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Robust Audiovisual Emotion Recognition:
Aligning Modalities, Capturing Temporal

Information, and Handling Missing Features
Lucas Goncalves, Student Member, IEEE, and Carlos Busso, Senior Member, IEEE

Abstract—Emotion recognition using audiovisual features is a challenging task for human-machine interaction systems. Under ideal
conditions (perfect illumination, clean speech signals, and non-occluded visual data) many systems are able to achieve reliable results.
However, few studies have considered developing multimodal systems and training strategies to build systems that can perform well
under non ideal conditions. Audiovisual models still face challenging problems such as misalignment of modalities, lack of temporal
modeling, and missing features due to noise or occlusions. In this paper, we implement a model that combines auxiliary networks, a
transformer architecture, and an optimized training mechanism to achieve a robust system for audiovisual emotion recognition that
addresses, in a principled way, these challenges. Our evaluation analyzes how well this model performs in ideal conditions and when
modalities are missing. We contrast this method with other multimodal fusion methods for emotion recognition. Our experimental
results based on two audiovisual databases demonstrate that the proposed framework achieves: 1) improvements in emotion
recognition accuracy, 2) better alignment and fusion of audiovisual features at the model level, 3) awareness of temporal information,
and 4) robustness to non-ideal scenarios.

Index Terms—Multimodal emotion recognition, audiovisual fusion and alignment, attention model, auxiliary networks.
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1 INTRODUCTION

EMOTION recognition plays an important role in human
interactions. Emotional states carry important informa-

tion about an individual, including her/his intention, at-
titude, and decision making process. During an interaction,
we mainly use verbal and visual cues to recognize emotional
states. Speech carries expressive information such as intona-
tion, rhythm, and resonance. Facial expressions are used to
emphasize and/or give more context to an utterance. These
modalities are essential for humans to effectively convey
and perceive a message. Human computer interaction (HCI)
aims to achieve the same emotional perception as humans.
Therefore, an effective model for multimodal emotion recog-
nition should be robust to non ideal conditions, mimicking
how humans interact in real-world scenarios.

Previous studies have considered emotion recognition
using mostly textual, vocal, or visual features [1], [2]. These
models can be successful in areas such as movie rating sen-
timent analysis [3], speech emotional recognition for virtual
assistants [4], and facial expression recognition based on a
single picture [5]. However, early studies conducted by De
Silva et al. [6] and Chen et al. [7] have shown that bimodal
methods generally perform better than unimodal emotion
recognition systems. While these models have achieved
good performance, they do not necessarily process the data
the way humans recognize emotions during an interaction.
In daily interactions, verbal and visual cues are aligned
and simultaneously perceived as the message is transmitted
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during a conversation. Therefore, a model should combine
audiovisual cues similarly to how humans perceive these
cues. One of the issues with many current audiovisual mod-
els is the assumption that audiovisual features are timely
synchronized. However, studies have shown that audiovi-
sual features are not necessarily synchronized, showing a
time-shift difference longer than three video frames (i.e.,
hundred of milliseconds) [8], [9], [10]. Bregler and Konig
[11] reported that the best alignment shift for audiovisual
modalities is 120 milliseconds, assuming that lip move-
ments precede speech. Furthermore, this time-variant phase
between the modalities is not consistent time-wise, where
either of the modalities can precede the other [8], [12], [13].
Another important aspect for multimodal emotional model-
ing is to consider the dynamic nature of emotions, which
are externalized over-time. Knowing an emotional state
from previous time-steps/frames helps in predicting the
current emotion [14], [15]. It is essential to capture temporal
information so that the model can track emotional changes
within the speaking turn. Furthermore, during naturalistic
human-to-human interactions, sometimes a modality will be
missing for certain periods of time. For example, someone’s
face might not be visible during parts of an interaction
or speech may not be audible for some period of time.
Therefore, it is important to have a model that can handle
these scenarios as well. Recent advances in deep learning
approaches have worked on models that fuse [16] and align
modalities [17] or successfully handle missing modalities
[18]. However, to the best of our knowledge, we have not
encountered a method that is able to address all these issues
at once.

Our main contribution is the proposal of a novel audiovi-
sual emotion recognition model, which combines three ma-
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jor components: auxiliary networks, a transformer architec-
ture, and an optimized training mechanism. The proposed
model achieves robustness for multimodal emotion recog-
nition, ensuring alignment between modalities, capturing
temporal information, and handling missing features. The
approach uses visual features extracted using a pretrained
VGG-Face model at the frame level from the speaker’s face
and low-level descriptors (LLDs) extracted from speech. A
key feature of our approach is the use of the dot-product
attention mechanism and positional encodings, which are
used to combine and temporally align the audiovisual
modalities. We train our model using an optimized training
mechanism to add robustness to non-ideal scenarios where
modalities might be missing. This goal is also achieved
by simultaneously training two auxiliary networks, which
separately embed each modality into new vector spaces. The
representations obtained from the auxiliary networks are
used to provide an extra layer of information to our frame-
work. Since each auxiliary network only contains features
from a single modality, they add robustness to the system
in scenarios when only one modality is available, leading
to good performance even when evaluated in a unimodal
setting.

The proposed method achieves the highest performance,
with a micro F1-score of 76.1% and macro F1-score of 70.3%
on the MSP-IMPROV corpus, and a micro F1-score of 77.3%
and macro F1-score of 77.2% on the CREMA-D corpus. In
our experiments, we show that our model can perform
well under conditions where only visual or acoustic cues
are available, demonstrating the model’s ability to obtain
strong performance with low access to visual and acoustic
data. Our architecture is able to shift focus between what
modalities are available at specific times, guaranteeing that
its performance is not drastically affected by non-ideal sce-
narios. We compare this attention based model with three
strong attention based models that use similar architectures
for modality fusion. Further contributions include the exper-
iments with modality ablations of the model to understand
how our model performs under non-ideal conditions and
the implementation of architectural ablations to understand
how certain blocks in the model’s architecture affects its
performance.

This paper is organized as follows: Section 2 reviews
previous studies that are relevant to this work. Section 3
describes the model architecture introduced in this study.
Section 4 presents the experimental settings of the model’s
architecture, databases used to train and test the model, and
feature extraction methods used in our evaluation. Section
5 presents our experimental evaluations, contrasting the
results of the proposed model with the results of strong
baselines. Lastly, Section 6 summarizes the contributions of
this work while analyzing the advantages and disadvan-
tages of this approach, as well as discussing possible future
research directions.

2 RELATED WORK

This study explores the use of the attention mechanism to
combine modalities and generate alignment between au-
diovisual features for emotion recognition. Previous studies
have focused on feature level integration [19], [20], [21], [22],

[23], [24], decision level integration [25], [26], [27], [28], and
model level integration [17], [18], [29], [30], [31], [32], [33],
[34], [35]. Over recent years, important contributions have
been made on model level integration using deep learn-
ing formulations. With the introduction of the transformer
architecture [36], multimodal models have been proposed
that perform textual, visual, and acoustic feature fusion
using this framework. We focus our bibliography review
on the most recent studies, which have considered similar
problems as our study.

2.1 Audiovisual Temporal Modeling and Alignment
Studies in the past have shown that audiovisual features
are not synchronized, meaning there is a time-shift differ-
ence between the audio and visual streams [8], [9], [10].
Therefore, several studies have worked on dealing with
alignment and temporal modeling of audiovisual features
[37]. Some studies have proposed aligning the modalities
using canonical correlation analysis (CCA) [38], [39]. Halperin
et al. [40] proposed a method that uses dynamic time warping
(DTW) to find an optimal temporal audiovisual alignment.
Another method was proposed by Chung and Zisserman
[41], where they made the assumption that in television
broadcasts the audio and video are usually synced. The
authors then used this assumption as a standard to generate
a model that determines the lip-synchronization error in
videos using a contrastive loss between audio and visual
features to achieve synchronization. However, such an as-
sumption does not necessarily offer proper alignment [12],
since audio and video misalignment is often non-uniform
and irregular.

In the area of multimodal emotion recognition, au-
thors have also explored methods to achieve proper mul-
timodal alignment. Recently, attention mechanisms have
been widely used for audiovisual temporal modeling and
alignment. Chao et al. [42] proposed a method that considers
sub-sequences of a whole sequence and uses a soft atten-
tion mechanism to align audio and visual streams. Wang
et al. [43] presented the AlignNet, a model for audiovi-
sual alignment which uses attention, pyramidal processing,
warping, and affinity to generate audiovisual alignment
through implicit mappings between the modalities. Tsai et
al. [17] proposed a multimodal transformer architecture for
unaligned language sequences. This model uses 1D tem-
poral convolutions to retrieve temporally aware input tex-
tual, acoustic, and visual feature vectors and build a cross-
modal transformer model that injects and aligns different
modalities using an attention mechanism. Due to the unified
approach to build cross-modal relationships between the
modalities, it is difficult for these models to retain modality-
specific temporal modeling information. Additionally, clas-
sical approaches mentioned earlier, often fail to capture
long-range cross-modal relationships and requires manual
pre-processing steps to define specific word or utterance
times to perform proper alignment.

2.2 Handling Missing Modalities
During human-human interactions, modalities used for
emotion recognition may be missing or unreliable for un-
foreseeable periods of time (e.g., facial occlusion, acoustic
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noise in the environment). Traditional multimodal methods
do not consider these scenarios, assuming ideal-scenarios.
A few recent studies have presented strategies to handle
missing modalities [18], [44], [45], [46], [47], [48]. Mittal et
al. [44] proposed using CCA to create a check step, which
generates proxy features to replace missing modalities. Du
et al. [48] used a semi-supervised multiview deep generative
framework to process missing modalities and treat them as
latent variables to be integrated out during inference. Chen
et al. [45] proposed a heterogeneous graph-based hypernode
framework to enable multimodal fusion of incomplete data
within a graph structure.

More recently, Ma et al. [46] proposed the use of a
correlation loss based on the Hirschfeld-Gebelein-Rényi (HGR)
maximal correlation to extract common information be-
tween the audiovisual modalities to handle missing modal-
ities. Parthasarathy and Sundaram [18] proposed training
strategies to train neural networks with missing modalities
by generating ablations to the visual inputs during training.
This approach disregards introducing ablations to the audio
modality, which leads to a system that is highly dependable
on acoustic features and it is not able to handle scenarios
where audio is missing or noisy. Although our proposed
method uses a similar strategy to the one presented by
Parthasarathy and Sundaram [18], our method considers
both audio and visual modalities to ensure robustness
against any missing modality.

2.3 Relation to Prior Work

Our proposed model expands and presents important con-
tributions with respect to previous studies. It builds on our
preliminary study [49], extending the analysis and experi-
mental evaluations to understand the benefits of each com-
ponent in our framework. The attention mechanism present
in the transformer architecture offers the possibility of easy
integration of multimodal features. The closest study to our
paper is the work of Tsai et al. [17], which proposed a mul-
timodal transformer architecture for unaligned language
sequences. Our proposed method implements pieces of their
idea by using cross-modal alignment with transformers.
Our model adapts this formulation to audiovisual tasks, en-
hancing it with auxiliary networks and a combination of loss
functions, which have been successful strategies in tasks in-
volving images or videos [50], [51]. Our method implements
a training method which strategically ablates both the visual
and acoustic features to enhance our model’s robustness to
missing modalities. Additionally, we incorporated the use of
learnable scalar weights to later self-attention layers present
in our model to scale and emphasize the most relevant
features for our task. The resulting architecture provides
a strong solution for aligning the modalities, capturing
temporal information, and handling missing features.

3 METHODOLOGY

The proposed framework consists of three networks: the
main audiovisual network Fav(•), the auxiliary acoustic
network Fa(•), and the auxiliary visual network Fv(•). The
three networks rely on the attention mechanism to generate
strong representations, which have proven to work well not

only for natural language processing (NLP) tasks, but also
for multimodal tasks. The dot-product attention mechanism
allows the network to compute attention scores between the
modalities to best align their features, while combining their
representations at the model level. The resulting features
from the attention fusion approach are then passed through
fully connected layers to perform the final classification.

Figure 1 depicts an overview of the model. Before pro-
viding a detailed description of each of its blocks, we sum-
marize the main components of our framework, and their
roles. The proposed framework has five major components:
1) Projection of Features and Positional Encodings (Sec. 3.1).
At this step, the network receives the acoustic and visual
features. Since the dimensions of the visual and acoustic
features do not match, this component is used to project the
visual features to a lower dimensional space to match the
dimension of the acoustic features. Subsequently, we add
positional encodings to both modalities to preserve tempo-
ral information. 2) Fusion Attention Layers (Sec. 3.2). This
block aligns and generates visual-audio and audio-visual
cross-modal representations with multi-head attention lay-
ers. 3) Self-Attention Layers with Learnable Scaling Parameters
(Sec. 3.3). This block computes attention scores within the
representations obtained from the fusion attention layers to
give more emphasis to areas that are more useful for our
discriminative task. 4) Multilayer Perceptron and Classification
(Sec. 3.4). This block processes the concatenated represen-
tations generated by the self-attention layers through fully-
connected layers to perform emotion recognition. 5) Audio
and Visual Auxiliary Networks (Sec. 3.5). These auxiliary
networks are identical unimodal architectures composed of
self-attention layers and fully-connected layers to individu-
ally extract additional representations from the acoustic and
visual features. These auxiliary networks help the model
handle missing modalities. Another important part of the
model is the optimized training strategy designed to in-
crease robustness against missing modalities (Sec. 3.6). This
Section describes these blocks in detail.

3.1 Projection of Features and Positional Encodings
The first step in our model is to ensure that the features
extracted from the visual (Sec. 4.2.1) and acoustic (Sec.
4.2.2) data have the same dimensions. The visual frame-
level feature vector obtained from the fine-tuned VGG-face
model [52] is xv ∈ RNv×4096, where Nv is the dimension of
the visual feature sequence, and 4,096 is the feature vector
dimension. The acoustic feature vector extracted from the
LLDs is xa ∈ RNa×130, where Na is the dimension of the
acoustic feature sequence, and 130 is the feature vector
dimension. Our fusion attention layers require that the
feature embedding size between the modalities are equal.
Our strategy is to keep the extracted feature vectors as intact
as possible. Therefore, we do not perform representation
projection for both modalities. Instead, we reduce the di-
mension of the visual modality to match the dimension of
the audio modality, mapping the feature vectors from 4,096
to 130 (x̄v ∈ RNv×130). We implement this projection with a
1D-convolutional layer.

Once the visual and acoustic modalities have matching
dimensions, we add 1D-positional embeddings to the fea-
ture vectors, following the method used by Vaswani et al.
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Fig. 1. Model Overview. Three networks are used to construct our framework: the main audiovisual network Fav(•), the auxiliary acoustic network
Fa(•), and the auxiliary visual network Fv(•). The proposed model receives acoustic and visual features, fusing them with cross-modal attention
layers. We further encode the cross-modal features with self-attention layers equipped with residual connections. The auxiliary networks are used
to generate separate unimodal representations for each modality to increase robustness against missing features.

[36]. Equation 1 shows the process, where xim represents
the input features for the modality m, with i ∈ {1, . . . , N}
corresponding to the ith frame in a sequence of length N .
Epos represents the positional embedding added to the input
features. The positional embeddings are important for our
model. Since our model is accepting input sequences in
parallel, it needs the positional embeddings to retain the
temporal information. Enabling the input sequences to carry
temporal information helps the network with creating the
alignment in the multi-head attention layers (Sec. 3.2).

z0 = [x1m;x2m; · · · ;xNm] + [Epos ∈ RN×130] (1)

3.2 Fusion Attention Layers
The fusion attention layers aim to align and combine the
feature representations of the modalities. The block uses two
separate multi-head attention (MHA) layers that concurrently
fuse the audiovisual modalities. The embedded feature vec-
tors are used to generate the Q, V, and K matrices. To inject
information from one modality to the other, we share the
Q vectors from one modality (m1) at the MHA layer to the
other modality (m2) and vice-versa as shown in Equation
2 and depicted in Figure 1 under the block for the fusion
attention layers.

zm1→m2 = softmax(
Qm2

K>m1√
Nm1

)Vm1 (2)

The attention heads are each independently initialized.
Therefore, each head computes a different attention score

from one modality to another. With this approach, the model
is able to better determine how much attention each frame
of one modality has to pay to certain frames of the second
modality. This setting consequently enables the model to
use attention scores to not only fuse the two modalities,
but also align the audiovisual features. Furthermore, this
block also includes two layer normalization (LN) and residual
connections, referred to as Add & Norm in Figure 1. The
normalized layers at this step are then added to earlier
feature matrices connected via residual connections [53],
[54] (Eqs. 3-4). These earlier layers are represented by zl−1
(feature matrix obtained before the MHA layer) and z′l
(feature matrix obtained before the FC layer). The residual
connections contain representations from the same modality
that was present in the K and V matrices of the preceding
MHA layer. Residual connections are included so the model
does not suffer from vanishing gradients, due to the model
depth, or suffer from losing positional embedding informa-
tion through the layers. The fusion attention layers utilize
an FC layer to embed the features and generate zl before
passing the features forward into the self-attention layers
with learnable scaling parameters. The activation function
is the rectified linear unit (ReLU) function (Eq. 4).

z′l = MHA(LN(zl−1)) + zl−1 (3)

zl = LN(FC(LN(z′l)) + z′l) (4)
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3.3 Self-Attention Layers with Learnable Scaling Pa-
rameters
After the inter-modality injections and alignment through
the cross-attention mechanism is completed, the two audio-
visual feature vectors are passed through the intra-modality
self-attention layers equipped with residual connections.
The self-attention layers have a structure similar to that of
our fusion attention layers. However, there is no information
flowing from one feature vector pipeline to the other. The
Q, V, and K matrices are contained within their own self-
attention layer, computing separate feature representations.
The use of the self-attention module after the fusion at-
tention layers helps our model emphasizes areas of the
representations extracted from the fusion attention layers
that are more useful for our discriminative task. The self-
attention layers have the layer-independent learnable scal-
ing weights α and β. The learnable scaling weights α and β
are added to increase our model’s capability to accordingly
scale representations in situations where acoustic or visual
features are missing. Learnable scaling weights increase the
robustness of our model against missing modalities.

3.4 Multilayer Perceptron and Classification
The representations are obtained from the self-attention
layers with learnable scaling parameters by extracting clas-
sification tokens from the last time step of each sequential
combination of audiovisual features. The last step of the
encoded sequences have a receptive field of the entire se-
quence length, which gives us a global representation of
the input sequence. Retrieving tokens from the last time
step helps us minimize the effect of having embeddings
from acoustic and visual features that could be in different
ranges, and ensures that we cover the entire temporal range
of each stream. Two token vectors are obtained from the
self-attention layers, which are concatenated, as indicated in
Equation 5,

zclass = CONCAT (zV→A, zA→V ) (5)

where zclass is the resulting vector from the concatenation
of the tokens obtained from the audio to visual fusion
zA→V layers and the tokens obtained from the visual to
audio fusion zV→A layers. The classification vector (zclass)
is then passed through a multilayer perceptron (MLP). The
output layer ultimately receives the embeddings from the
last hidden layer and outputs the classification probabilities.

3.5 Audio and Visual Auxiliary Networks
In addition to the main audiovisual fusion and alignment ar-
chitecture, we simultaneously train two auxiliary networks,
one for the visual features and the other for the acoustic
features. These auxiliary networks separately embed each
modality into new latent spaces. The two identical auxiliary
networks are incorporated in our model to provide extra
layers of meaningful representations for our classification
task. We were inspired by the study of Szegedy et al. [51],
which showed the benefits of auxiliary networks for very
deep models. Differently from the work by Szegedy et al.
[51], in our framework the auxiliary networks are not intro-
duced in middle layers of the backbone network. We made

the architecture choice of placing the auxiliary networks at
the input because we understood that it is important for the
auxiliary networks to process and learn from the unimodal
input features independently from the layers present in our
fusion networks. Additionally, right at the beginning of
our fusion network, we utilize cross-attention to combine
the acoustic and visual features. Therefore, if we had the
auxiliary networks placed at the middle layer of the back-
bone network, we would not be able to generate unimodal
representations. In our model, the auxiliary networks are
especially important because they help the model handle
missing modalities. Each auxiliary network is unimodal.
Therefore, having the auxiliary networks ensures that our
model still contains layers which carry full information
even though the other modality is missing. The auxiliary
networks also have residual connections across their fully-
connected layers with shared weights to ensure that impor-
tant information is not lost during training and inference.

Our complete framework is composed by three net-
works, and each network has its own cross-entropy loss
Lm, where m ∈ {a, v, av}, a represents the auxiliary audio
network, v represents the visual auxiliary network, and av
represents the audiovisual network. This formulation with
the auxiliary networks is inspired by the study of Piergio-
vanni et al. [50], which explored a mechanism that learns
multimodal representations by distilling shared information
through losses from multiple streams of networks. Our
model combines the cross-entropy losses generated by the
three networks to get the total loss Ltotal,

Ltotal = λvaLva + λaLa + λvLv, (6)

where λva, λa, λv are the weights for the specific losses of
the audiovisual, audio, and visual networks, respectively.

3.6 Optimized Training Procedure
Our goal with the proposed model is to achieve robust per-
formance in non-ideal environments with missing modali-
ties. We consider cases with partial or total missing informa-
tion for the audio/video feature sequence. We accomplish
this goal with an optimized training procedure. We randomly
split each batch in three groups. We replace the acoustic
features with zeros in the first group (20%), and the visual
features with zeros in the second group (20%). The audio
and visual features in the third group (60%) are not al-
tered. The optimized training procedure aims to simulate
the presence of non-ideal scenarios that our model would
not have seen if it was only trained under ideal condition
settings. We compare this optimized training procedure
with a standard training procedure consisting of using the
entire training data available without discarding any audio
or visual feature.

4 EXPERIMENTAL SETTINGS

4.1 Corpora
This study uses the CREMA-D corpus [55] and the MSP-
IMPROV corpus [56]. The CREMA-D corpus is an audio-
visual dataset containing high quality recordings collected
from a racially and ethnically diverse group of 91 actors
(48 male and 43 female). The actors were given a set

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2022.3216993

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, OCTOBER 2022 6

of sentences and asked to say every sentence targeting a
specific emotional state. Videos were recorded with green
screen in the background. Two directors supported this data
collection effort, where 51 actors worked with one director,
and 40 actors worked with the second director. The emo-
tional labels were rated by at least seven annotators under
different conditions: audio only, video only, and audiovisual
recordings. In total, 7,442 clips were collected and rated
by 2,443 raters. The distributions of the classes for the
audiovisual modality consensus labels are: 1,067 anger clips
(10,054 ratings), 1,222 disgust clips (11,429 ratings), 1,180
fear clips (11,153 ratings), 1,230 happy clips (11,730 ratings),
672 sad clips (6347 ratings), and 2,071 neutral clips (19450
ratings). In this study, we used the perceived emotions
from the audiovisual modality provided in the CREMA-D
corpus. We use six classes for this corpus: anger, disgust,
fear, happiness, sadness, and neutral state.

The MSP-IMPROV corpus [56] is the second audiovisual
database used in this study. The corpus was collected to
explore the perception of emotion [57]. One of the re-
quirements was to have sentences with the same lexical
content, but with different emotions. Instead of asking ac-
tors to read sentences expressing different emotions, the
corpus relied on a more sophisticated protocol to elicit
spontaneous renditions of the target sentences. The protocol
created hypothetical dyadic scenarios that led one of the
participants to say a target sentence in a given emotion.
The corpus includes 20 target sentences using four different
emotional states (happiness, sadness, anger, and neutrality),
generating 80 scenarios. This portion of the corpus consists
of 652 speaking turns. The corpus also includes the rest of
the interactions that led one of the actors to utter the target
sentence (4,381 spontaneous speaking turns), and natural
interactions collected between the dyadic scenarios (2,785
natural speaking turns). It also includes read recordings of
the target sentences, expressing the target emotional classes
(620 read speaking turns). Overall, the MSP-IMPROV cor-
pus contains 7,818 non-read speaking turns, and 620 read
sentences. The corpus was annotated with a crowd-sourcing
protocol that tracked in real time the quality of the workers,
stopping the evaluation when their quality dropped below
an acceptable threshold [58]. Each sentence was annotated
by at least five workers, where the plurality rule was used to
define the consensus labels. This study uses four emotional
states from this corpus: anger, sadness, happiness, and neu-
tral state.

For both datasets, we use the emotional labels provided
by raters after watching the audiovisual stimuli. These la-
bels are used to train and assess all the networks present in
our framework, including the unimodal auxiliary networks.

4.2 Features and Preprocessing

4.2.1 Visual Features
The visual features are obtained by extracting frames from
every clip present in the corpora used in this study. We use
the OpenFace toolkit [59] to detect and extract faces from
every image frame using bounding boxes. The bounding
boxes of the faces are extracted using the Multi-Task Cas-
caded Convolutional Neural Network (MTCNN) face detection
algorithm [60]. After extracting the bounding boxes, we

normalize the pixel intensities to a range between -1 and
1, and resize the images to a predetermined dimension of
224 × 224 × 3. Following the face extraction, we use the
VGG-face model [52], which we fine-tune for a multi-class
emotion recognition task using the AffectNet corpus [5].
We implement a 7-class problem with AffecNet: neutral,
happiness, sadness, surprise, fear, disgust, and anger. We
attach three fully-connected (FC) layers to the original VGG-
face model and fine-tune this model for 50 epochs using
adaptive moment estimation (ADAM) as the optimizer and
a learning rate set to 0.000075. The fine-tuned VGG-face
model obtains facial feature representations at the frame
level from the datasets. The representation obtained from
the fine-tuned VGG-face model is retrieved from the first
fully connected layer of the model with an array dimension
of 4,096, which is then concatenated row-wise with all the
other frames within each clip from the datasets to be used as
input to the video branch of our audiovisual model. We use
zero-padding to ensure the feature vector sequence length
is the same for all the videos.

4.2.2 Acoustic Features
The acoustic features are obtained by extracting the audio
from each video clip in the datasets. We use the OpenS-
mile toolkit [61] to extract the low level descriptors (LLDs)
included in the feature set for the paralinguistic challenge in
Interspeech 2013 [62]. LLDs include spectral, prosodic, and
energy-based acoustic features extracted at the frame level,
such as the energy, fundamental frequency (f0), and Mel-
frequency cepstral coefficients (MFCCs). These features have
been shown to provide relevant information for emotion
recognition tasks [63]. The features were extracted using
window lengths of 32ms with a step size of 16ms over the
entire audio for each sentence provided in the datasets. The
resulting LLDs consist of 130 frame-based acoustic features,
which are Z-normalized and then concatenated row-wise
creating a Na × 130 input matrix, where Na is the length of
the audio sequence.

After extracting the audio and visual features, we use
zero-padding to ensure the feature vector sequences have
the same length across all sequence vectors. Otherwise, the
dot-product operations cannot be performed on vectors that
have unmatched dimensions.

4.3 Implementation Details

The multi-head attention layers and self-attention layers are
all five layers deep, and each layer has 10 attention heads.
We set a dropout rate of p = 0.25 on the output embeddings
obtained from the attention layers, along with a p = 0.1
dropout rate for the residual connections. The model uses
ADAM as the optimizer with an initial learning rate set
to 0.000725. During training, we have a learning decay
set to five epochs. We set the gradient clipping threshold
to 0.8, batch size to 32, and use ReLU as the activation
function. λva, λa, and λv are set to have equal contribution
(i.e., 1

3 ). We explore other combinations in Section 5.3.4 as
part of our evaluation. The representations learned from
the fusion layers and self-attention layers are passed to a
MLP containing three fully-connected layers with dropout
and ReLU activation function to make predictions. The two
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intermediate hidden layer dimensions of the MLP are set to
260 hidden units. We set our output dropout rate to p = 0.2.
This model is trained to optimize the cross-entropy loss
between the predictions and ground truth labels. The model
was trained for 25 epochs with an early stopping criterion
based on the development loss. The models were imple-
mented in PyTorch and trained using an Nvidia QUADRO
RTX 8000.

For each database, the recordings are randomly split
such that around 70% of the data is in the train set, 15%
of the data is in the development, and 15% of the data
is in the test set. The random splits are implemented in
a speaker-independent manner, where there is no speaker
overlap in the data included in the train, development, and
test sets. We trained each model 20 times using random
seeds with different splits every time. The 20 seeds are saved
and re-used in every single model presented in the study to
ensure a fair comparison of the results across models (i.e.,
all models are trained and tested with the same partitions).
All the models are trained using the train set, and the model
achieving the best results on the development set is saved
and used to make predictions on the test set.

4.4 Evaluation Metrics

An emotional state prediction is obtained for each video
sequence available in our test set. We report the final results
on the test set using the ‘micro’ and ‘macro’ F1-scores. The
‘micro’ F1-score is calculated using the global number of
true positives, false negatives, and false positives. This met-
ric is sensitive to imbalance on the number of samples per
emotional class. The ‘macro’ F1-score separately calculates
the F1-scores for each class and aggregates these scores
equally weighting each class. This metric provides a bigger
penalization when a model does not perform well with the
minority classes. Every experiment in this work is run 20
times with different random seeds, reporting the average
metrics. We also perform statistical analyses to evaluate our
model with baseline models using a one-tailed matched pair
t-test with significance level at p-value = 0.05, comparing
the macro F1-scores and micro F1-scores obtained by each
model for the 20 trials. All the models are trained using
the optimized and standard training strategies mentioned
in Section 3.6.

4.5 Baselines

We compare our proposed model with three strong audio-
visual architectures and one unimodal architecture.

4.5.1 Baseline 1: Audiovisual Framework without Auxiliary
Networks
The first baseline is a framework derived from our model.
This model uses our proposed model without the auxiliary
networks and shared loss mechanism. The baseline corre-
sponds to the main audiovisual fusion network Fav(•). This
baseline helps us quantify the performance gain obtained by
adding the two adjacent auxiliary networks to our frame-
work. The implementation settings of this baseline are the
same as the proposed model. We refer to this model as
baseline 1.

4.5.2 Baseline 2: Multimodal Transformer (MulT)
Tsai et al. [17] proposed a multimodal transformer archi-
tecture for human language time-series data. This model
uses 1D temporal convolutions to retrieve temporally aware
textual, acoustic, and visual feature vectors. They built a
cross-modal transformer model that injects and aligns dif-
ferent modalities using an attention mechanism. This model
builds pairs of bimodal representations that are formed
by having the Keys and Values of one modality interact
with the Queries of a target modality. Six bimodal vectors
are generated. Vectors with similar target modalities are
concatenated and passed to another transformer layer that
generates representations that are then used for classifica-
tion.

We implement the model following the description of the
architecture presented in their study. However, we removed
the textual branch from their original architecture, reducing
the number of cross-modal transformers from 6 to 2 from
their original architecture to adapt their method from three
modalities (textual, visual, and acoustic) to two modalities
(audiovisual). We refer to this model as baseline 2.

4.5.3 Baseline 3: Cross-modal Transformer Architecture
Parthasarathy et al. [18] used a cross-modal transformer
architecture for audiovisual recognition of emotional at-
tributes. The same architecture was used for automatic speech
recognition (ASR) tasks achieving competitive results [64].
The architecture consists of several encoding layers that in-
dependently encode the representations from each modality
and project these representations into Q, K, and V matrices
to be the inputs of a transformer block. The Keys and
Values of one modality are concurrently passed into one
transformer block with the Queries of a different modality
to fuse their representations. A residual connection is then
used to add representations from the dot-product attention
layers to its corresponding encoder representations using
two learnable scalar weights. The resulting two final com-
ponents are summed together and passed through a dense
layer to get predictions.

We reproduce the implementation of this architec-
ture following the model descriptions presented in
Paraskevopoulos et al. [64] and Parthasarathy et al. [18]. We
implement the model so that it is trained and evaluated us-
ing the F1-score metric instead of the concordance correlation
coefficient (CCC) metric used in the original paper, adjusting
the model’s task for multi-class emotion recognition. We
refer to this model as baseline 3.

4.5.4 Baseline 4: Unimodal Emotion Recognition Frame-
work
We build unimodal baselines to compare the robustness
of our proposed model for scenarios where video-only of
acoustic-only features are available for emotion recogni-
tion. The architecture used here has similar components
to our proposed model. Figure 2 depicts an overview of
the unimodal baselines. This framework is composed of an
auxiliary network and a network containing self-attention
layers with learnable scaling parameters. Since this model
only receives one modality as input, the cross-modality
attention mechanism is not used. The difference here is that
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Fig. 2. Overview of the unimodal framework used to compare the perfor-
mance of our approach in visual-only and acoustic-only scenarios.

we have two training losses instead of three present in our
proposed model (one main loss and one auxiliary loss).
During the training of our unimodal network the losses
are equally weighted. Likewise, the networks’ outputs are
equally averaged during inference. The training settings
used here are the same settings employed for our proposed
model. We train two different unimodal models using this
framework: a video-only emotion recognition model and an
audio-only emotion recognition model.

5 EXPERIMENTAL RESULTS

5.1 Comparison with Multimodal Baselines
This section compares our proposed model with the mul-
timodal baselines. All the models are trained using both
the standard and optimized training methods discussed in
Section 3.6. Table 1 reports the average macro F1-scores
and average micro F1-scores of the models obtained after
running 20 trials. The results show that our proposed model
has a strong performance that is significantly better than the
baseline models for both datasets. Figure 3 provides further
comparison between the models trained with the optimized
training mechanism. For the CREMA-D corpus, we observe
in Figure 3(a) that our model shows more consistent results
compared to the performance spread of the baselines. For
the MSP-IMPROV corpus, Figure 3(b) again demonstrates
the consistent performance of our proposed model across
all the experiments. Our proposed model had lower per-
formance spread than baseline 1 and baseline 2. Baseline 3
shows a slightly smaller spread than our proposed model
on the MSP-IMPROV corpus, but the performance is signif-
icantly lower than our method. Overall, our model trained

TABLE 1
Comparison between our model with audiovisual baselines, reporting
the average F1-score values across 20 trials. The symbol c indicates
that our method is significantly better than the other three baselines.

Standard Training Procedure
CREMA-D MSP-IMPROV

Architecture Micro-F1 Macro-F1 Micro-F1 Macro-F1
Our Model 0.769c 0.768c 0.762c 0.706c

Baseline 1 0.705 0.702 0.751 0.687
Baseline 2 [17] 0.707 0.704 0.745 0.677
Baseline 3 [18] 0.624 0.608 0.733 0.663

Optimized Training Procedure
CREMA-D MSP-IMPROV

Architecture Micro-F1 Macro-F1 Micro-F1 Macro-F1
Our Model 0.773c 0.772c 0.761c 0.703c

Baseline 1 0.736 0.734 0.742 0.681
Baseline 2 [17] 0.724 0.722 0.744 0.673
Baseline 3 [18] 0.629 0.615 0.732 0.667

with both training regimes is able to outperform the base-
lines’ results with consistent F1-scores for both databases.

5.2 Robustness to Missing Modalities
This section investigates how changes to the input data
affect the model’s performance. We investigate the effect
of the optimized training mechanism on our model’s per-
formance in non-ideal scenarios. We conducted modality
ablation studies by separately clipping either the entire
audio or the video sequences (Sec. 5.2.1). We also randomly
replace some frames of the feature vectors with zeros with
different probabilities (Sec. 5.2.2). We present the results
obtained from baseline 4, which was developed as a version
of our proposed model trained in a unimodal fashion with
either visual or acoustic features. Because baseline 4 is
tested without dropping any feature, it is expected that this
baseline will competitively perform in comparison to the
multimodal models tested with missing information.

5.2.1 Modality Clipping
We start our modality ablation analysis by clipping either
the entire visual or acoustic feature sequences (i.e., zeroing
the entire feature sequence). Table 2 reports the mean F1-
score value of the unimodal baseline 4 and our model
trained with the optimized training approach, when a spe-
cific modality is clipped while the other modality is kept
unchanged. It also shows the results of the baselines imple-
mented with the optimized training method. The first part
of the table contains the results with only visual features.
The second part of the table contains the results with only
the acoustic features.

Table 2 shows a clear strong performance from our
proposed model in visual-only and acoustic-only scenar-
ios, achieving significant improvements over baselines 1,
2, and 3. Table 2 shows the importance of the optimized
training strategy combined with the proposed framework
to deal with missing modalities. Our proposed model is the
only model to achieve results that approach or exceed the
performance of baseline 4 in the single-modality scenarios
explored in this section.

Figure 4 compares side-by-side the performance of every
multimodal model explored in this study trained with the
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Fig. 3. Evaluation of the optimized training procedure used to train the
proposed model and the baselines conducted on the 20 trials on the
(a) CREMA-D corpus, and (b) MSP-IMPROV corpus. The middle black
bar represents the median micro F1-score values for each model. The
outside bars represent the first and third quartiles. The middle colored
dots represent the mean F1-score values for each model. The dash
lines represent the minimum and maximum values and the red crosses
represent outliers.

standard and optimized training methods for all the sce-
narios. The dashed orange line in the bar graphs represents
baseline 4’s performance in visual-only emotion recognition,
and the solid green line represents baseline 4’s performance
in acoustic-only emotion recognition. Across both databases,
all the multimodal models gain robustness to visual-only
and acoustic-only scenarios when trained with the opti-
mized training mechanism. However, the optimized train-
ing mechanism on the baselines is not enough to achieve
the strong performance in non-ideal scenarios that our
proposed model achieves. Our proposed model is the only
architecture able to overcome baseline 4’s performance by
a 1.1% micro F1-score increase on visual-only scenarios and
by a 1.7% micro F1-score increase on acoustic-only scenarios
for the CREMA-D dataset. On the MSP-IMPROV dataset,
our model’s performance only has a 0.5% lower micro F1-
score on the visual-only scenarios, and only a 0.4% lower
micro F1-score on the acoustic-only scenarios compared to
baseline 4.

5.2.2 Random Masking of Features
This section analysis the performance of the system when
part of the features are missing. We randomly zero-out

TABLE 2
Performance analysis with missing modality. The performances of the
audiovisual models using the optimized training approach and tested

with only acoustic or only visual features are compared with the
unimodal baseline 4. The table reports the average F1-score values

across 20 trials. The symbol c indicates that our model is significantly
better than all other baselines, including baseline 4.

Visual Features Only
CREMA-D MSP-IMPROV

Architecture Micro-F1 Macro-F1 Micro-F1 Macro-F1
Our Model 0.622c 0.615c 0.721 0.608
Baseline 4 0.611 0.604 0.726 0.635
Baseline 1 0.561 0.551 0.709 0.596
Baseline 2 [17] 0.572 0.566 0.692 0.526
Baseline 3 [18] 0.552 0.541 0.714 0.622

Acoustic Features Only
CREMA-D MSP-IMPROV

Architecture Micro-F1 Macro-F1 Micro-F1 Macro-F1
Our Model 0.602c 0.592c 0.625 0.532
Baseline 4 0.585 0.576 0.629 0.532
Baseline 1 0.541 0.528 0.563 0.453
Baseline 2 [17] 0.524 0.513 0.545 0.366
Baseline 3 [18] 0.327 0.244 0.511 0.378

either visual or acoustic data at the frame-level. We conduct
this analysis by increasing the number of available frames
from 10% to 90% in increments of 10%. For example, the
70% condition indicates that 30% of the frames selected at
random from the modality that we are masking are replaced
by zeros. This evaluation aims to analyze the robustness of
the model with partial information for one of the modalities.

Figure 5 reports the mean micro F1-scores of our model
and the baselines as we increase the number of available
frames for the modality that we are masking. The upper
solid blue horizontal line in Figure 5 represents the best
performance obtained by our model when full-audiovisual
features are available. The lower dashed horizontal red
line represents the performance of the unimodal baseline
4 for the modality that it is not affected by the random
masking process. We see that even with only 10% of the
frames for the modality that we are masking, our model’s
performance is already higher than baseline 4 in all scenar-
ios. When only 10% of visual information is available, in
addition to the acoustic features, our model’s performance
is 15.4% higher than baseline 4 for the CREMA-D dataset
(Fig. 5(b)), and 9.2% higher than baseline 4 for the MSP-
IMPROV dataset (Fig. 5(d)). Baselines 1, 2 and 3 have lower
performance than our proposed approach in all scenarios.
When acoustic features are masked on the MSP-IMPROV
dataset, the performance for baselines 1, 2, and 3 are 1.3%,
0.8%, and 0.2% lower than baseline 4 when only 10% of the
acoustic features are available, respectively. Under the same
setting, our model outperforms baseline 4 by 0.8% (Fig. 5(c)).
Overall, the analysis shows that our proposed approach
is robust against missing frames. It consistently increases
its performance as more acoustic and/or visual features
become available. When the number of missing frames is
between 40% and 50% of either acoustic or visual features
across conditions, our model approaches the performance
of the full audiovisual scenario with a performance gap that
is less than 1% for both databases.

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2022.3216993

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, OCTOBER 2022 10

0.769 0.773

0.481

0.622

0.506

0.602

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
or

e

AV          V           A
Regular Training

AV          V           A
Optimized Training

(a) Our Model (CREMA-D)

0.762 0.761

0.621

0.721

0.542

0.625

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
or

e

AV          V           A
Regular Training

AV          V           A
Optimized Training

(b) Our Model (MSP-IMPROV)

0.705
0.736

0.394

0.541

0.454

0.561

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
or

e

AV          V           A
Regular Training

AV          V           A
Optimized Training

(c) Baseline 1 (CREMA-D)

0.751 0.742

0.655

0.709

0.508

0.563

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
or

e

AV          V           A
Regular Training

AV          V           A
Optimized Training

(d) Baseline 1 (MSP-IMPROV)

0.707
0.724

0.451

0.572

0.437

0.524

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
or

e

AV          V           A
Regular Training

AV          V           A
Optimized Training

(e) Baseline 2 [17] (CREMA-D)

0.745 0.744

0.469

0.692

0.494

0.545

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
or

e

AV          V           A
Regular Training

AV          V           A
Optimized Training

(f) Baseline 2 [17] (MSP-IMPROV)

0.624 0.629

0.475

0.552

0.185

0.327

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
or

e

AV          V           A
Regular Training

AV          V           A
Optimized Training

(g) Baseline 3 [18] (CREMA-D)

0.733 0.732

0.677
0.714

0.464

0.511

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
1-

sc
or

e

AV          V           A
Regular Training

AV          V           A
Optimized Training

(h) Baseline 3 [18] (MSP-IMPROV)

Fig. 4. Comparison of the performance of the models using the stan-
dard and optimized training methods. The optimized training approach
increases the model’s robustness in non-ideal scenarios for all models.
AV = Audiovisual, V = Visual-only, and A = Acoustic-only. The horizontal
lines represent the performance of our unimodal baseline (Dashed
Orange = Baseline 4 Visual; Solid Green = Baseline 4 Acoustic).

5.3 Architecture Ablations
We perform a controlled architecture ablation study by
evaluating the effect of various components of our model
on the performance of our system. We run ablations on the
main pieces of our architecture: positional encoding, self-
attention layers, ways to retrieve the classification token,
and different values for lambda to balance the shared loss
mechanism.

5.3.1 Positional Encoding
We use positional encoding in our model to ensure that (1)
temporal information is properly retained by our model and
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Fig. 5. Performance of the proposed model and baselines with partial
visual or acoustic information. The figure plots the micro F1-scores as a
function of the percentage of the frames included for the masked modal-
ity (the other modality is assumed to be complete). The top horizontal
solid blue line represents the model’s upper bound performance when
full audiovisual information is available. The lower horizontal dashed red
line represents the performance of baseline 4 for each scenario.

TABLE 3
The role of positional embedding in our model.

CREMA-D MSP-IMPROV
Pos. Encoding Type Micro F1 Macro F1 Micro F1 Macro F1
No Pos. Encoding 0.767 0.766 0.753 0.693
1-D Pos. Encoding 0.773 0.772 0.761 0.703

(2) proper alignment between the modalities is performed.
We run ablations to see the role of the positional encoding on
the performance of the system. We removed the positional
encoding from our model’s architecture and we compared
the results with our proposed model. Table 3 shows that our
results slightly drop when the positional encoding is not
present. The drop in performance, although small, is larger
for the MSP-IMPROV dataset. One potential reason for this
result is the durations of the input sequences (up to 31
seconds) on the MSP-IMPROV corpus, which are generally
longer than the durations of the input sequences on the
CREMA-D dataset (up to 5 seconds). The results obtained in
this experiment are consistent with other studies ( [65], [66] )
that explored positional encoding ablations and observed a
small decrease in performance when no positional encoding
is used.

5.3.2 Self-Attention Layers
After processing our data through the modality fusion atten-
tion layers, the features are passed through the self-attention
layers with learnable scaling parameters (Fig. 1). The self-
attention layers compute representations within the same
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Fig. 6. Effects of removing the self-attention layers with learnable scaling
parameters, or replacing them with a LSTM or GRU layer. The figure
reports the average F1-scores obtained across the 20 trials.

sequence to emphasize regions that are more useful for our
task. Figure 6 ablates the self-attention layers by removing
them, or replacing them with either a long short-term memory
(LSTM) or gated recurrent unit (GRU) layer.

Complete removal of the self-attention layers with learn-
able scaling parameters results in a 0.7% decrease in macro
F1-score and a 1.6% in micro F1-score for the MSP-IMPROV
dataset. For the CREMA-D database, it decreases the macro
F1-score by 1.2% and the micro F1-score by 1.3%. Figure 6
shows that having the self-attention layers with learnable
scaling parameters yields better results than replacing them
with an LSTM or GRU layer. However, adding an LSTM or
GRU layer is often preferred over just removing the self-
attention layer.

5.3.3 Classification Token Generation

In our model, representations of the sequential data ob-
tained from the self-attention layers are extracted from the
last time-step of every sequence to be used as a classification
(CLS) token. The two token vectors obtained from the top
and bottom self-attention layers are concatenated (Eq.5), and
used as the final hidden representation for our classification
task (Section 3.4). This section explores this approach, re-
ferred to as last time-step token, with two alternative methods.

The first approach that we compare our model to is with
a prepending token approach. This method requires a CLS
token, which is prepended to the beginning of every input
sequence fed into the model. After this step, everything
gets processed through the transformer layers. Then, this
prepended token is extracted at the final self-attention layer
and used to perform the classification task. This is the same
method used by Devlin et al. [67] when introducing the
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Fig. 7. Comparison of results obtained with different methods for classi-
fication token retrieval. The figure reports the average F1-score values
across 20 trials. Our framework uses the last time-step token method.

BERT model. We refer to this approach as the prepending
token. Figure 7 shows that this method decreases the per-
formance in both databases. The second approach explores
using the mean over the final hidden layer representations
of the processed sequential data, instead of adding a clas-
sification token to our sequential data. The resulting mean
value is then used as a classification token. We refer to this
approach as the sequence Mean Token. Using the sequence
mean as a token leads to improvements over the results
obtained by the prepending token method. Figure 7 shows
that the last time-step token has almost the same performance
as using the sequence mean token approach for the CREMA-D
corpus. However, the results on the MSP-IMPROV corpus
show stronger performance when using the last time-step
token. We hypothesize that the differences across corpora are
due to the differences in duration of the speaking turns. The
last time-step token approach works well across both datasets.
The last step of the representations is obtained from the self-
attention layers with learnable scaling parameters, which
have a receptive field of the entire sequence, giving a global
representation.

5.3.4 Hyper-parameters for Shared Losses
Each network (Fav(•), Fa(•), Fv(•)) in our model has its
own lossLm, wherem ∈ {a, v, av}. The model combines the
training cross-entropy losses from these networks during
training to get the total loss. Table 4 presents the results
when using different values for the weights λva, λa, λv (Eq.
6). We only include results on the CREMA-D corpus due to
computational constraints.

In our experiments, we make changes to the distribu-
tions of the weight values for λa, λv , and λva. The weights
are distributed such that they sum up to 1. Table 4 shows
that the best performance is achieved around values that

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2022.3216993

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, OCTOBER 2022 12

TABLE 4
F1-scores of the proposed system on the CREMA-D dataset with

different weights to combine the losses (Eq. 6).

(λva, λa, λv) Micro F1-score Macro F1-score
(0.20, 0.40, 0.40) 0.773 0.772
(0.30, 0.35, 0.35) 0.774 0.773
(0.33, 0.33, 0.33) 0.773 0.772
(0.40, 0.30, 0.30) 0.773 0.773
(0.50, 0.25, 0.25) 0.769 0.768
(0.60, 0.20, 0.20) 0.772 0.771
(0.70, 0.15, 0.15) 0.769 0.768
(0.80, 0.10, 0.10) 0.770 0.769
(0.00, 0.50, 0.50) 0.738 0.738
(0.90, 0.00, 0.10) 0.738 0.736
(0.90, 0.10, 0.00) 0.742 0.743

are more evenly distributed amongst all three loss weights.
We see a small performance decrease when the distribution
shifts to a more uneven area and more weight is given to
the audiovisual fusion network (Fav(•)). A larger drop in
performance is observed when one of the loss’ weights is set
to zero for any of the networks. The experiments show that
as long as the weights of the losses are evenly distributed
and none are set to zero, the model is not very sensitive to
these hyper-parameters.

5.4 Trainable Parameters and Training Time
This section discusses the model complexity, and the time
required to train the models. Baseline 1 presented in this
study consists of a model which shares mostly the same
architecture as our main proposed framework. The differ-
ence is that baseline 1 does not include the auxiliary net-
works. We have seen in our experiments that the auxiliary
networks help our model to greatly improve performance
over baseline 1. Table 5 shows that this performance boost
comes with an addition of 1.48 times more parameters.
Our proposed approach also sees a training time increase
of around 35 seconds per epoch over baseline 1. When
compared with baselines 2 and 3, we see that our model
is substantially more complex than these baselines. Our
model has 19.7 times more parameters that baseline 2 and
3.2 times more parameters than baseline 3. Additionally, we
also see that our model takes 2.8 times longer and 2.1 times
longer to train than baselines 2 and 3, respectively. Lastly,
our unimodal baseline 4 also contains a large amount of
parameters, since it was directly derived from our proposed
audiovisual framework.

To ensure that the performance gains obtained by our
model over baselines 2 and 3 are not solely achieved due to
a higher number of parameters of our model compared to
the baselines, we conduct an additional set of experiments
where we upscale baselines 2 and 3 by increasing its number
of parameters to values comparable to our proposed frame-
work (∼7M). To upscale these models, we have updated
the size of the transformer layer reception and the number
of hidden layers in their fully-connected layers. Figure 8
shows the results. Increasing the number of parameters
for the baselines does not result in a consistent increase
in performances. The scaled-up version of baseline 2 has
approximately 20 times more parameters than the original
model (from 358,384 to 7,070,406 parameters). The scaled-
up version results in minimal improvements, in some cases,
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Fig. 8. Experimental results reporting micro F1-scores from our pro-
posed frameworks’ best performance and upscaled versions of base-
lines 2 and 3. The bar graphs contain side-by-side comparisons with the
original versions of baselines 2 and 3 reported in Table 1.

TABLE 5
Number of trainable parameters and training times per epoch for our

proposed model and the baselines.

# Params. Train. Time
Our Model 7,054,748 83 sec/epoch
Baseline 1 4,776,994 48 sec/epoch
Baseline 2 [17] 358,384 30 sec/epoch
Baseline 3 [18] 2,211,628 39 sec/epoch
Baseline 4 4,364,354 46 sec/epoch

over the original baseline model. The scaled-up version of
baseline 3 has approximately 3.2 times more parameters
than its original model (from 2,211,628 to 7,125,278 parame-
ters). Figure 8 shows that the scaled-up version of baseline 3
results in consistent performance increase for the CREMA-D
dataset over the non-scaled method. However, we do not see
improvements on the MSP-IMPROV dataset. Importantly,
the performances of the upscaled baselines are lower than
the results obtained by our proposed method in all cases.
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6 CONCLUSIONS

This study presented an effective approach for robust
audiovisual emotion recognition using a combination of
the transformer architecture with auxiliary networks. The
transformer framework and temporal information added
by the positional encoding enable the model to perform
audiovisual fusion and alignment. The auxiliary networks
with a shared loss mechanism and the optimized train-
ing method increase the robustness of the model against
missing modalities, preventing our framework from losing
important information during training. The performance
in emotion recognition of our model achieves a micro F1-
score of 77.3% and a macro F1-score of 77.2% on the
CREMA-D database, and a micro F1-score of 76.1% and
a macro F1-score of 70.3% on the MSP-IMPROV database
under ideal conditions. Statistical analyses revealed that
our framework not only achieves superior performance
when compared to competitive baselines, but also achieves
proper alignment between the modalities while retaining
temporal information, robustness to missing modalities, and
better fusion of audiovisual features at the model level.
The experimental evaluations demonstrated the benefits of
auxiliary networks, temporal alignment, and model level
fusion of audiovisual features. The proposed model can
also be easily adapted to predict on emotional attributes
(e.g. arousal, valence, dominance). Our architecture can
be adapted to perform this task by simply changing our
loss function to CCC and updating the model’s output to
the desired number of dimensions to be explored. Results
from the ablation studies show how architecture changes
can affect our proposed model’s performance. Even though
the model performed well without positional embeddings,
as seen in Table 3, the additional temporal information
provided by the positional embeddings allows the model to
better align the audiovisual data within the attention layers.
Furthermore, our results show that the optimized training
method adds robustness to the model and improves the
overall performance in ideal scenarios.

There are several research directions opened by this
study. Given the availability of large amounts of unlabeled
data across many datasets with rich emotional contents, we
can explore self-supervised methods [68] for pre-training
our framework aiming to strengthen the model’s perfor-
mance and robustness in all possible scenarios. A limitation
of this study is the use of datasets containing acted or
elicited emotions by actors. We would like to expand the
evaluation of the proposed architecture in other databases
containing more naturalistic data. Expanding on the idea of
robustness against missing modalities, we can also explore
the robustness of our proposed approach to noisy environ-
ments for emotion recognition systems [69], [70]. We also
aim to explore situations where human voice is not present,
so the system may still receive ambient sound with noisy
acoustic features that are not zeros. To handle this situation,
we want to explore the use of voice activity detectors, signal
to noise ratio filters, and music detection filters to identify
inputs which can be regarded as noise, silence, or music. We
could analyze if better results can be achieved by removing
these problematic inputs from the model’s pipeline at infer-
ence, and replacing these segments with zeros. We can also

expand this architecture to tasks that require more modal-
ities to be combined (e.g., text, speech, and facial features)
and explore the utilization of other features as input to the
network (e.g. raw data). Furthermore, a promising future
direction is to incorporate this framework to solve other
multimodal tasks, such as audiovisual automatic speech
recognition [71]. One limitation of our approach is the high
complexity of the framework. We leave as future work the
exploration of strategies that could reduce its complexity
without affecting its performance.
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