtaining better performance than previous studies.

The results from this study suggest that point cloud data is
an appealing alternative to RGB data in the estimation of head
pose information in challenging environments. The structure
of the face, as obtained from the cloud point data, provides
enough information to reliably estimate head pose rotation.
While the proposed temporal approach was evaluated in a
vehicle environment, we expect that this approach can also be
extremely useful in other applications. For example, we expect
that our proposed approach can lead to better performance
than RGB based solutions in applications evaluated in crowded
environment.

As part of our future work, we will work on combin-
ing different sensor information for head pose estimation
(RGB, infrared and depth images). We envision algorithms
that can independently work with a subset of modalities,
increasing the robustness as more information is available.
This flexible, multimodal solution offers an ideal formulation
to deal with challenging conditions for in-vehicle applications,
relying only on the modalities that are available for any
given frame. We will also explore alternative temporal mod-
eling formulation, analyzing the tradeoff between accuracy in
our predictions and the computational resources required to
operate the system. Finally, head pose estimation constitutes
an important building block for predicting gaze, given the
strong correlation between the driver head pose and gaze [62].
Various studies have used this information to predict coarse
visual attention from the driver head pose [63]. Building on
our previous studies using RGB cameras [64]–[66], we plan
to use head pose derived from depth sensors to build prob-
abilistic visual map describing gaze regions driven by head
pose.
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