
Robust Driver Head Pose Estimation in Naturalistic Conditions from
Point-Cloud Data

Tiancheng Hu, Sumit Jha and Carlos Busso

Abstract— Head pose estimation has been a key task in
computer vision since a broad range of applications often
requires accurate information about the orientation of the
head. Achieving this goal with regular RGB cameras faces
challenges in automotive applications due to occlusions, extreme
head poses and sudden changes in illumination. Most of these
challenges can be attenuated with algorithms relying on depth
cameras. This paper proposes a novel point-cloud based deep
learning approach to estimate the driver’s head pose from
depth camera data, addressing these challenges. The proposed
algorithm is inspired by the PointNet++ framework, where
points are sampled and grouped before extracting discrimina-
tive features. We demonstrate the effectiveness of our algorithm
by evaluating our approach on a naturalistic driving database
consisting of 22 drivers, where the benchmark for the orien-
tation of the driver’s head is obtained with the Fi-Cap device.
The experimental evaluation demonstrates that our proposed
approach relying on point-cloud data achieves predictions that
are almost always more reliable than state-of-the-art head pose
estimation methods based on regular cameras. Furthermore,
our approach provides predictions even for extreme rotations,
which is not the case for the baseline methods. To the best
of our knowledge, this is the first study to propose head pose
estimation using deep learning on point-cloud data.

I. INTRODUCTION

Head pose estimation (HPE) is an important task in
computer vision. It has a wide range of applications in
areas such as advanced driver assistance system [1], visual
attention modeling [2] and gaze estimation systems [3]–
[6]. In automotive applications, which is the focus of this
study, head pose estimation can be very valuable. Head pose
estimation can be used to monitor driver’s awareness [7],
[8], assist interaction with in-car entertainment system [9],
understand driver’s intention and predict future driver actions
[10]. Therefore, having a reliable head pose estimation
system is crucial for advances in in-vehicle safety systems.

The topic of HPE has been extensively studied using
regular RGB cameras. The solutions include nonlinear man-
ifold learning [11], random forest (RF) [12], support vector
machine (SVM) [13], and most recently, deep learning [9],
[10], [14], [15]. However, progress on developing robust
head pose estimation for automotive applications is limited
[1], [10], [15], [16]. Existing research has shown promising
results, but there is still room for improvement as existing
HPE algorithms commonly suffer from high errors when

*This work was supported by Semiconductor Research Corporation
(SRC) / Texas Analog Center of Excellence (TxACE), under task 2810.014.

Tiancheng Hu, Sumit Jha and Carlos Busso are with the De-
partment of Electrical Engineering, University of Texas at Dal-
las, Richardson, Texas, USA. {Tiancheng.Hu@utdallas.edu,
Sumit.Jha@utdallas.edu, busso@utdallas.edu}

(a) Occlusion (b) Extreme head pose (c) Illumination

Fig. 1: Examples of three types of challenges for HPE in a
car. The frames are from recordings from the MVAD corpus.

there are occlusion of the driver, extreme head rotations,
and sudden changes in illumination in the vehicle [17]. (Fig.
1). A time-of-flight camera based solution can, to a certain
degree, alleviate some of the issues affecting head pose
estimation in the vehicle. Because time-of-flight cameras use
active infrared lighting to acquire images, they are immune
to sudden illumination changes, which commonly occur in a
moving vehicle. The most common way to represent depth
camera recording is through depth maps, which project depth
information into a single view [9], [10], [12], [15]. This
approach ignores important 3D spatial information. Instead,
we represent depth camera recording using point-clouds. A
point-cloud contains 3D positions of each point relative to
the center of the camera. Figure 2(a) shows an example of
a point-cloud frame, describing the face of the driver.

Inspired by the success of point-cloud approaches such
as PointNet++ [18], we present a deep learning based end-
to-end regression algorithm to estimate the driver’s head
pose that directly operates on point-cloud data. We modified
the set abstraction layer from PointNet++ as the backbone
of our model. In each set abstraction layer, we have three
components: sampling, grouping and PointNet. For sampling,
we perform iterative farthest point sampling (IFPS) to choose
anchor points from the input. For grouping, we use ball query
to group neighboring points of each anchor point together.
Then, we perform PointNet, which consists of a parameter
shared multilayer perceptron (MLP) to capture local features,
and a maxpooling operation after the MLP. We repeat the
set abstraction layers five times, where each of them is
implemented with three different scales. Finally, we generate
a 6D vector as our prediction from linear combinations of the
output from the last set abstraction layer from which we infer
the orientation of the head. To the best of our knowledge, this
is the first work on HPE using deep learning-based algorithm
on point-cloud.

We use a multimodal database to demonstrate the ef-



(a) point-cloud data (b) Grayscale image

Fig. 2: Examples of images from the depth camera. (a) point-
cloud data from one frame, (b) grayscale image from the
depth camera used as a reference for calibration (Sec. IV-B).

fectiveness of our algorithm. The model is trained and
evaluated with data from 22 subjects, who participate in
naturalistic driving recordings with ground truth for head
pose information provided by the Fi-Cap device [19]. We
compare this algorithm with two automatic HPE algorithms
using regular RGB cameras: OpenFace 2.0 [20] and FAN
[21]. The results show that using our point-cloud algorithm
leads to lower mean square errors (MSE) over the baselines
for most conditions. Likewise, we obtain predictions for a
wider range of HPE compared to the baselines, which is
another important benefit of our approach. These results
demonstrate the benefits of our proposed solution.

II. RELATED WORK
A. General Head Pose Estimation

The computer vision community has extensively studied
the problem of head pose estimation. Murphy-Chutorian and
Trivedi [22] and Czuprynski and Strupczewski [23] surveyed
studies on head pose estimation. Methods using appearance-
based models have recently received increased attention due
to the popularity of convolutional neural network (CNN).
Liu et al. [24] proposed a regression model implemented
with CNN trained with synthesized RGB images. They
demonstrated significant improvement in HPE compared to
previous works. Most existing works have focused on HPE
from RGB images. Recently, commercial depth cameras have
been increasingly accessible, which has led to a growing
interest in HPE from depth images and point-clouds. Meyer
et al. [25] localized 3D head in a depth image, fitting the head
portion of the depth image onto a 3D morphable face model
by combining the particle swarm optimization algorithm and
the iterative closest point algorithm.

B. Driver Head Pose Studies
HPE is a difficult task inside vehicles using regular cam-

eras. Jha and Busso [17] evaluated state-of-the-art HPE al-
gorithms concluding that illumination, extreme head rotation
and occlusions significantly impact the results. In fact, the
selected algorithms were not able to provide an output in
8.9% to 21.8% of the frames.

Murphy-Chutorian et al. [1] used two support vector
regressors (SVRs) to estimate head rotations (pitch and
yaw). They detected the face with a cascaded-Adaboost face
detector. They extracted the localized gradient orientation

(LGO) histogram for each detected head, which were used
as features to train the SVRs. LGO histograms were more
robust to light conditions, as tested on a real vehicle. Bär
et al. [26] designed an approach for head pose and gaze
estimation intended for in-vehicle applications. The method
uses multiple 3D templates that are aligned with point-cloud
data using the iterative closest point (ICP) algorithm. To
address the problem of temporal partial occlusions of the
driver’s face, they adopted multiple different face templates,
taking the mean value of the different estimations. The
approach was evaluated with laboratory recordings. Borghi
et. al [9] utilizes a multi-modal approach based on several
CNNs. They trained one CNN for head localization. They
used three CNNs independently trained with either RGB
images, depth data or optical flow information. The three
CNNs were then fused to consolidate the HPE results. The
method was evaluated with data from the POSEidon corpus,
which was collected in a car simulator. Schwarz et al. [10]
proposed a CNN based model that fuses information from
infrared and depth images for HPE, evaluating their models
on the DriveAHead corpus.

C. Processing Depth Data Using Deep Learning
The most common approach to represent data from depth

cameras is to create 2D depth maps, where a value in the
array provides its depth information at that specific x and y
location. This representation has been used widely used in
HPE [12], [25]. For example, studies have used CNN-based
approaches to process depth maps for HPE [10], [15].

An alternative way to represent depth data is with point-
cloud, which is a two dimensional array containing the x,
y and z locations of each detected point in the coordinate
system of the camera. For point-cloud classification tasks,
Wu et al. [27] proposed a 3D CNN approach that represent
3D point-cloud as a binary probabilistic distribution on a
3D voxel grid. They used a 3D CNN to process the grid.
This approach is not very effective because converting a
3D point-cloud into a 3D voxel grid inevitably leads to
information loss. This method also requires a large model
size and, therefore, it is harder to train, especially given
that point-cloud datasets are usually much smaller than RGB
image datasets. Another approach proposed by Su et al. [28]
was to generate 2D image renderings of a 3D point-cloud,
and used these renderings to train a CNN-based algorithm
with view polling for 3D object classification. This approach
gives more compelling results compared to the 3D voxel
grid CNN approach. More recently studies include PointNet
[29] and PointNet++ [18]. These two approaches directly
process 3D point-cloud data without converting to any other
intermediate representation, showing very competitive results
on classification and segmentation tasks.

III. PROPOSED APPROACH
Inspired by the success of PointNet [29] and PointNet++

[18], we propose a model that utilizes the set abstraction
layers used in PointNet++ as a feature extractor for HPE. The
feature representation is the input of a fully connected layer
with linear activation to estimate the rotation of the head.



x5

6D

PointNetSampling Grouping

Set		Abstraction		Layer

Fig. 3: Proposed point-cloud approach for HPE. The model
creates a 6D vector from which we can estimate the head
rotation of the driver.

Zhou et al. [30] show the benefits of representing orientation
with a 6D vector extracted from the rotation matrix. We
follow this approach by training our model to estimate this
6D vector. Notice that it is easy to convert the 6D vector into
a full rotation matrix by using the Gram-Schmidt process.

Consider the point-cloud from frame t, consisting of nt

points. We create a nt × 3 vector Xt. The proposed deep
learning model creates a mapping f such that

f(Xt) = y, y ∈ R6 (1)

where y is the 6D vector representing the head orientation.
This section explains our proposed approach.

A. Model Structure
Figure 3 shows a diagram of our proposed point-cloud

model. Table I shows the implementation details of our
model using five set abstraction layers, where the number
of sampled points in each set is sequentially reduced.

The main blocks of the set abstraction layer are sampling,
grouping, and PointNet. The first step is sampling points
from the point-cloud data, where we reduce the level of
redundancy in the raw data, and increase the computational
efficiency of the algorithm. We use the iterative farthest point
sampling (IFPS) algorithm, choosing a predefined number
of anchor points. For example, the first set abstraction layer
samples 512 points, denoted by S1 in Table I.

The second step is grouping the anchor points. Similar to
the way CNN works, the goal is to capture the relationship
between the anchor points and their neighboring points. The
algorithm uses ball query to group nearby points around
an anchor point. The grouping is implemented at three
different resolutions. For example, the first set abstraction
layer simultaneously groups l = 4 points within r = 0.1
units of each anchor point (G1), l = 8 points within r = 0.2
units of each anchor point (G2), and l = 16 points within
r = 0.4 units of each anchor point (G3).

The third step is PointNet [29], which aims to find a
discriminative feature representation. This goal is achieved
by transforming the points into a higher dimension, where
we can achieve better discrimination. We can view these
transformations as extra layers that capture the features of
each anchor point as well as its neighboring areas. Point-
Net is implemented with three-layer multilayer perceptrons
(MLPs) with shared weights. Every point is passed through
the same set of filters. The MLP projects the point into a

different feature representation. There are polling operations
after each MLP transformation. For example, PointNet on
the first set abstraction layer operates on the groupings G1,
G2 and G3. For the grouping G1, the three layers of the
MLP have 8, 8 and 16 neurons, respectively. We use the
maxpooling operation to create the 512 × 3 output (T1).
For the grouping G2, the three layers of the MLP have
16, 16 and 32 neurons, respectively. After the maxpooling
operation, we create a 512×3 output (T2). For the grouping
G3, the three layers of the MLP have 16 , 24 and 32 neurons,
respectively. We also obtain a 512× 3 output (T3) after the
maxpooling operation. PointNet provides a 512 × 9 output
(T4) by concatenating T1, T2, and T3.

Our proposed point-cloud solution uses five set abstraction
layers. The second set abstraction layer is exactly the same
as the first set, except that the input is no longer the raw
point-cloud data. Instead, we perform sampling from S1,
and grouping from T4 (e.g., sampling from the anchor
points selected in the previous set, and grouping from the
transformed anchor points from the previous set). From the
second set onward, the PointNet layer will take as input the
concatenation of the grouping step output and the anchor
points. The third and fourth set abstraction layers are similar
to the second set. The fifth set abstraction layer only has
one anchor point. In the grouping layer, we group all points
together by using an infinity radius. Then, we perform the
usual PointNet layer, but with weighted average pooling at
the end (T5).

PointNet++ was designed for classification and segmen-
tation problems. Instead, we are using the set abstraction
layer to obtain a discriminative feature representation for a
regression problem. The final step is to connect T5 to a fully
connected layer with linear output units, creating a 6D vector.

IV. MULTIMODAL DRIVER MONITORING DATASET
This study uses recording from the Multimodal Driver

Monitoring (MDM) Dataset, which we are currently col-
lecting at The University of Texas at Dallas (UT Dallas).
The corpus consists of naturalistic driving recordings on the
UTDrive vehicle [31]–[33], which is a 2006 Toyota RAV4
equipped with multiple sensors. This data collection is an
ongoing effort, where the set used for this study contains
recordings from 22 subjects (18 males, 4 females), with a
total duration of 17 hours and 39 minutes. The subjects are
mostly college students attending UT Dallas.

In this data collection, we use four GoPro HERO6 Black
cameras installed to collect (1) frontal views of the driver’s
face, (2) semi-profile views of the driver’s face as viewed
from the rear mirror, (3) the back side of the driver’s head
to record the Fi-Cap device (see Sec. IV-B), and (4) the
road. We set the frame rate to be 60 fps with a resolution
of 1920 × 1080 pixels. Likewise, we use a CamBoard pico
flexx for depth data recording. The camera is capable of
capturing both depth data and grayscale images. Pico flexx
supports a resolution of 224 × 171 and we set the frame
rate to the maximum, which is 45 fps. The measuring range
is between 0.1m and 4m which suits the requirement for in-
vehicle recordings of a driver. We use a clapping board to



TABLE I: Model specifications for the proposed approach.
m is the number of sample chosen as anchor points. dc = 3
is the dimension of the input coordinate system (i.e., x, y
and z). r represents the radius of the ball query for grouping
operation. l represents the number of points within r to be
chosen in the grouping step. df is the feature dimension of
the previous set. In the first set, df=dc=3.

Layer Specification Output Dimension

Sampling m=512 [m=512,dc=3] (S1)
Grouping [r=0.1,l=4] [m=512,df =3,l=4] (G1)

[r=0.2,l=8] [m=512,df =3,l=8] (G2)
[r=0.4,l=16] [m=512,df =3,l=16] (G3)

PointNet [8,8,16] [512,3] (T1)
[16,16,32] [512,3] (T2)
[16,24,32] [512,3] (T3)

[512,9] (T4)
Sampling m=256 [m=256,dc=3]
Grouping [r=0.15,l=8] [m=256,df =12,l=8]

[r=0.3,l=16] [m=256,df =12,l=16]
[r=0.5,l=24] [m=256,df =12,l=24]

PointNet [16,16,64] [256,64]
[32,32,64] [256,64]
[48,48,96] [256,96]

[256,224]
Sampling m=128 [m=128,dc=3]
Grouping [r=0.15,l=8] [m=128,df =227,l=8]

[r=0.3,l=16] [m=128,df =227,l=16]
[r=0.5,l=24] [m=128,df =227,l=24]

PointNet [16,16,64] [128,64]
[32,32,64] [128,64]
[48,48,96] [128,96]

[128,224]
Sampling m=64 [m=64,dc=3]
Grouping [r=0.2,l=16] [m=64,df =227,l=16]

[r=0.4,l=32] [m=64,df =227,l=32]
[r=0.8,l=48] [m=64,df =227,l=48]

PointNet [32,32,64] [64,64]
[48,48,64] [64,64]
[64,64,128] [64,128]

[64,256]
Sampling m=1 [m=1,dc=3]
Grouping [r=inf] [64,259]
PointNet [256,256,384] [384] (T5)
Fully Connected Layer 6 [6]

synchronize the two types of cameras at the beginning of
each recording. We align intermediate frames based on the
time elapsed from the clapping frame to the current frame.

A. Data Collection Protocol
We ask the driver to perform the following protocol:

• Phase I: Drivers are asked to look at markers inside and
outside the car at different locations while the car is parked.
• Phase II: Drivers are asked to operate the vehicle fol-
lowing a predefined route. While driving, they are asked to
identify landmarks on the route and cars satisfying certain
conditions (e.g., red cars and specific car make). We also
asked them to look at markers inside the vehicles.
• Phase III: Drivers are asked to conduct secondary tasks
following the instructions given by the researcher leading the
data collection. The tasks include changing the channel on a
radio, and following GPS directions.

The subjects are told to only follow our instructions when
they believe it is safe to conduct these tasks. They have the
right to withdraw from the experiment at any time during
the recording.

B. Ground Truth labels for HPE using Fi-Cap
A key feature of the corpus is that robust head pose labels

can be easily assigned to each frame, with the use of the Fi-

Cap device [19]. Fi-Cap is a 3D helmet with 23 AprilTags
[34]. AprilTags are 2D fiducial markers with predefined
patterns that can be robustly detected with regular cameras.
It is easy to estimate the orientation and position of each
AprilTag with regular cameras. The Fi-Cap is worn on the
back side of the driver’s head, without creating occlusions
for cameras recording the frontal views of the face. The
purpose of the camera behind the driver is to record as
many AprilTags as possible to derive reliable labels for HPE.
We use the Kabsch algorithm and the ICP algorithm to
obtain the ground truth for the head pose from all the visible
AprilTags (details are explained in Jha and Busso [19]). We
have reported a detailed analysis on the performance of Fi-
Cap, finding that the median angular error was only 2.30◦

[19].
Fi-Cap gives the head pose labels in terms of the Fi-

Cap coordinate system. We need to calibrate the coordinate
across subjects, because the participants are different, and the
actual placement of the Fi-Cap varies across recordings. We
manually select one grayscale frame from the Pico Flexx
camera as a global reference (Fig. 2(b)). All the angles
are expressed with respect to this reference. Then, we use
OpenFace 2.0 [20] (Sec. V-B) on the grayscale recordings of
each subject to find the frame for each subject that has the
most similar head pose orientation as the reference frame.
Finally, we correct the ground truth rotation of other frames
from that subject by multiplying the inverse of the rotation
matrix associated with the reference frame.

V. EXPERIMENTAL EVALUATION
A. Implementation

We use ADAM optimizer, with an initial learning rate
of 0.001. We use a learning rate decay of rate 0.7 every
2 million steps. We use a batch size of 16. The model is
implemented with a L2 loss function comparing the predicted
and actual 6D vectors representing the head rotation. We use
distance-based and statistical filters to remove points that are
clearly part of the background. Then, we apply voxel grid
downsampling to sample 5000 points from each of our point-
clouds. Each point-cloud is normalized such that the centroid
is at the origin, and all the points lie inside a unit sphere.

We split the corpus using participant-independent parti-
tions, where data from 14 subjects are used for the train set,
data from four subjects are used for the development set, and
data from four subjects are used for the test set.

B. Baselines
The baselines in this study are two state-of-the-art HPE

using regular cameras. While our approach processes data
from the CamBoard pico flexx, the baselines are evaluated
using the high-resolution frames from the GoPro HERO6
Black camera facing the driver.

The first approach is OpenFace 2.0 [20], which is a
real-time toolkit that supports many facial behavioral anal-
ysis tasks, including HPE. It utilizes convolutional experts
constrained local model (CE-CLM) [35] to detect facial
landmark. The head rotation is obtained by using the 3D
facial landmarks to solve the Perspective-n-Point Problem.



-6
0

-3
0 0 30 60

Yaw angles

-30

0

30

60

P
it
c
h
 a

n
g
le

s

3.022 3.152

3.04

3.078

3.103

3.2

3.145

3.216

3.314

3.362

3.012

3.4

3.59

3.143

3.175

3.686

3.782

3.471

3.384

4.159

4.227

3.649

3.238

4.02

4.725

4.812

4.32

3.431

3.696

4.392

4.739

4.684

4.275

3.316

3.205

3.606

4.114

4.312

4.346

4.087

3.284

3.638

3.075

3.32

3.744

3.982

4.141

3.574

3.121

3.134

3.393

3.682

3.977

3.622

3.181

3.266

3.626

3.799

3.5

3.177

3.496

3.628

3.517

3.075

3.486

3.393

3.107

3.0640.301

0.301

0

0.301

0.7782

0.6021

0

0.301

0

0.699

1.74

1

1.38

1.763

1.857

1.653

1.653

0.699

1.079

0.7782

0.301

0.8451

1.748

2.076

1.69

1.813

1.881

2.161

1.934

2.196

2.644

1.996

2.787

2.033

1.447

1

1.23

0.6021

2.217

2.587

2.233

1.851

2.064

2.241

2.167

2.152

1.716

1.602

0.9542

0.8451

1.146

0.4771

1.041

0.8451

1.968

2.559

2.752

2.716

2.792

2.505

2.286

2.373

2.086

1.778

1.204

0.8451

1.924

2.617

2.832

2.964

2.733

2.548

2.553

2.09

1.38

1.919

0.4771

1.519

0.7782

0.4771

2.158

2.585

2.91

2.754

2.686

2.299

1.881

1.613

1.322

1.724

1.255

1.204

1.477

2.453

2.93

2.526

2.199

2.037

0

1.806

2.56

2.763

2.238

1.724

1.322

0.4771

1.204

1.869

2.697

2.975

2.384

2.161

1.431

1.342

2.072

1.176

2.455

2.945

2.543

2.185

1.176

1.531

1.732

0.7782

0.4771

0

0

1.146

2.38

2.889

2.494

2.104

1.934

1.839

1.322

1.903

1.398

0.4771

1.176

0.4771

2.501

2.78

2.049

1.863

1.568

1.301

1.398

0.699

0.7782

1.785

2.22

2.664

2.978

2.627

2.196

1.908

1.204

0.301

0.301

1.544

2.127

2.842

2.064

1.633

1.447

0.699

0

1.204

2.791

2.651

2.915

2.207

0.9031

0.699

1

2.698

2.61

0.6021

0.7782

2.701

2.579

1.982

1.505

0.9542

0.301

0.6021

1.176

2.367

2.92

2.785

2.515

2.512

2.248

1.74

0.699

0.9031

1.653

2.676

2.885

2.477

2.659

2.328

2.127

1.724

1.204

0.8451

1.771

2.513

2.948

2.876

2.883

2.236

2.342

2.146

1

0.301

0.9031

1.602

2.193

2.559

2.978

2.603

2.233

1.342

1.398

0.301

1.079

1.716

2.267

2.98

2.915

2.616

2.36

1.556

0.699

0.301

0.6021

1.982

2.09

2.609

2.908

2.794

2.84

2.722

2.346

1.924

0.6021

0

0

0.7782

0.7782

1.756

2.684

2.699

2.533

2.665

2.848

2.384

1.792

0.4771

0.4771

0

0.4771

0.301

1.342

1.146

0.9031

1.146

2.207

2.188

2.408

2.093

2.533

2.595

2.086

1.672

1.041

1.724

1

0.4771

0.6021

1.176

1

1.851

1.279

1.881

1.591

1.982

2.173

2.19

1.176

1.602

1.58

1.633

1.114

1.845

0

0.7782

1.301

1.623

1.342

1.342

1.447

1.602

1

0.9542

1

0.301

0

0.301

0.7782

1.342

0.9542

0.4771

0

0

1

0.9542

1

1.5

2

2.5

3

3.5

4

4.5

5

NaN

Fig. 4: The distribution of the frames in the test set as a
function of yaw (horizontal) and pitch (vertical) angles. The
figure is in logarithmic scale for better visualization. Bins
with lighter the colors indicate more frames are found in the
corpus. The bins with white color and no number indicate
that no frames are available in the specific rotation range.

The second baseline is the face alignment network (FAN)
[21], which is a state-of-the-art deep learning based facial
landmark estimation algorithm. We use the RGB images
from the GoPro camera that match the reference frames
found in the calibration step for each of our subjects.
Then, we extract 68 landmarks with FAN for each of these
reference frames. We estimate the head pose of each frame
by comparing the positions of its 68 facial landmarks with the
corresponding landmarks from the reference frame. We use
singular value decomposition (SVD) to calculate the rotation.

The predictions from OpenFace 2.0 and FAN are with
respect to their own coordinate systems. We apply a subject-
wise transformation so that the coordinate system matches
the coordinate system of the pico fexx camera. For a given
driver, we find transformations between the ground truth
labels and the predictions of a baseline for all the frames.
Then, we find the average transformation, which is used to
compensate for the differences in the coordinate systems.
The ground truth has been filtered to consider only frames
with roll, yaw and pitch rotations below 45◦, 80◦and 70◦,
respectively. These values are considered following the head
rotation limits of an average adult [36].

C. Results
Figure 4 shows the head pose histogram for the test set as

a function of the yaw and pitch angles estimated with Fi-Cap.
The number in each bin indicates the number of frames in
that specific rotation range, where we use a logarithmic scale
(base 10) for better visualization.The majority of frames have
near frontal pose, which is expected in naturalistic driving.
Although there is comparatively less number of frames with
non-frontal poses, these frames are crucial when studying
driver distraction or maneuvering behavior.

Most HPE methods based on regular RGB images tend to
fail in challenging conditions in naturalistic driving scenarios
[17]. In these cases, the face may not be even detected.
A benefit of our proposed point-cloud approach is that we
can provide an estimation for all the frames. This is not
the case for our baselines methods. In fact, OpenFace 2.0
and FAN do not provide results for 4.85% and 2.10% of
the frames, respectively. Figure 5 shows the percentage of

-6
0

-3
0 0 30 60

Yaw angles

-30

0

30

60

P
it
c
h

 a
n

g
le

s

87.5

58.62

77.78

44.44

20.82

57.32

33.56

28.28

31.48

35.71

28.99

25.65

36.66

25.81

29.43

29.68

52.17

21.02

37.7

21.75

25.24

33.33

33.33

21.33

63.64

83.9

93.33

51.75

28.48

66.67

59.59

45.35

97.56

44.77

90

75

80

29.33

51.4

100

56.15

90.73

99.38

100

100

23.47

78.62

85.02

75

58.53

57.69

24.68

28.36

79.31

22.12

20.88

21.81

30.42

53.99

20

31.5

26.37

44.68

37.13

57.82

47.3

51.68

22.22

21.25

23.98

32.28

63.01

65.15

45.11

41.56

100

35.02

100

100

21.57

33.15

58.22

84.09

100

38.32

67.62

78.95

21.39

65.22

81.82

38.89

32.19

75.31

71.17

86.67

89.66

22.86

45.32

45.61

41.69

25.5

25

84.62

95.45

45

40.91

38

61.11

20

25

42.86

0

0

1.838

0

8.333

0

0

0

0

0

18.32

3.106

0

0

10.69

16.97

0

0

11.26

6.154

7.985

16.41

10.12

6.667

0

0

0

1.974

15.65

11.96

12.41

13.45

16.61

0

0

2.381

0

1.009

10.7

11.13

7.734

11.57

7.767

0

0

0

1.241

1.393

10.35

15.19

12.46

0

0

0

1.01

3.13

2.538

6.619

15.62

0

1.902

7.962

6.324

4.778

9.931

8.273

6.829

0

10.01

1.418

5.016

7.341

7.489

0

0

3.892

1.829

1.015

0.9844

1.351

9.756

13.56

8.411

0

1.126

5.248

0.8965

12.03

0.6523

3.186

15.03

19.88

7.692

0

0

0

0.6023

0.133

3.11

1.935

10.29

17.21

19.35

0

0

0

0

0.02595

0.2599

0.6923

1.154

3.882

10.26

4.56

11.14

0

0

0

0.4312

0.3102

0.582

1.086

1.268

5.761

14.13

18.18

0

0

0

0

0.08088

0.3268

0.8311

0.64

10.09

0

0

0.02518

0.05384

0.4201

0.6585

0.5216

1.988

0

0

0.3362

5.002

2.3

4.507

4.396

1.953

0

9.489

10.3

13.87

18.6

15.44

10.59

18.3

0

12.4

14.72

14.29

16.07

16.38

18.43

0

5.69

6.836

10.4

0

0

16.16

5.445

3.289

6.282

15.9

19.14

13.33

0

5.769

11.35

2.316

5.407

7.962

0

8.333

9.945

2.195

7.742

18.09

14.55

0

0

7.843

2.114

3.899

11.41

17.77

0

0

0

8.824

2.699

5.825

3.333

17.36

0

10

1.031

17.13 0

0

5

10

15

20

25

30

35

40

NaN

(a) Detection failure rate for OpenFace 2.0

-6
0

-3
0 0 30 60

Yaw angles

-30

0

30

60

P
it
c
h

 a
n

g
le

s

33.33

36.36

37.29

53.33

22.81

30.3

48.15

28

21.62

31.23

32.21

22.98

20.84

21.13 20.83

26.06

21.77

29.69

22.11

48.28

27.17

42.86

50

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.5848

11.76

0

0

0

0

0

0

0

0.6186

3.535

14.55

0

0

0

0

0.2113

0.1823

0.5869

5.952

3.797

16.87

0

0

0

0.8682

2.65

0.5172

4.046

16.98

0

0

0

3.614

0.8596

0.6695

0.7415

2.066

2.069

17.71

2.182

0.5211

0.5831

1.146

2.632

0

0

0

3.876

0.6765

9.376

1.438

3.205

6.299

18.6

7.246

14.29

1.25

0

0

1.136

0.7002

2.906

1.184

2.653

10.71

17.81

10

16

0

0

0.4338

1.652

0.957

0.7766

1.95

5.158

7.311

16.56

2.469

12.5

0

0

0.4624

0.5057

0.8179

1.11

2.932

3.746

6.043

3.448

13.95

0

0

0.9709

0.865

1.077

0.8093

1.043

3.024

3.818

9.375

0

0.8016

0.1735

1.039

0.5952

0.9658

9.223

2.547

6.88

0

0

1.335

0.6881

0.991

3.844

0.9091

12.91

7.916

0

0

0

0

0

0.7287

0.6445

1.032

6.326

5.735

8.21

6.116

4.308

0

0

0

0

1.733

0.5201

1.365

3.066

7.114

4.427

5.667

9.333

0.9479

3.788

10.87

0

0

0.9019

0.6701

2.9

2.617

10.11

15.82

5.147

15.59

6.767

0

0

0.8287

1.936

0.09798

2.024

7.789

9.975

5.042

0

0

0

2.197

0.4691

0.1726

7.169

8.959

15.72

0

0

0.2463

0.4944

1.929

1.458

9.808

12

0

0

0.4

4.106

4.575

13.72

17.24

11.29

0

0

0

0

0

1.172

9.016

10.81

0

0

0

0

0

0

15.85

6.803

0

0

5

10

0

0

0

5

10

15

20

25

30

35

40

NaN

(b) Detection failure rate for FAN

Fig. 5: Detection failure rate of OpenFace 2.0 and FAN as
a function of yaw and pitch rotation angles. In contrast, the
proposed approach provides estimation for all the frames.
The detection failure increases in bins with lighter colors.
The bins with white color and no number indicate that no
frames are available in the specific rotation range.

frames in each bin for which the baseline methods failed
to provide a prediction. The figure ignores bins with fewer
than 10 frames. We observe that OpenFace 2.0 has a higher
failure rate at large yaw and pitch angles. For some angle
combinations, OpenFace 2.0 fails for all frames. While FAN
has a lower detection failure rate overall, it also suffers in
extreme head poses. Instead, our approach takes the raw data
and directly predicts HPE, obtaining an estimation for all
the frames. This approach is practical in current naturalistic
driving scenarios where the presence of a person in the driver
seat is expected when the car is moving.

Table II shows the mean square error (MSE) for our model
and the baselines. The first row of the table provides the
results for our proposed approach on all the frames in the
test set. The MSEs for all the angular rotations are between
5◦and 8◦. These values show we can construct a robust HPE
model using point-cloud data, which is particularly useful in
challenging environments such as inside a vehicle.

We also compare the MSE of our method with Open-
Face2.0 and FAN. Since these algorithms do not provide
predictions for all the frames, we define two subsets for
fair comparisons with our method. We define the OpenFace
set as the subset where OpenFace 2.0 provides a predic-
tion. Likewise, we define the FAN set as the subset where
FAN provides an estimate. Table II shows that our method
provides competitive result compared to both baselines. In
the OpenFace set, our approach reaches lower MSE for roll
and pitch rotations. The proposed method is slightly worse
for yaw rotations. It is important to highlight that OpenFace



TABLE II: MSE of the proposed method using point-cloud
data. The table also compares the HPE results with the results
from OpenFace 2.0 and FAN using subsets of frames for
which the baselines provided a prediction.

Method Errors
Roll(◦) Yaw (◦) Pitch (◦)

Proposed Point-Cloud Solution 5.91 7.32 6.68
OpenFace Set

OpenFace 2.0 9.32 6.21 8.42
Proposed Point-Cloud Solution 5.48 7.15 6.39

FAN Set
FAN 11.30 19.28 8.47
Proposed Point-Cloud Solution 5.66 7.24 6.53

2.0 does not provide estimation for extreme rotations, so the
benefits of using our approach is not only better performance
for most of the angular rotations, but also predictions for all
the frames. In the FAN set, Table II clearly demonstrates
the superior performance of our algorithm over the FAN
algorithm. Our model shows much lower MSE in all the
three rotation axes.

To understand better the performance of our proposed
point-cloud approach and the baselines, we show the per-
formance of each of these methods as a function of yaw
(horizontal) and pitch (vertical) angles. Figure 6 shows the
errors compared to the ground truth head pose labels ob-
tained with Fi-Cap. The error is represented by the geodesic
distance in the rotation matrix space [37].

∆(R1, R2) = ‖ log(R1R
T
2 )‖ (2)

The color of the bin indicates the error, where darker
colors correspond to smaller errors. We ignore bins with
fewer than ten frames in this analysis. Bins that are com-
pletely white indicate that there are not enough frames for
these bins. Note that for our proposed method, the histogram
includes frames where OpenFace 2.0 and FAN do not have
predictions. Our method provides far superior performance
than the baselines in all frames, especially for frames with
large rotations. While the baselines provide reasonably good
performance for small rotations, the error grows rapidly as
the ground truth rotation increases. This particularly clear
with FAN. OpenFace 2.0 provides very good rotation esti-
mation when the overall rotation is small, but its performance
drops significantly as the rotation increases. In contrast, the
error in our approach grows much slower as the ground
truth rotation increases, allowing a wider range of rotations.
Overall, the proposed point-cloud framework provides far
superior performance in frames with large rotations while
maintaining competitive performances at small rotations.

VI. CONCLUSIONS
This paper presented a novel point-cloud based algo-

rithm to estimate the head pose of a driver from a single
depth camera. The proposed algorithms achieved promising
performances, outperforming the state-of-the-art baselines
OpenFace2.0 and FAN, which rely on regular RGB images.
The improvement in performance is especially clear on
frames with large rotations. For automotive applications such
as detecting driver distraction [7], [38], it is important to have
accurate HPE on non-frontal poses. Our method is far more

-6
0

-3
0 0 30 60

Yaw angles

-30

0

30

60

P
it
c
h

 a
n

g
le

s

22.48

21.81

21.8

20.56

20.26

32.19

20.35

20.04

21.06

22.34

37.09

26.54

22.76

21.44

25.62

20.25

30.94

20.29

26.05

37.05

32.64

23.12

22.77

30.36

28.58

20.17

29.96

32.04

23.55

22.99

24.08

22.07

24.16

28.5

21.52

22.67 21.56

20.18

31.88

20.92

24.25

23.01

23.71

21.74

23.87

29.97

24.2

22.5 24.52

31.85

59.73

22.03

57.58

61.02

35.247.948

11.41

17.88

13.11

14.74

15.06

14.01

16.78

18.75

16.16

14.39

17.11

16.08

16.69

17.1

16.17

19.24

14.13

17.83

15.83

19.11

16.27

17.38

16.53

16.37

16.64

17.77

18.93

18.67

16.6

17.4

17.72

17.96

17.94

17.83

17.29

14.08

13.38

13.5

17.61

16.62

15.91

15.47

14.33

12.71

12.81

16.03

16.98

15.82

14.94

12.76

14.3

12.59

13.01

14.64

15.67

18.78

12.35

11.6

13.21

11.71

12.62

18.51

19.97

12.57

11.75

12.53

11.56

13.07

9.384

13.73

15.89

19.2

19.02

12.22

11.34

18.1

9.964

10.3

12.59

12.23

14.31

18

19.43

14.57

9.938

8.567

10.69

8.711

11.56

13.71

12.76

15.64

19.25

11.48

11.22

8.11

7.888

7.97

8.44

11.32

12.07

11.32

14.9

7.195

7.006

6.106

6.815

7.087

7.822

11.33

14.7

17.85

12.69

5.668

6.195

5.465

6.728

7.056

8.328

11.84

16.62

5.619

6.47

6.972

7.359

8.311

10.44

11.54

16.51

9.317

7.302

9.732

8.912

10.04

11.86

11.22

16.72

19.83

13.84

13.32

8.927

8.815

8.806

9.772

10.01

11.41

13.39

13.95

16.05

16.72

8.639

9.717

9.861

10.21

9.832

11.53

12.89

14.65

13.76

9.703

11.02

11.45

10.26

10.8

10.72

11.93

14.33

17.24

19.46

19.31

11.52

9.963

12.32

12.3

11.7

13.11

14.91

18.26

12.08

11.41

11.87

14.09

14.46

15.22

13.5

11.54

11.34

13.41

13.16

14.93

14.74

12.65

18.72

16.48

12.16

14.63

12.24

10.12

11.56

17.42

15.41

9.521

14.13

19.93

15.11

14.6

19.26

17.42

9.641

13.15

12.93

10.06

14.91

14.89

8.664

11.21

13.21

0

5

10

15

20

25

30

35

40

NaN

(a) Proposed point-cloud approach

-6
0

-3
0 0 30 60

Yaw angles

-30

0

30

60

P
it
c
h

 a
n

g
le

s

28.39

25.03

44.11

20.11

90

84.84

33.12

25.55

21.42

25.94

29.76

34.32

35.74

76.04

90

83.51

90

90

25.84

22.54

24.69

22.27

29.25

26.4

29.23

28.35

20.01

33.03

71.16

61.08

25.08

36.21

39.31

33.71

29.2

25.27

37.08

43.03

42.9

32.37

23.97

28.54

30.14

32.43

29.54

26.09

25.48

23.35

28.55

25.53

22.47

20.74

25.01

83.73 25.1

38.55

32.44

21.29

64.22

25.83

47.1

21.44

20.34

21.97

20.1

64.9

23.13

28.96

23.97

22.13

22.77

20.32

22.52

22.67

26.96

21.91

25.47

22.62

23.54

27.62

27.71

27.45

27.42

23.1

21.69

21.8

31.15

35.54

29.41

29.57

25.64

23.93

23.45

23.25

35.57

33.13

27.05

29.86

27.42

27.1

27.22

42.06

41.99

27.32

25.99

27.73

29.43

29.45

28.53

32.89

34.49

31.3

47.23

27.08

29.67

32.1

49.99

32.37

38.54

34.73

51.01

39.68

34.57

66.15

17.69 16.81

16.34

12.57

17.41

18.55

18.09

13.59

12.91

13.11

14.06

16.98

12.3

12.57

12.78

19.87

11.3

11.83

14.03

16.65

8.594

11.49

15.16

14.32

13.21

9.699

15.93

9.416

8.361

12.81

13.1

14.04

15.35

11.82

10.35

11.1

12.61

12.72

8.931

9.929

10.96

11.78

13.49

11.3

14.48

14.17

16.65

6.727

10.68

7.943

8.209

9.321

11.37

13.4

14.63

11.78

11.19

8.093

7.588

6.858

6.208

8.141

12.11

13.01

14.65

13.91

8.006

9.113

10.54

7.545

5.881

5.66

8.078

11.48

9.899

17.16

12.82

7.767

4.684

6.148

6.78

5.581

4.745

4.569

6.399

9.727

12.67

11.1

12.85

5.51

7.059

5.885

4.827

4.611

4.923

6.006

8.543

9.941

11.82

8.179

7.878

6.407

5.664

5.615

5.591

8.049

11.23

12.29

10.51

10.44

7.449

7.003

7.822

8.883

18.76

13.29

15.8

13.48

10.78

9.778

10.87

13.28

12.1

17.12

19.27

19.92

17.79

17.98

16.75

11.98

11.77

15.14

16.32

19.69

19.13

18.55

14.06

12.75

16.24

19.44

17.67

15.04

18.51

19.95

18.98

17.99

0

5

10

15

20

25

30

35

40

NaN

(b) OpenFace 2.0

-6
0

-3
0 0 30 60

Yaw angles

-30

0

30

60

P
it
c
h

 a
n

g
le

s

31.75

57.92

74.33

74.42

74.79

74.87

72.66

56.3

55.28

56.29

71.98

33.04

60.01

69.13

73.78

80.66

75.65

72.81

69.59

72.87

73.02

60.48

60.33

34.39

36.18

35.77

65.6

64.78

62.99

63.32

76.73

69.22

67.26

56.77

20.42

28.48

37.57

39.98

35.86

75.74

64.49

61.94

70.72

61.07

23.77

29.39

29.67

35.95

46.09

63.79

57.54

61.73

66.29

52.06

42.59

30.8

31.16

40.71

43.45

58.98

56.75

53.38

59.66

61.09

35.37

27.82

33.86

33.38

46.7

48.76

48.13

58.62

41.99

30.82

31.75

35.47

47.83

34.55

30.34

39.72

46.9

42.21

33.23

36.62

29.18

34.53

36.51

36.17

35.69

37.79

46.19

60.95

27.8

28.66

24.37

28.81

29.57

30.39

37.8

34.97

35.74

39.63

29.1

28.43

26.75

22.17

22.81

22.88

27.78

28.52

28.12

34.03

35.99

29.45

28.6

20.16

22.62

22.9

26.86

26.45

33.97

35.29

20.05

20.4

34.93

22.85

31.82

21.58

21.42

31.52

35.89

30.36

27.98

20.82

31.06

37.22

37.09

33.09

22.98

20.02

26.88

32.22

33.28

23.57

24.1

22.1

34.17

28.7

25.9

28.41

22.68

20.69

23.23

20.76

21.07

24.82

35.79

52.07

25.13

26.58

29.34

26.54

23.25

23.3

21.18

32.05

29.3

22.52

25.81

33.69

39.92

25.84

37.87

32.43

31.05

26.67

26.01

27.58

31.48

37.25

26.26

23.98

36.3

45.13

34.39

33.85

31.77

28.56

24.66

28.65

30.85

77.12

52.06

42.63

33.62

34.51

28.58

28.25

36.32

30.43

43.46

58.62

38.06

45.98

47.96

44.45

27.61

42.63

41.43

39.8

44.7

51.69

51.26

49.58

37.89

50.49

45.82

42.04

20.86

29.5

38.37

48.3

54.14

48.31

48.29

60.45

59.27

61.55

82.73

64.37

37.6

32.55

45.33

56.3

52.62

52.64

67.43

54.95

62.47

64.86

85.11

56.56

81.1

60.55

44.6

13.94

13.87

17.71

15.75

18.03

17.7

17.27

12.95

11.81

16.09

18.14

12.96

14.69

14.29

10.01

9.796

11.91

14.84

17.44

18.56

17.47

13.66

11.63

11.11

12.94

15.43

16.93

14.3

13.08

16.43

18.48

17.8

15.03

17.4

18.35

14.06

19.22

17.8

17.3

16.83

0

5

10

15

20

25

30

35

40

NaN

(c) FAN

Fig. 6: Performance of HPE algorithm as a function of yaw
(horizontal) and pitch (vertical) angles. The graph shows the
average geodesic distance between the true and predicted
angles per bin. Bins with darker color indicates lower errors.
The bins with white color and no number indicate that no
frames are available in the specific rotation range.

suitable for this purpose than the baselines. Furthermore, the
proposed algorithm can also work in cases with very low
illumination or even during the night. In these scenarios,
RGB based approaches cannot be used.

In the future, we would like to add temporal modeling
to our framework to leverage the strong correlation between
consecutive head poses. Our multimodal data is suitable for
this task, since we have head rotation labels for all the frames
in the corpus. We are also working to increase the size of the
corpus by recording new subjects. We expect more robust and
accurate models by increasing our training set, which will
enable our model to better capture more facial variability
across drivers.

REFERENCES

[1] E. Murphy-Chutorian, A. Doshi, and M. Trivedi, “Head pose estima-
tion for driver assistance systems: A robust algorithm and experimental
evaluation,” in IEEE Intelligent Transportation Systems Conference
(ITSC 2007), Seattle, WA, USA, September-October 2007, pp. 709–
714.



[2] S. Ba and J.-M. Odobez, “Recognizing visual focus of attention from
head pose in natural meetings,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 39, no. 1, pp. 16–33,
February 2009.

[3] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based
gaze estimation in the wild,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2015), Boston, MA, USA, June 2015,
pp. 4511–4520.

[4] S. Jha and C. Busso, “Analyzing the relationship between head pose
and gaze to model driver visual attention,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC 2016), Rio
de Janeiro, Brazil, November 2016, pp. 2157–2162.

[5] ——, “Probabilistic estimation of the driver’s gaze from head orien-
tation and position,” in IEEE International Conference on Intelligent
Transportation (ITSC), Yokohama, Japan, October 2017, pp. 1630–
1635.

[6] ——, “Probabilistic estimation of the gaze region of the driver using
dense classification,” in IEEE International Conference on Intelligent
Transportation (ITSC 2018), Maui, HI, USA, November 2018, pp.
697–702.

[7] N. Li and C. Busso, “Predicting perceived visual and cognitive
distractions of drivers with multimodal features,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 1, pp. 51–65,
February 2015.

[8] ——, “Detecting drivers’ mirror-checking actions and its application
to maneuver and secondary task recognition,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 4, pp. 980–992, April
2016.

[9] G. Borghi, M. Venturelli, R. Vezzani, and R. Cucchiara, “POSEidon:
Face-from-depth for driver pose estimation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2017), Honolulu,
HI, USA, July 2017, pp. 5494–5503.

[10] A. Schwarz, M. Haurilet, M. Martinez, and R. Stiefelhagen, “DriveA-
Head - a large-scale driver head pose dataset,” in IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW 2017),
Honolulu, HI, USA, July 2017, pp. 1165–1174.

[11] B. Raytchev, I. Yoda, and K. Sakaue, “Head pose estimation by
nonlinear manifold learning,” in IEEE International Conference on
Pattern Recognition (ICPR 2004), vol. 4, Cambridge, UK, August
2004, pp. 462–466.

[12] G. Fanelli, J. Gall, and L. Van Gool, “Real time head pose estimation
with random regression forests,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2011), Providence, RI, USA,
June 2011, pp. 617–624.

[13] Y. Yan, E. Ricci, R. Subramanian, O. Lanz, and N. Sebe, “No
matter where you are: Flexible graph-guided multi-task learning for
multi-view head pose classification under target motion,” in IEEE
International Conference on Computer Vision (ICCV 2013), Sydney,
NSW, Australia, December 2013, pp. 1177–1184.

[14] S. S. Mukherjee and N. M. Robertson, “Deep head pose: Gaze-
direction estimation in multimodal video,” IEEE Transactions on
Multimedia, vol. 17, no. 11, pp. 2094–2107, November 2015.

[15] M. Venturelli, G. Borghi, R. Vezzani, and R. Cucchiara, “Deep head
pose estimation from depth data for in-car automotive applications,” in
International Workshop on Understanding Human Activities through
3D Sensors (UHA3DS 2016), ser. Lecture Notes in Computer Science,
H. Wannous, P. Pala, M. Daoudi, and F. Flórez-Revuelta, Eds. Can-
cun, Mexico: Springer Berlin Heidelberg, December 2018, vol. 10188,
pp. 74–85.

[16] Q. Ji and X. Yang, “Real-time eye, gaze, and face pose tracking for
monitoring driver vigilance,” Real-Time Imaging, vol. 8, no. 5, pp.
357–377, October 2002.

[17] S. Jha and C. Busso, “Challenges in head pose estimation of drivers
in naturalistic recordings using existing tools,” in IEEE International
Conference on Intelligent Transportation (ITSC), Yokohama, Japan,
October 2017, pp. 1624–1629.

[18] C. Qi, L. Yi, H. Su, and L. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in In Advances in
Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, USA, December 2017, pp. 5099–5108.

[19] S. Jha and C. Busso, “Fi-Cap: Robust framework to benchmark head
pose estimation in challenging environments,” in IEEE International
Conference on Multimedia and Expo (ICME 2018), San Diego, CA,
USA, July 2018, pp. 1–6.

[20] T. Baltrušaitis, A. Zadeh, Y. C. Lim, and L. Morency, “OpenFace 2.0:
Facial behavior analysis toolkit,” in IEEE Conference on Automatic
Face and Gesture Recognition (FG 2018), Xi’an, China, May 2018,
pp. 59–66.

[21] A. Bulat and G. Tzimiropoulos, “How far are we from solving the 2D
& 3D face alignment problem? (and a dataset of 230,000 3D facial
landmarks),” in IEEE International Conference on Computer Vision
(ICCV 2017), Venice, Italy, October 2017, pp. 1021–1030.

[22] E. Murphy-Chutorian and M. M. Trivedi, “Head pose estimation in
computer vision: A survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 31, no. 4, pp. 607–626, April 2009.

[23] B. Czupryński and A. Strupczewski, “High accuracy head pose track-
ing survey,” in International Conference on Active Media Technology
(AMT 2014), ser. Lecture Notes in Computer Science, D. Ślezak,
G. Schaefer, S. Vuong, and Y. Kim, Eds. Warsaw, Poland: Springer
Berlin Heidelberg, August 2014, vol. 8610, pp. 407–420.

[24] X. Liu, W. Liang, Y. Wang, S. Li, and M. Pei, “3D head pose
estimation with convolutional neural network trained on synthetic
images,” in IEEE International Conference on Image Processing (ICIP
2016), Phoenix, AZ, USA, September 2016, pp. 1289–1293.

[25] G. P. Meyer, S. Gupta, I. Frosio, D. Reddy, and J. Kautz, “Robust
model-based 3D head pose estimation,” in IEEE International Con-
ference on Computer Vision (ICCV 2015), Santiago, Chile, December
2015, pp. 3649–3657.

[26] T. Bär, J. Reuter, and J. Zöllner, “Driver head pose and gaze esti-
mation based on multi-template ICP 3-D point cloud alignment,” in
International IEEE Conference on Intelligent Transportation Systems
(ITSC 2012), Anchorage, AK, USA, September 2012, pp. 1797–1802.

[27] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3D ShapeNets: A deep representation for volumetric shapes,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2015), Boston, MA, June 2015, pp. 1912–1920.

[28] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in IEEE
International Conference on Computer Vision (ICCV 2015), Santiago,
Chile, December 2015, pp. 945–953.

[29] C. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on
point sets for 3D classification and segmentation,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu,
HI, USA, July 2017, pp. 77–85.

[30] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of
rotation representations in neural networks,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, June 2019, pp. 5738–5746.

[31] P. Angkititrakul, M. Petracca, A. Sathyanarayana, and J. Hansen,
“UTDrive: Driver behavior and speech interactive systems for in-
vehicle environments,” in IEEE Intelligent Vehicles Symposium, Is-
tanbul, Turkey, June 2007, pp. 566–569.

[32] P. Angkititrakul, D. Kwak, S. Choi, J. Kim, A. Phucphan, A. Sathya-
narayana, and J. Hansen, “Getting start with UTDrive: Driver-behavior
modeling and assessment of distraction for in-vehicle speech systems,”
in Interspeech 2007, Antwerp, Belgium, August 2007, pp. 1334–1337.

[33] J. Hansen, C. Busso, Y. Zheng, and A. Sathyanarayana, “Driver
modeling for detection and assessment of driver distraction: Examples
from the UTDrive test bed,” IEEE Signal Processing Magazine,
vol. 34, no. 4, pp. 130–142, July 2017.

[34] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
IEEE International Conference on Robotics and Automation (ICRA
2011), Shanghai, China, May 2011, pp. 3400–3407.

[35] T. B. A. Zadeh, Y. C. Lim and L. Morency, “Convolutional experts
constrained local model for 3D facial landmark detection,” in IEEE
International Conference on Computer Vision Workshops (ICCVW
2017), Venice, Italy, October 2017, pp. 2519–2528.

[36] V. Ferrario, C. Sforza, G. Serrao, G. Grassi, and E. Mossi, “Active
range of motion of the head and cervical spine: a three?dimensional
investigation in healthy young adults,” Journal of Orthopaedic Re-
search, vol. 20, no. 1, pp. 122–129, January 2002.

[37] D. Huynh, “Metrics for 3D rotations: Comparison and analysis,”
Journal of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–
164, June 2009.

[38] J. Jain and C. Busso, “Analysis of driver behaviors during common
tasks using frontal video camera and CAN-Bus information,” in IEEE
International Conference on Multimedia and Expo (ICME 2011),
Barcelona, Spain, July 2011.


