Learning Cross-modal Audiovisual Representations with Ladder Networks for **Emotion Recognition** Lucas Goncalves, Carlos Busso

THE UNIVERSITY OF TEXAS AT DALLAS

Erik Jonsson School of Engineering & Computer Science at the University of Texas at Dallas, Richardson, Texas 75080, USA

MOTIVATION

Background:

- Audiovisual Emotion Recognition Problem
- Models have to process data points coming from heterogeneous sources
- Capture modality-specific information while building strong cross-modal representations

Our Work:

- We propose a multimodal architecture that:
- Implement unsupervised auxiliary tasks with multimodal ladder networks
- Utilize skip connections between the encoder of one modality an the decoder of the other modality, learning modality-specific and cross-modal representations

Features and Performance Analysis for Emotion Recognition

Visual Data Preparation

- Extract faces from videos at the frame level
- Normalize pixel intensities within the range [-1, 1]
- Resize the images to a predetermined dimension of 224x224x3
- Facial feature representations extract from VGG-face model
- Representations are 4096-dimensional per frame

Audio Data Preparation

- 65 low-level audio descriptors (LLDs) of the ComParE feature set
- It adds their first order derivates (Δ LLDs), creating a 130D sequence
- The features are extract using window lengths of 32ms with a step size of 16ms

	Corpus				
	CREMA-D corpus				
	 Contains videos of subjects saying sentences while dis pre-defined emotions 				
	 Corpus was collected from an ethnically and racially diverse 				
	 91 actors (48 male and 43 female) 				
g	 Contains 7,442 clips 				
	 6-class problem: anger, happiness, sadness, fear, disgust 				
	Image: Non-StateImage: Non-Stateneutralhappyfer				
	Data partition:				
nd	 70% train set 				
	 15% development set 				
	 15% test set 				
	Speaker-independent splits:				

No speaker overlap in train, development, and test sets

Experimental Results

	Macro			Micro		
Architecture	Prec.	Rec.	F1	Prec.	Rec.	F1
Our Model	80.3	80.4	80.2	80.3	80.3	80.3
Baseline 1	76.5	75.7	75.5	75.7	75.7	75.7
Baseline 2 [1]	71.6	71.0	70.6	71.0	71.0	71.0
Baseline 3 [2]	60.6	57.8	56.3	58.0	58.0	58.0

We compare the results using a one-tailed matched paired t-test over the 20 results with p-value < 0.05 to assert statistical significance

Ablation experiments:

Both ladder network mechanisms are important for the overall performance of the model

- Proposed approach achieves high performance on audiovisual emotion recognition
- Audiovisual framework with multimodal ladder network
- Reconstruction of cross-layer intermediate hidden representations helps multimodal learning
- Forward and backward learning for cross-modal and modalityspecific info

Future Work

References [1] .-H.H. Tsai, S. Bai, P.P. Liang, J.Z. Kolter, L.-P. Morency, and R. Salakhutdinov, "Multimodal transformer for unaligned multimodal language sequences," (ACL 2019) [2] . Parthasarathy and S. Sundaram, "Training strategies to handle missing modalities for audio-visual expression recognition," (ICMI 2020)

1718944

Proposed Framework

- The audiovisual ladder network takes as input , to be processed by the cross-modal

 $\mathcal{L}_{sup} = \frac{1}{3} (C_{s_{AV}} + C_{s_A} + C_{s_V})$ $\mathcal{L}_{uns} = \lambda_l \left(\sum_l C_{r_{AV}}^{(l)} + \frac{1}{2} \left(\sum_l C_{r_{A \to V}}^{(l)} + C_{r_{V \to A}}^{(l)} \right) \right)$

CONCLUSIONS

Utilize this framework in semi-supervised settings Expand framework to include other modalities (e.g., text)

This work was supported by NSF under Grant IIS-