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Abstract
Speech emotion recognition (SER) is a challenging task due to
the limited availability of real-world labeled datasets. Since it is
easier to find unlabeled data, the use of self-supervised learning
(SSL) has become an attractive alternative. This study proposes
new pre-text tasks for SSL to improve SER. While our target
application is SER, the proposed pre-text tasks include audio-
visual formulations, leveraging the relationship between acous-
tic and facial features. Our proposed approach introduces three
new unimodal and multimodal pre-text tasks that are carefully
designed to learn better representations for predicting emotional
cues from speech. Task 1 predicts energy variations (high or
low) from a speech sequence. Task 2 uses speech features to
predict facial activation (high or low) based on facial landmark
movements. Task 3 performs a multi-class emotion recogni-
tion task on emotional labels obtained from combinations of
action units (AUs) detected across a video sequence. We pre-
train a network with 60.92 hours of unlabeled data, fine-tuning
the model for the downstream SER task. The results on the
CREMA-D dataset show that the model pre-trained on the pro-
posed domain-specific pre-text tasks significantly improves the
precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up
to 4.9%) of our SER system.
Index Terms: self-supervised learning, speech emotion recog-
nition, audiovisual tasks.

1. Introduction
Human communication relies on many signals to effectively
transmit a message with the intended semantic content, intended
emphasis, and emotional content. We use multimodal cues to
convey expressive information during daily interactions, includ-
ing acoustic, visual and other sensory modalities [1]. Therefore,
we expect that combining and leveraging the relationship across
different multimodal cues can help us in generating meaning-
ful representations for robust emotion recognition. The con-
ventional approach for building a speech emotion recognition
(SER) system is to solely focus on the speech modality [2–6].
This study explores the relationship between acoustic and fa-
cial cues to enhance acoustic representations for SER. We learn
from the complementary information provided by audiovisual
modalities, even though only speech is used during inference.

The motivation for this paper is to explore using unlabeled
data to generate speech representations which can improve the
performance of supervised learning methods for SER, which are
often trained with a much lower amount of labeled data. Self-
supervised learning (SSL) methods can improve performance
on downstream tasks. In SSL, models are often pre-trained to
make predictions on pre-text tasks for which labels can be auto-
matically obtained. The pre-text tasks are not always related to
the downstream tasks. The pre-trained models are subsequently
fine-tuned on a labeled dataset to make predictions on a pre-

determined downstream task. Some of the areas where SSL has
been successfully used includes question answering [7], action
recognition [8], and multimodal emotion recognition [9]. For
emotion recognition, SSL methods often make use of speech
and/or textual/visual representations to pre-train a model. Previ-
ous studies have used masked language modeling (MLM) tasks,
which consists of replacing some tokens by either the token
< MASK > or a random token and asking the model to
predict the masked tokens [10, 11]. Then, these models have
utilized contrastive objectives to extract speech representations,
such as in wav2vec [12], which is optimized to solve a next
time-step prediction task using a contrastive loss. We observe
that these approaches rely on similar tasks (contrastive objec-
tive and/or MLM) when utilizing multimodal data to pre-train
SER models. However, some of these tasks are not even re-
lated to SER problems. These generic tasks can also be very
static, specially with text representations where words always
have the same representations. This issue is problematic since
emotions are dynamic. Since facial expressions are intrinsically
connected with acoustic features [13], we argue that better pre-
text tasks can be obtained by relying on audiovisual features
that capture the intrinsic and dynamic connection between fa-
cial expressions with acoustic features, focusing on tasks that
are relevant to SER problem.

This paper proposes using acoustic and facial features to
generate pre-text tasks for self-supervised SER. We create three
novel unimodal and multimodal pre-text tasks that leverage the
complementary information contained in audiovisual features
and are designed to produce discriminative SER representa-
tions. The first pre-text task is an energy task, where the en-
ergy in a speech sequence is classified into binary classes (high
or low). This task exploits the fact that several emotions are
characterized by high arousal, leading to higher speech energy.
The second pre-text task uses speech to predict the activeness
of facial expressions, where binary labels (high or low) are de-
fined based on the variance of the movements of facial land-
marks. The third pre-text task is a multi-class emotion classi-
fier trained with acoustic features using pseudo-emotional la-
bels obtained from combinations of facial action units (AUs)
detected across a video sequence. These new pre-text tasks are
carefully selected to capture the relationship between facial ex-
pressions with acoustic features, and generate representations
with emotional content for the downstream SER task. The pro-
posed model is trained in a multi-task environment, and the
learned representations are fine-tuned for the SER tasks.

We evaluate the proposed approach with the CREMA-D
corpus [14], pre-training the models with the proposed pre-text
tasks on the MSP-Face corpus [15]. The experimental evalu-
ation compares our method with a supervised method and a
baseline which uses the wav2vec 2.0 method [16] to pre-train
the architecture. The results show improved performance by
using a pre-trained model using our pre-text tasks over alter-



native methods. We also analyze the effect that each pre-text
task has on our proposed method’s performance. We observe
that having all the proposed pre-text tasks during pre-training is
crucial to achieve strong results.

2. Related Work
The use of SSL has led to performance improvements in several
downstream tasks, such as question answering [7], action recog-
nition [8], and multimodal emotion recognition [9]. One SSL-
based approach that has shown impressive results in speech re-
lated tasks is the wav2vec 2.0 framework [16]. Wav2vec 2.0
has obtained strong representations from raw audio for auto-
matic speech recognition (ASR) [16]. Studies have shown that
this framework is also a powerful alternative for SER tasks
[17]. Keesing et al. [18] compared different feature represen-
tations for SER tasks, showing that wav2vec 2.0 was one of
the best alternatives. Previous studies using SSL in SER tasks
have used text-based self-supervised methods to improve per-
formance in SER. For example, Tseng et al. [19] used a word
prediction pre-text task which included acoustic features in ad-
dition to word tokens to generate joint representations of speech
and text through modeling a bidirectional language model with
word-aligned acoustic features. The pre-trained model was later
fine-tuned to the downstream SER task. Although SSL ap-
proaches have shown good performance with text-based tasks,
some models do not work well when the SSL is implemented
without text masking tasks. Khare et al. [9] used a SSL method
with cross-modal transformers for emotion recognition. The
method achieved good performance with text. However, the ab-
lation study showed that the text modality was essential in the
architecture to achieve good performance.

We take inspiration from previous SSL studies and from
studies on multimodal emotion recognition [20,21] to derive the
proposed pre-text tasks. Although studies have also explored
text-based or speech-based pre-text tasks, we argue that lever-
aging acoustic and facial cues is crucial for multimodal pre-text
tasks. Facial expressions are intrinsically connected with acous-
tic features [13]. Therefore, we can create better models by
considering audiovisual features, even if the target application
is a unimodal system. The novelty on our formulation is to use
acoustic information to predict on audiovisual tasks to gener-
ate emotionally meaningful acoustic representations for SER by
leveraging the complementary information provided by acous-
tic and facial features.

3. PROPOSED APPROACH
The goal of this study is to use SSL to build emotional rep-
resentations from audiovisual pre-text tasks to improve SER
performance. We designed three pre-text tasks to train with a
large number of unlabeled videos available on the MSP-Face
dataset [15]. All datapoints used to train the pre-text tasks are
obtained from two-second segments with an overlap of 0.5 sec-
onds. The unimodal and multimodal pre-text tasks are carefully
designed to (1) create representations that are discriminative for
the SER task, and (2) leverage the complementary relationship
between acoustic and facial features in the externalization of
emotions. After presenting the three proposed pre-text tasks,
this section presents the SER framework used to evaluate our
SSL solution.

3.1. Task of Speech Energy

The first pre-text task is unimodal, relying only on speech. Sev-
eral emotions such as happiness and anger are characterized

(a) (b)
Figure 1: Task of variance of facial landmarks. (a) Facial land-
marks for the top (red) and bottom (blue) sections. (b) Centroids
created for each frame for the top and bottom facial regions.

by high level of speech energy. Motivated by this observation,
our pre-text task consists of predicting audio with low and high
energy. Audios are extracted from the two-second datapoints
and converted into mono channel using the ffmpeg library [22].
Then, the librosa package [23] is used to compute the short-
time Fourier transform (STFT) of audio samples and compute
the root-mean-square (RMS) value for each segment. We di-
chotomized the segments into two classes using the mean RMS
energy computed across all datapoints as a threshold. If the
RMS energy value is above the threshold, the segment is la-
beled as “1.” Otherwise, the segment is labeled as “0.”

3.2. Task of Variance of Facial Landmarks
The second pre-text task is a multimodal problem, relying on
acoustic and facial features. Facial expressions involve mus-
cle activity that increases the movements in the face. The ar-
ticulatory movements to produce speech are also visible in the
face, interplaying with the externalization of emotions [24]. The
multimodal pre-text task is to identify from speech whether the
level of facial activity is low or high. The input of the model
is speech features. All the video segments are processed with
the OpenFace 2.0 toolkit [25] to extract frame-wise facial land-
marks. In this task, 68 facial landmarks are obtained for each
video frame. Speech articulation mostly affects the lower fa-
cial region. Therefore, we split the faces into upper and lower
regions as represented in Figure 1(a). Then, we estimate the
landmark centroid in each frame for the upper and lower fa-
cial regions, as illustrated in Figure 1(b). The positions of the
centroids across frames are compiled and used to estimate the
variance of the centroids as a proxy of facial movements. We
estimate the mean variance of the traces for the entire set of dat-
apoints to estimate a threshold to dichotomize the segments into
binary classes for the pre-text task. If the variance of the trace
of a sequence is above the threshold, the segment is labeled as
“1.” Otherwise, the segment is labeled as “0.” This approach is
separately done for the lower and upper facial regions creating
two binary problems.

3.3. Task of Action Units
The third pre-task task is a multimodal multi-class problem in-
volving acoustic and facial features. This pre-text task makes
an explicit attempt to create an emotional discriminative feature
representation by predicting emotional classes, where the la-
bels are automatically obtained by detecting the co-occurrence
of facial action units (AUs). AUs describe specific facial mus-
cle movements. They are the basic coding units of the facial
action coding system (FACS). We rely on the Emotional Facial
Action Coding System (EMFACS) [26], which was created to
infer emotional classes from the AUs present in the face. Ta-
ble 1 shows the combinations of AUs provided by the EMFACS
that are often observed for four major emotional states: happi-
ness, sadness, surprise, and anger. We obtain the detected AUs
(true or false) for each frame with the OpenFace 2.0 toolkit [25].



Table 1: Set of AUs needed to define four emotional classes
obtained from EMFACS.

Emotion Top AUs Bottom Aus
Happiness AU6 AU12
Sadness AU1+AU4 AU15
Surprise AU1+AU2+AU5 AU26
Anger AU4+AU5+AU7 AU23
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Figure 2: Overview of the architecture used to perform speech
emotion recognition.

Then, we estimate the proportion of frames that the AUs are de-
tected in each video segment. We create two separate AU rank-
ings, sorting the top (AUs 1-9) and bottom (AUs 10-26) AUs
according to their detection proportion. We compare the two
groups of AUs obtained from each video sequence with the AU
combinations listed in Table 1. An emotional label is given to
any sequence that has a match of at least one AU present in the
top AU list and one AU present in the bottom AU list, while
also matching the AUs emotion combinations seen in Table 1.
Sequences that might match more than one emotion are decided
based on which combination of AUs were detected more times
across the entire sequence. If there is not a combination that
closely relates to happiness, sadness, surprise, or anger, we la-
bel the segment as “other,” creating a five-class problem.

3.4. Speech Emotion Recognition Framework
The proposed pre-text tasks are general and can be implemented
with different deep neural networks (DNNs). This study re-
lies on an attention-based framework to build our SER architec-
ture. Recent studies using attention models [27–29] have shown
great performance in emotion recognition. Recent studies have
showed that attention models work well with multimodal emo-
tion recognition as well [20, 21]. Although attention-based ar-
chitectures work well with acoustic data in supervised settings,
this study explores potential improvements using SSL.

Figure 2 shows an overview of the architecture used in this
study. The framework consists of a transformer-based archi-
tecture with self-attention layers to learn representations within
the input audio sequences. The framework receives the audio
feature matrix (xa ∈ RNa×130, see Sec. 4.2). Then, we use
the method from Vaswani et al. [30] and add a 1-D positional
embedding to the input feature vectors (Eq. 1). The positional
embedding is important for the model to retain temporal infor-
mation from the input sequences, since the model accepts input
sequences in parallel. The inputs are then entered into self-
attention layers to compute within sequence representations
from the acoustic features. After the first set of self-attention
layers, we add a set of self-attention layers that are equipped
with residual connections, which have layer-independent learn-
able scaling weights α and β. This self attention layer has, for
the most part, the same structure of the previous self-attention

layers. The Q, V, K vectors are contained within their own self-
attention layers. The self-attention layers compute representa-
tions within the same sequence. The use of self-attention with
learnable scaling parameter module after the first attention lay-
ers helps our model scales areas of the representations extracted
from the previous layers to give more emphasis to areas that
are more useful for the final task. The self-attention representa-
tions are then extracted and passed through two fully-connected
layers to generate the predictions.

z0 = [x1E;x2E; · · · ;xNaE] + [Epos ∈ RNa×130] (1)

4. EXPERIMENTAL SETTINGS
4.1. Resources

This study uses the CREMA-D [14] and MSP-Face [15] cor-
pora. CREMA-D is a crowd-sourced audiovisual dataset, which
contains videos of subjects saying sentences while expressing
pre-defined emotions (happiness, fear, disgust, anger, sadness
and neutral state). This corpus was collected from an ethnically
and racially diverse group consisting of 91 actors (48 male and
43 female). The videos were annotated with emotional labels
by seven raters after watching the videos. In total, the CREMA-
D corpus contains 7,442 videos with the following distribution:
1,230 happy clips, 1,180 fear clips, 1,222 disgust clips, 1,067
angry clips, 672 sad clips, and 2,071 neutral clips. We only
use the speech signal from this corpus, focusing on a SER task
consisting of predicting the six emotional states included in the
corpus. We generate random splits in a speaker-independent
manner using 70% of the data for the train set, 15% of the data
for the development set, and 15% of the data for the test set.

The MSP-Face [15] is a natural audiovisual emotional
dataset collected in-the-wild from recording obtained from
video-sharing websites. The corpus includes 491 individuals
expressing their opinions about certain topics or sharing their
experiences. The individuals in this dataset express a wide
range of rich emotional behaviors in their videos. In total,
the dataset contains 70.7 hours of audiovisual data, where 24.7
hours are labeled and 46 hours are unlabeled. The MSP-Face
corpus is used for pre-training our framework. We do not make
use of the labels available for this corpus, considering the entire
dataset as our unlabeled set. As we described in Section 3, we
use two second windows with 0.5 seconds overalp. We use data
from all the 491 subjects present in the MSP-Face corpus [15].
In total, we use 109,656 datapoints (60.92 hrs).

4.2. Acoustic Features
For training our SER model, we use the OpenSmile toolkit [31]
to extract the low level descriptors (LLDs) that were proposed
for the paralinguistic challenge in Interspeech 2013 [32]. This
set consists of 65 acoustic frame-based features, which include
the fundamental frequency, energy, and Mel-frequency cepstral
coefficients (MFCCs). The feature set also includes the re-
spective first order derivatives of these LLDs, generating a 130
dimensional feature vector. The LLDs are directly extracted
from the raw audio for each video clip, which are pre-processed
with a window length of 32 ms and a step size of 16 ms. The
extracted LLDs are subsequently z-normalized before sequen-
tially concatenating row-wise into a Na × 130 matrix, where
Na is the number of 32ms-segments. This matrix is used as an
input to our network.

4.3. Implementation Details
The multi-head attention layers and self-attention layers are im-
plemented with five layers, where each layer has 10 attention



Table 2: Comparison of SSL pre-trained and fine-tuned mod-
els with the supervised learning method. The table reports the
average F1-Score values across 20 experiments using different
random seeds (✶ indicates that our model is significantly better
than the other two methods)

CREMA-D
Macro Micro

Architecture Prec. Rec. F1 Prec. Rec. F1
Supervised 54.8 53.4 51.9 53.1 53.1 53.1
wav2vec 2.0 (retrain) 55.3 54.5 53.3 54.3 54.3 54.3
Our Method✶ 59.7 57.9 57.0 57.7 57.7 57.7

heads. For the supervised learning baseline, we set a dropout
rate of 0.25 at the output embeddings obtained from the atten-
tion layers, along with a 0.1 dropout rate for the residual con-
nections. The model uses adaptive moment estimation (ADAM)
as the optimizer with an initial learning rate set to 0.000725. We
set a five epoch-patience learning decay with a 0.1 factor. We
use a batch size of 32, implementing the activrfunction with rec-
tified linear units (ReLUs). The model is trained for 20 epochs
with an early stopping criterion based on the development loss.

The SSL pre-training method has mostly the same setting as
the supervised learning training, except the model is pre-trained
for 300 epochs with the learning rate set to 0.0001. The loss
used for the binary tasks (speech energy and facial landmarks)
is the binary cross-entropy loss and the loss used for the multi-
class problem (AU task) is the cross-entropy loss. The losses
obtained from each task are summed during training. We use
ReLU as the activation function and ADAM as the optimizer.
After pre-training on the pre-text tasks, the model is fine-tuned
on the CREMA-D acoustic data using the same setting as the
supervised learning. The model at this step is only trained for
five epochs. Everything is implemented in PyTorch and trained
using a Nvidia QUADRO RTX 8000.

We compare our SSL approach with two baselines: Base-
line 1 consists of training the framework shown in Figure 2 with
a supervised setting, without the pre-training the model. Base-
line 2 consists of using the wav2vec 2.0 [16] method for pre-
training the transformer architecture used in this study. For fair
comparison, our implementation of wav2vec 2.0 [16] is pre-
trained from scratch using the raw audio from the recordings of
the MSP-Face [15] data used to pre-train our proposed model.
Another adaptation is that the transformer layers present in the
original wav2vec 2.0 model are modified to match the same
transformer architecture we used in this study. Our implemen-
tation of wav2vec 2.0 is pre-trained for 400k iterations and fine-
tuned for 1,200 iterations.

5. EXPERIMENTAL RESULTS
This section compares the performances of our proposed model
with results of baselines. Table 2 lists the results. Each model
is trained 20 times with different speaker-independent train, de-
velopment, and test partitions every time. The models’ perfor-
mances are evaluated using both the macro-averaged and micro-
averaged precision, recall, and F1 scores. Table 2 reports the
averaged results across the 20 experiments. We compare the re-
sults using a one-tailed matched pair t-test over the 20 results
with p-value <0.05 to assert statistical significance.

Table 2 shows that using the pre-text tasks proposed in
this study generates meaningful representations which signif-
icantly improves the performance over the purely supervised
SER method. Our method achieves increased SER performance
by up to 5.1% on precision, up to 4.5% on recall, and up to

Table 3: Performance comparison obtained from ablations per-
formed with five different combinations of pre-text tasks used
during pre-training.

CREMA-D
Architecture Macro Micro

T1 T2 T3 Prec. Rec. F1 Prec. Rec. F1
SSL 1 ✓ ✓ ✓ 59.7 57.9 57.0 57.7 57.7 57.7
SSL 2 ✓ ∼ ✓ ✓ 59.0 57.2 56.4 57.0 57.0 57.0
SSL 3 ✓ ✓ 53.0 53.4 51.5 53.3 53.3 53.3
SSL 4 ✓ ✓ 56.7 55.0 53.6 54.8 54.8 54.8
SSL 5 ✓ 33.6 43.2 35.8 42.8 42.8 42.8

4.9% on F1 scores. The results also show improved perfor-
mance over the model using the wav2vec 2.0 [16] framework
pre-trained with the same dataset. This result shows that the
proposed domain-specific pre-text tasks for SER system lead to
better performance than using the general purpose pre-text tasks
in wav2vec 2.0 when we pre-train with similar data.

5.1. Pre-text Tasks Ablation
In this section, we study the effect each pre-text task has on
our proposed method’s performance. For this ablation study
we generate five different combinations of pre-text tasks to pre-
train the architecture used in this study. The five combinations
are: SSL1 is our standard method which uses all tasks described
in Section 3; SSL2 consists of using the energy task, action
units task, and a modified version of the facial landmarks task
where instead of retrieving two centroids for each frame, we
only generate a single centroid for each face frame; SSL3 uses
combination of the energy task and the facial landmarks task;
SSL4 uses the facial landmarks task and the action units task;
and, SSL5 uses only the energy task for pre-training the model.

As seen in Table 3, the model’s performance gradually
drops as less tasks or different combinations are used during
pre-training. There’s a major decline in performance specially
when we only use the energy task for pre-training. This re-
sult shows the importance of having the face-related tasks when
training our model. It is also important to mention that the en-
ergy task helps. Although the energy task alone does not result
in performance improvement, the performance obtained from
SSL4, which only uses face-related tasks, is lower than the per-
formance of SSL1, showing the need for this pre-text task.

6. Conclusions
This study presented new unimodal (speech task) and multi-
modal (facial landmark and action unit tasks) pre-text tasks for
SSL carefully created to generate meaningful representations
for SER. The pre-text task leverages the complementary rela-
tionship between speech and facial cues. With only 60.92 hours
of unlabeled data and using acoustic features, the proposed pre-
text tasks significantly enhance the representations obtained by
a model that would otherwise be trained under a supervised
regime. This study showed the benefits of creating multimodal
pre-text tasks even when the focus of the study is solely on a
speech-based system. A future research direction for this study
is to expand the architecture to include more modalities and
more domain specific pre-text tasks that are relevant for SER.
We will also explore implementing this approach with other
emotional audiovisual databases with a wider range of speak-
ers such as the CMU-MOSEI [33] and SEWA [34] corpora.
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