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ABSTRACT

Representation learning is a challenging, but essential task in
audiovisual learning. A key challenge is to generate strong cross-
modal representations while still capturing discriminative informa-
tion contained in unimodal features. Properly capturing this infor-
mation is important to increase accuracy and robustness in audio-
visual tasks. Focusing on emotion recognition, this study proposes
novel cross-modal ladder networks to capture modality-specific in-
formation while building strong cross-modal representations. Our
method utilizes representations from a backbone network to imple-
ment unsupervised auxiliary tasks to reconstruct intermediate layer
representations across the acoustic and visual networks. The skip
connections between the cross-modal encoder and decoder provide
powerful modality-specific and multimodal representations for emo-
tion recognition. Our model on the CREMA-D corpus achieves high
performance with precision, recall, and F1 scores over 80% on a
six-class problem.

Index Terms— representation learning, audiovisual emotion
recognition, ladder networks.

1. INTRODUCTION

Emotion perception plays an important role in human communica-
tion [1]. During naturalistic interactions, we rely on the externaliza-
tion of acoustic and visual cues to perceive and convey emotional
states. Hence, modern human computer Interaction (HCI) systems
should be able to effectively utilize the same cues used by humans
to predict the emotional state of users. Recent advancements in
audiovisual emotion recognition systems have shown improvement
over unimodal emotion recognition models. Developing methods
to exploit acoustic and visual features ensuring that the relationship
between both modalities is properly represented is fundamental to
building robust multimodal systems.

Audiovisual emotion recognition has attracted increasing atten-
tion in recent years [2-5]. Although these models have shown strong
performances, multimodal models still face major challenges [6].
In audiovisual settings, models have to process data points coming
from heterogeneous sources (e.g., microphone and camera). Obtain-
ing good representations from multimodal data points is essential
for the performance of audiovisual systems. We argue that strong
representations should capture the intrinsic and dynamic connection
between facial expressions with acoustic features [7]. Existing repre-
sentation learning methods can be grouped into two groups: forward
and backward methods [8]. In forward methods, studies explore the
use of cross-modal architectures, which focus on building interac-
tions between different modalities [4,9-11]. Since these methods
are mainly focused on generating cross-modal representations, they
often lack the capability of capturing unimodal information from the
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input data. In backward methods, studies utilize extra loss functions
as a prior constraint to obtain complementary information between
the modalities [8, 12]. These methods often utilize extra unimodal
labels or extra unimodal encoders to capture modality-specific rep-
resentations. However, these approaches are often costly, since they
require more labels, and their feature representations are often not as
strong in capturing cross-modal information.

This paper proposes a novel framework that is capable of captur-
ing modality-specific information while building strong cross-modal
representations without requiring extra human annotations. The pro-
posed method incorporates both forward and backward techniques
for multimodal representation learning. The framework utilizes rep-
resentations from a backbone network to implement unsupervised
auxiliary tasks with multimodal ladder networks, which utilize skip
connections between the encoder of one modality and the decoder
of the other modality, learning powerful modality-specific and cross-
modal representations. The ladder network structure is used to com-
bine our primary supervised task with unsupervised auxiliary tasks.
The auxiliary task explored in this model is the reconstruction of
hidden representations from one modality (e.g., acoustic) to another
(e.g., visual) of a denoising autoencoder.

We compare our model with three state-of-the-art audiovisual
baselines. The results demonstrate that our architecture achieves
significantly better results on a six-class problem on the CREMA-
D corpus [13]. Our multimodal ladder network framework achieves
precision, recall, and F1 scores over 80%. An ablation analysis
demonstrates the importance of the cross-modal reconstruction loss
imposed by the proposed multimodal ladder network. While ladder
network has been successfully used for speech emotion recognition
(SER) [14-18], this is the first time, to the best of our knowledge,
that ladder networks are used to create audiovisual representations.

2. RELATED WORK

Multimodal representation learning approaches have been explored
more extensively lately with advancements in computational re-
sources and multimodal deep learning methods [4, 5, 10, 12, 19, 20].
Previous studies have achieved major improvements on multi-
modality representation learning. In multi-modality fusion, studies
such as the one done by Majumder et al. [21] have shown com-
petitive performance in emotion recognition through a hierarchical
learning mechanism. Zadeh et al. [20], proposed using a tensor fu-
sion network to aggregate representations from unimodal, bimodal
and trimodal interactions. Yu et al. [8] proposed a late fusion frame-
work, which uses self-supervised strategies to jointly learn unimodal
and multimodal tasks to perform a multimodal emotion sentiment
analysis regression task.

More recently, with the introduction of the transformer archi-
tecture [22], several studies have explored using this architecture
for learning model-level cross-modal representations [3, 11]. Tsai
et al. [10], proposed the use of cross-modal transformers to learn
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Fig. 1. Overview of the proposed multimodal ladder network. The
red dashed rectangle shows the transformer-based backbone, which
is inspired by the AuxFormer structure [4,5]. Noisy and clean out-
puts from these layers are passed to CNN layers, which relay outputs
to the ladder networks. On the top of our model, we implement the
audiovisual ladder networks and the unimodal cross-layers ladder
networks (shown inside the dashed blue rectangle).

multimodal representations from attention computations performed
across different modalities within the transformer layers. Goncalves
and Busso [4, 5], proposed the AuxFormer framework which uses
a cross-modal transformer model with unimodal networks to build
strong audiovisual fusion. The network also has unimodal networks
to capture discriminative information from each modality.

3. PROPOSED APPROACH

This study proposes an audiovisual representation learning frame-
work that combines the use of a backbone network containing trans-
former layers and the use of a novel ladder network framework that
reconstructs cross-modal structures of an encoder-decoder network.
Figure 1 provides an overview of the proposed model. We use the
backbone network to implement unsupervised auxiliary tasks with
our proposed multimodal ladder networks, which utilize skip con-
nections between the encoder of one modality (e.g., acoustic) and the
decoder of the other modality (e.g., visual). This method learns au-
diovisual representations by combining our primary supervised task
with the unsupervised auxiliary tasks of reconstructing cross-modal
representations of a denoising autoencoder.

3.1. Transformer-Based Backbone

The red dashed region in Figure 1 shows the backbone structure,
which is inspired by the framework proposed by Goncalves and
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Fig. 2. Overview of the basic structure of the ladder networks. The
audiovisual ladder network block displayed in the orange box in Fig-
ure 1 is implemented with this model using X 4y and X 4 as input.

Busso [4,5]. The architecture has cross-modal networks and uni-
modal networks. The cross-modal networks are composed of two
separate cross-modal transformer layers that computes attention
scores for the audiovisual modalities with sequence of length N. The
input feature vectors are used to generate the (), V, and K matrices.
To inject information from one modality to the other, we enter the @
matrix from one modality (e.g., acoustic) at the cross-modal layer of
the other modality (e.g., visual), and vice-versa as shown in Figure
1 and Equation 1.
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The representations obtained from each cross-modal layer are
subsequently processed by self-attention transformer layers, as
shown in Figure 1. The combination of cross-modal transformer
and self-attention transformer is five layers deep, generating the
audiovisual representation vectors X 4y and Xy 4. In addition
to the cross-modal layers, the backbone network contains two iden-
tical unimodal networks, one for the acoustic features and one for
the visual features. These unimodal networks are important, since
they ensure that modality-specific information is captured by the
models, making it available for our multimodal ladder networks.
The unimodal networks are implemented with five self-attention
transformer layers, creating the visual representation vector Xy,
and acoustic representation vector X 4.

The ladder network requires a clean and noisy version for each
of the feature representations (i.e., X, Xv, Xav and Xv_ ).
We create two versions for each input: a clean version, and a noisy
version where we add Gaussian noise with variance o>. The block
shown inside the dashed red region in Figure 1 is implemented twice,
one for the clean inputs and one for the noisy inputs. The noisy fea-
ture representations are denoted by X 4, Xv, Xa_v and Xv_ 4.

3.2. CNN Layers

The eight outputs from the transformer-based backbone are all pro-
cessed through 1D temporal convolutional neural networks (CNNs)
to ensure that the encoded sequences are aware of their neighboring
components. This block is composed of three CNN layers with three
max-pooling layers in between. As shown in Figure 1, we add Gaus-
sian noise to the noisy feature representations X 4, Xy, Xa—,v and
Xv_ 4. The CNN layers generate a sentence-level representation
by flattening the CNNs outputs.

3.3. Ladder Networks

We utilize ladder networks to combine our primary supervised task
with unsupervised auxiliary tasks. The auxiliary task consists of re-
constructing hidden representations of a denoising autoencoder. Be-
fore explaining our proposed architecture, we describe the general
form of the ladder network, which is shown in Figure 2. The ladder
network contains lateral connections between the encoder and the
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decoder layers, which allows the decoder to directly learn represen-
tations from the encoder layers.

Encoder: The ladder networks’ encoder is composed of a fully-
connected multilayer perceptron (MLP) network. As done previ-
ously, Gaussian noise with variance o2 is added to each layer of the
noisy encoder (Fig. 2). The representation from the final layer 7
of the encoder is used as a target for the supervised task. The de-
coder’s goal is to reconstruct the representation at every layer, using
a clean copy of the encoder z as the target.

Decoder: The decoder’s goal is to denoise the encoded noisy lay-
ers. The denoising function, g(), shown in the mid layers in Figure
2, combines information from the decoder coming from the top lay-
ers and the side connections from the relative encoder layer. The
structure of the ladder networks enables the top layers to learn more
discriminative representations for our task, while the lower layers are
focused on input vector reconstruction. The denoising function used
in our ladder networks utilizes the function proposed by Pezeshki
et al. [23], which is composed of an MLP with inputs [u, Z,u ® z],
where u is the batch normalized projection of the previous top layer.
The overall loss function of the ladder networks is defined as:

C=Cit Ny CV 2)
l

where C is the supervised loss, C,E” is the reconstruction loss at
layer [, and )\; is the loss weight hyperparameter.

3.4. Multimodal Ladder Network

As seen in the top region of Figure 1, we have two different settings
for our multimodal ladder networks: the unimodal cross-layer ladder
networks (shown inside the dashed blue rectangle in Fig. 1), and
the audiovisual ladder network (shown in a orange box in Fig. 1).
Although, we have two different settings, the overall structure of
each setting is the same as the model described in Figure 2.

The unimodal cross-layer ladder networks combine the encoder
from one modality with the decoder from the other modality. As
shown in Figure 1, the inputs of the models are (X4, Xa) for the
acoustic modality, and (Xv, Xy ) for the visual modality. These
inputs only have information from the corresponding modality in
the backbone networks. This strategy corresponds to a backward
approach during fusion. In our proposed model, we generate noisy
encoded representations from one modality 255{ Then, the decoder
has to reconstruct the representation at every layer, using clean en-
coded representations from a second modality zas2 as the target. In
this case, the denoising function used in our ladder network inputs
is defined as [unrz, Zm1, unmz2 © zaz]. This procedure is done to
explore the complementary relationship contained in audiovisual
features, and help build strong cross-modal representations from
modality-specific layers. It is done twice with acoustic features as
noisy features and visual features as clean targets and vice-versa.

The audiovisual ladder network takes as input X Ay and X AV,
which are processed by the cross-modal transformer. The structure
of the ladder network is the same as the general structure shown in
Figure 2. This procedure is important in our framework, because
it is focused only on ensuring that cross-modal representations are
adequately captured by the system.

3.5. Loss Function

For our entire model, we expand the loss function from Equation 2

to include all the objectives used in our model. Our overall loss is:
1
['sup = g(CSAV +CsA +Csv) (3)

1

l l
Etotal = ﬁsup + Acuns (5)

where L. is the overall supervised loss, which combines the three
supervised losses as the average of the supervised losses obtained
from the three ladder networks composing our model. L. is the
overall unsupervised loss, which consists of the combination of the
unsupervised audiovisual loss Cﬁzv and the average of the two un-
supervised losses obtained from the unimodal cross-layer predic-
tions C,‘QW and C’ﬁl‘zH - The total loss Liotq: is the combination
of Lsup and Loyns.

4. RESOURCES AND FEATURES
4.1. Resources

This study uses the CREMA-D [13] corpus, which is an audiovisual
dataset. It contains videos of subjects saying sentences while ex-
pressing pre-defined emotions (happiness, fear, disgust, anger, sad-
ness, and neutral state). This corpus was collected from an ethnically
and racially diverse group consisting of 91 actors (48 male and 43
female). The videos were annotated with emotional labels by seven
raters using a crowdsourcing approach. In total, the CREMA-D
corpus contains 7,442 videos with the following distribution: 1,230
happy clips, 1,180 fear clips, 1,222 disgust clips, 1,067 angry clips,
672 sad clips, and 2,071 neutral clips. Our recognition task consists
of predicting the six emotional states included in the corpus.

4.2. Visual Features

The visual features are obtained by using the OpenFace toolkit [24]
to detect and extract faces from every clip frame from the CREMA-
D corpora by estimating bounding boxes using the multi-task cas-
caded convolutional neural network (MTCNN) face detection algo-
rithm [25]. After extracting the bounding boxes, we mask the face
area isolating it from the background region. We normalize the pixel
intensities between -1 and 1. The images are then resized to the pre-
determined dimension of 224 x 224 x 3. The normalized image is
processed by the VGG-face model [26], which we fine-tune for an
emotion recognition task using the AffecNet [27] corpus as a seven-
class problem: neutral, happiness, sadness, surprise, fear, disgust,
and anger. We attach three fully connected (FC) layers to the orig-
inal VGG-face model and fine-tune this model for 50 epochs using
the adaptive moment estimation (ADAM) optimizer, with a learning
rate set to 0.000075. The facial feature representations at the frame
level are obtained from the first fully connected layer of the fine-
tuned VGG-Face model, which has a dimension of 4,096. The repre-
sentations are then concatenated row-wise with all the other frames
within each clip from the dataset to be used as input to the video
branch of our audiovisual model (i.e., a N,, x 4,096, where N, is
the number of visual frames in the video).

4.3. Acoustic Features

The acoustic features correspond to the low-level descriptors (LLDs)
included in the feature set of the paralinguistic challenge at Inter-
speech 2013 [28]. This set is obtained using the OpenSmile toolkit
[29]. The LLDs include spectral, prosodic, and energy-based acous-
tic features extracted at the frame level. The set includes energy,
fundamental frequency (f0), and Mel-frequency cepstral coefficients
(MFCCs). These features have been proven to contain relevant in-
formation for SER tasks [17]. The features were extracted using
a window length of 32ms with a step size of 16ms. The resulting
LLDs consist of 130 frame-based acoustic features, which are Z-
normalized. Similar to the video features, the acoustic features are



Table 1. Comparison of our proposed method with baselines. The
table reports the average F1, precision, and recall score values across
20 experiments using different random seeds (*k indicates that our
model is significantly better than the other three methods).
CREMA-D

Macro Micro
Architecture | Prec. Rec. Fl | Prec. Rec. Fl

Our Method * 80.3 804 80.2 | 80.3 80.3 80.3
Baseline 1 [4] 76.5 75.7 755 75.7 75.7 755
Baseline 2 [10] | 71.6 71.0 706 | 71.0 71.0 71.0
Baseline 3 [3] 60.6 57.8 563 | 580 58.0 58.0

concatenated row-wise creating a N, X 130 input matrix, where N,
is the length of the acoustic sequence.

5. EXPERIMENTAL RESULTS

All the transformer blocks included in the backbone framework are
five layers deep, each of them implemented with 10 attention heads.
We set a dropout rate of p = 0.25 to the output embeddings obtained
from the attention layers. The model uses ADAM as the optimizer
with an initial learning rate set to 7.25E-04. During training, we
have a learning decay set to six epochs. We set the gradient clipping
threshold to 0.8 and a batch size of 64. We use the rectified linear
unit (ReLU) as the activation function. The model was trained for
40 epochs with a model-saving criterion based on improvements in
the development loss. To add noise to the noisy encoding layers,
we use a variance set to 02=0.2. For the ladder network, the hyper-
parameter for the reconstruction loss is set to Ao = 0.5, A1 = 0.5,
and A2 = 0.1 (Eq. 4). A preliminary search on the development
set showed that assigning less weight to the top layer (A\2) yielded
better results. We use the mean squared error as the reconstruction
cost and cross-entropy loss for the classification task. The model has
~8.2M parameters, it was coded in Pytorch, and trained using an
Nvidia QUADRO RTX 8000.

We compare our model with three baselines to verify our
model’s performance against strong frameworks. Baseline 1 is
the AuxFormer framework proposed by Goncalves and Busso [4,5].
Baseline 2 is derived from the method presented in Tsai et al. [10],
which proposed a multimodal transformer architecture. We imple-
ment their model making a few changes to their original architecture
to adapt their method from three modalities (text, audio, and video)
to two modalities (audio and video). Baseline 3 is implemented us-
ing the transformer-based approach proposed by Parthasarathy and
Sundaram [3]. Overall, our model has 1.17 times more parameters
than [4], 1.24 times more parameters than [10], and 3.7 times more
parameters than [3]. All models are trained for 40 epochs.

We train the proposed and baseline models 20 times with differ-
ent train, development, and test partitions. For each trial, we gen-
erate random splits in a speaker-independent manner using 70% of
the data for the train set, 15% of the data for the development set,
and 15% of the data for the test set. The random partitions are con-
sistently used to train and evaluate each of the models. We evalu-
ated the models’ performances using both the macro-averaged and
micro-averaged precision, recall, and F1 scores averaged across the
20 trials for each model. Experimental results are recorded and com-
pared using a one-tailed matched pair t-test over the 20 results with a
significance level at p-value <0.05 to assert statistical significance.

5.1. Comparison with Baselines

We compare our proposed framework’s performance with the three
popular multimodal emotion recognition baselines. Table 1 shows
the precision, recall, and F1 macro and micro scores of the models
for the six-class problem on the CREMA-D corpus. Our proposed
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Fig. 3. Ablation analysis reporting macro precision, recall, and F1-
score for our proposed frameworks and the ablated versions of our
model. Ablation 1 removes the unimodal cross-layer ladder net-
works, and ablation 2 removes the audiovisual ladder network.

framework achieves the best scores in all cases, significantly outper-
forming all the baselines. The results support our hypothesis that
using a method that incorporates both forward and backward tech-
niques for representation learning is beneficial in audiovisual set-
tings. Baseline 1 is the AuxFormer architecture [4, 5], which con-
tains mostly the same architecture as our backbone network. By
comparing our model’s performance with baseline 1 [4], we can
quantify the benefits of using the multimodal ladder networks. The
use of the proposed auxiliary unsupervised task plays an important
role in the performance of our model. This result supports the idea
that adding relevant unsupervised auxiliary tasks helps our model
capture or learn important audiovisual representations to improve
performance on our downstream task.

5.2. Framework Evaluations

We perform ablations to our framework by removing part of the pro-
posed multimodal ladder networks. We compare these performances
with the one obtained by our complete framework following the
same training settings. We perform two ablations to our framework.
Ablation 1 consists of removing the unimodal cross-layer ladder net-
work predictions. This block is depicted inside the blue dashed line
in Figure 1. Ablation 2 consists of removing the audiovisual ladder
network depicted in Figure 1 in the orange box. Figure 5.2 shows
the results. There is a performance drop for both ablations, showing
that both components are needed. Ablation 1 leads to a drop of 2.2%
in performance. Ablation 2 results in an even larger drop, reducing
the performance metrics up to 6.1% (absolute) compared to results
achieved by our full framework. Both ladder network mechanisms
are important for the overall performance of the model.

6. CONCLUSIONS & FUTURE WORK

This work proposed an audiovisual representation learning frame-
work based on a multimodal ladder network, which uses the recon-
struction of intermediate hidden representations across modalities.
The proposed approach achieves state-of-the-art performance on a
six-class problem on the CREMA-D corpus (i.e., emotional cate-
gories). Our proposed model utilizes forward and backward learn-
ing techniques to build representations that capture both cross-modal
and modality-specific information for our downstream task. Our re-
sults show that the learned representations carry meaningful infor-
mation providing significantly better performance than the baselines.

This framework can be expanded to explore the potential of us-
ing large amounts of unlabeled data, implementing the multimodal
ladder networks using a semi-supervised setting. This strategy pro-
vides the opportunity to train the model with labeled (source domain)
and unlabeled (target domain) data, enhancing the audiovisual rep-
resentations. The strong results obtained in this study suggest that
exploring extensions of the proposed model can lead to important
improvements in multimodal emotion recognition.
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