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ABSTRACT
A challenging task in audiovisual emotion recognition is to imple-
ment neural network architectures that can leverage and fuse mul-
timodal information while temporally aligning modalities, handling
missing modalities, and capturing information from all modalities
without losing information during training. These requirements are
important to achieve model robustness and to increase accuracy on
the emotion recognition task. A recent approach to perform multi-
modal fusion is to use the transformer architecture to properly fuse
and align the modalities. This study proposes the AuxFormer frame-
work, which addresses in a principled way the aforementioned chal-
lenges. AuxFormer combines the transformer framework with aux-
iliary networks. It uses shared losses to infuse information from
single-modality networks that are separately embedded. The extra
layer of audiovisual information added to our main network retains
information that would otherwise be lost during training. The results
show that the AuxFormer architecture achieves macro and micro F1-
Scores of 71.3% and 71.7%, respectively, on the CREMA-D corpus.
For the MSP-IMPROV corpus, AuxFormer achieves a macro and
micro F1-Scores of 70.4% and 76.5%, respectively. The results for
both corpora are significantly better than strong baselines, indicating
that our framework benefits from auxiliary networks. We also show
that under non-ideal conditions (e.g., missing modalities) our archi-
tecture is able to sustain strong performance under audio-only and
video-only scenarios, benefiting from a optimized training strategy.

Index Terms— Audiovisual emotion recognition, shared losses,
multimodal fusion, transformers, auxiliary networks.

1. INTRODUCTION
The ability to accurately recognize human emotional states plays a
key role in human communication [1]. When an interaction is tak-
ing place, being able to accurately determine a person’s emotional
state helps interlocutors to understand the message being conveyed
better. Therefore, it is critical that modern human computer interac-
tion (HCI) systems are designed to achieve similar performance by
incorporating emotion recognition capabilities [2]. In real world sit-
uations, humans leverage acoustic and visual cues to determine the
interlocutor’s emotional state. For example, when a person speaks,
expressive information is not only conveyed by speech features such
as rhythm, pitch, intonation, and stress, but also by visual features
like facial expressions. These features are considered synchronously
during an interaction. It is important to implement a multimodal
method that is able to process signals similarly to how human’s per-
ceive emotions in real world interactions.

Recent advances in deep learning approaches have achieved
good performance in emotion recognition tasks when leveraging au-
diovisual features [3–5]. Audiovisual models still face challenging
problems such as proper alignment between the modalities, robust-
ness to missing modalities, and loss of information when fusing
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modalities. Studies have shown that audiovisual features are not
synchronized, and there is a time-shift difference between the audio
and visual streams. Differences between the modalities have been
reported to be more than three video frames, which corresponds to
one hundred milliseconds [6, 7]. Another important aspect of mul-
timodal modeling is that emotion is dynamic and externalized over-
time. Knowing an emotional state from previous time-steps/frames
helps in predicting the current emotion. To ensure the model retains
awareness to temporal emotional changes, it is essential to capture
temporal information and certify that this information is not lost
as we combine modalities. Likewise, during naturalistic interac-
tions, a modality might be missing for certain periods of time (e.g.,
non audible speech, occluded faces). Previous studies have been
presented to separately address these issues. Parthasarathy and Sun-
daram [3] used the transformer architecture to fuse modalities while
introducing training strategies to handle missing modalities. Tsai et
al. [8] proposed a multimodal transformer architecture for unaligned
language sequences to fuse and align textual, visual, and acoustic
features for emotion recognition. Addressing all these challenges is
still an open problem.

Our objective is to implement an architecture that effectively
handles temporal alignment of modalities, is robust to missing
modalities, and does not lose important information from either
modality throughout training. We chose a design that concurrently
receives feature vectors from acoustic and visual modalities and
fuses them together with cross-modal attention layers, while being
able to temporally align relevant representations of each modal-
ity at the model level. Furthermore, we simultaneously train two
auxiliary networks, which separately embed each modality into
new vector spaces. The representations obtained from the auxiliary
networks are used to provide an extra layer of information to our
main network. These representations would otherwise be lost during
training without the auxiliary networks. A shared losses mechanism
is employed in our method to enable information to flow from the
auxiliary networks into the main network. This idea was inspired by
the study of Piergiovanni et al. [9] which explored a mechanism that
learns multimodal representations by distilling information through
losses from different modalities, and from the study of Szegedy et
al. [10], which showed the benefits of auxiliary networks for very
deep models. Our proposed method extends these concepts from
real world situations to implement a training strategy that randomly
eliminates different modalities during training to simulate situations
where a person’s head is occluded or a person’s speech is inaudible
during an interaction. We quantitatively evaluate and compare the
performance of our proposed model against strong baselines, ex-
ploring a single-modality version of our architecture, and different
training strategies of our architecture.

The results demonstrate that our architecture achieves sig-
nificantly better results on both the CREMA-D corpus and the
MSP-IMPROV corpus compared to the baselines under ideal
conditions. Also, our architecture is able to sustain strong per-



formance in non-ideal conditions when compared with audio-
only and video-only architectures. These results show the ben-
efits of our proposed AuxFormer architecture for audiovisual
emotion recognition. The code for this work can be found at
https://github.com/ilucasgoncalves/AuxFormer.

2. RELATED WORK

Model level fusion approaches have been more extensively explored
with advancements of multimodal deep learning methods [11–13].
Studies such as the one done by Majumder et al. [14] have shown
competitive performance in emotion recognition through a hierar-
chical learning mechanism, where unimodal, bimodal, and trimodal
feature vector representations are generated from textual, visual, and
acoustic features and fused at the model level. Recently, after the
introduction of the transformer architecture [15], many studies have
explored utilizing this architecture to implement multimodal trans-
former architectures for model level fusion [3–5]. These studies
demonstrate strong performance by using a model level fusion ap-
proach, which allows the model to leverage information similarly to
the way humans communicate during daily interactions.

Following the concepts presented by recent studies using atten-
tion for alignment [8, 16, 17], we took inspiration from these ap-
proaches to derive our architecture. Our novel approach aims to
generate meaningful audiovisual latent representations that not only
carry information from both modalities, but also carry temporal in-
formation which would have otherwise been lost. Our formulation
removes the requirement of implementing extra steps to perform
temporal alignment, in turn reducing biases present in manual align-
ment methods and delivering a more end-to-end framework.

3. RESOURCES

This study uses the CREMA-D [18] and MSP-IMPROV [19] cor-
pora. CREMA-D is an audiovisual dataset, which contains videos of
subjects saying sentences while displaying pre-defined emotional at-
tributes aimed at demonstrating happiness, fear, disgust, anger, sad-
ness and neutrality. This corpus was collected from an ethnically
and racially diverse group consisting of 91 actors (48 male and 43
female). During the recording sessions, participants were given in-
structions to display certain emotional states while saying a target
sentence. The obtained videos were annotated with emotional labels
by 7 raters after watching the videos. In total, the CREMA-D cor-
pus contains 7,442 clips with the following distribution: 1,222 dis-
gust clips (11,429 ratings), 1,067 angry clips (10,054 ratings), 1,180
fear clips (11,153 ratings), 2,071 neutral clips (19450 ratings), 1,230
happy clips (11,730 ratings), and 672 sad clips (6347 ratings). This
study, uses the six emotional states provided in the corpus.

The MSP-IMPROV corpus is an acted audiovisual dataset col-
lected from recordings of dyadic interactions in improvised scenar-
ios [19]. This corpus was created by using 20 target sentences that
are meant to be said during improvised interactions, while targeting
four different emotional states (sadness, happiness, anger, and neu-
trality) generating a total of 80 scenarios. The actors had to utter
the target sentence during the improvisation. The corpus includes
all the speaking turns during the interaction. It also includes natural
interaction between breaks. The MSP-IMPROV includes 7,818 im-
provised interaction turns from 12 English speaking actors (6 males
and 6 female). The emotional states from the MSP-IMPROV dataset
were annotated using a crowd-sourced perceptual evaluation, using
a protocol that tracks in real-time the quality of the workers as they
complete their tasks [20]. The consensus labels are obtained using
the plurality rule, obtaining 2,644 sentences for happiness, 792 sen-
tences for anger, 3,477 sentences for neutral, and 885 sentences for

sadness. A total of 85 speaking turns were labeled as other and 555
sentences did not reach an agreement. In our experiments, we only
consider sentences labeled as happiness, anger, sadness, and neutral.

4. PROPOSED APPROACH
Fig. 1 shows an overview of the AuxFormer framework. The model
is a deep learning architecture that uses the transformer as the main
network to combine and align the audiovisual features. Along with
our main network, we introduce single-modality auxiliary networks,
which are simultaneously trained with the main network learning
better representations through a shared loss mechanism.

4.1. Features and Pre-processing Steps
4.1.1. Visual Features
We start pre-processing our videos by retrieving every frame present
in each video segment and estimating bounding boxes to retrieve
faces from each frame. The bounding boxes are generated using a
pre-trained face detector model developed by Liu et al. [21]. Fol-
lowing the face extraction step, the pixel intensities of the frames are
normalized in the range [-1,1], resizing the images to 224x224x3.
We then use the pre-trained VGG-face architecture [22] to obtain a
feature vector of length 4,096 for each frame on the video segments.
The frame-level feature vectors are row-wise concatenated into sin-
gle matrices representing each video segment. After generating the
feature vectors for each video segment, we make sure that all of the
resulting vectors have the same dimensions by zero-padding the se-
quential feature vectors that did not share the same dimension.

4.1.2. Acoustic Features
We use the OpenSmile toolkit [23] to extract the feature set proposed
for the paralinguistic challenge in Interspeech 2013 [24]. The in-
put acoustic representation to our model is composed of 65 acoustic
low level descriptors (LLDs) and its respective first order deriva-
tives, generating a 130 dimensional feature vector. The LLDs are
directly extracted from the raw audio for each video clip, which are
pre-processed with a window length of 32 ms and a step size of 16
ms. All the features were then sequentially concatenated row-wise
into a matrix which was subsequently z-normalized before using it
as an input to our network. Lastly, we made sure that all the vectors
had the same dimensions. We added zero padding on vectors that
had unmatched dimensions to use the dot-product.

4.2. The AuxFormer Framework
The proposed AuxFormer framework consists of three networks: the
main audiovisual fusion network Fav(•), the auxiliary acoustic net-
work Fa(•), and the auxiliary visual network Fv(•) (Fig. 1).

The main network of the AuxFormer is the audiovisual fusion
network, which uses the transformer architecture to build pairs of
bimodal representations that are formed by having Keys/Values of
one modality interact with the Queries of a target modality. The
framework receives the sequential audio (xa ∈ RNa×130) and vi-
sual (xv ∈ RNv×4,096) feature vectors. The first step is to project
the visual features using a 1D convolution to match the shape of
our acoustic feature vector, which becomes xv ∈ RNv×130. Fol-
lowing the visual feature transformation,we add positional encod-
ings to the visual and acoustic vectors and feed the resulting vectors
into the fusion attention layers. The fusion attention layers have the
same structure as the transformer framework [15], except we cross-
connect the query vectors across the network as in [3–5, 8]. The
resulting representations obtained from the fusion attention layers
are then input into a self-attention network which has the same ba-
sic structure of the fusion layers. However, the self-attention layers
do not have the cross-layers query vectors. Furthermore, the self-
attention layers are equipped with residual connections which have
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Fig. 1. The AuxFormer framework, which consists of the main audiovisual fusion network (middle) labelled Fav(•), the auxiliary acoustic
network (top) labelled Fa(•), and the auxiliary visual network (bottom) labelled Fv(•).

layer-independent learnable scaling weights α and β. A sequential
classification token is then extracted from each resulting layer and
concatenated before being fed into a multilayer perceptron (MLP)
architecture for classification. The MLP layer we implemented after
the concatenation of the sequential tokens obtained from the atten-
tion layers have two hidden layers of size 260, implemented with a
rectified linear unit (ReLU) as the activation function. The size is
260 due to the shape of the concatenated tokens coming from each
self-attention layer branch of dimension 130.

The auxiliary networks are identical with the exception that each
network carries a specific modality (acoustic or visual). The auxil-
iary networks separately receive as input the sequential audio (xa ∈
RNa×130) and visual (xv ∈ RNv×130) feature vectors. The auxiliary
network has a within modality multi-head self-attention layer, which
generates embeddings to be processed through the fully-connected
layers, as seen in Fig.1, for classification. The auxiliary networks
also have residual connections across its fully-connected layers to
ensure important information is not lost during training.

The training scheme of our proposed model makes use of shared
losses to inject information into our main network from the auxiliary
networks. Each network has its own loss Lm, wherem ∈ {a, v, av}
is the modality that the network is processing. We combine the train-
ing cross-entropy losses from each network during training to get the
total loss used to train the model:

Ltotal = λvaLva + λaLa + λvLv, (1)

where λva, λa, λv are the weights for the specific losses of the au-
diovisual, audio, and visual networks.

4.3. Training Methods
Our goal with the proposed model is to achieve robust performance
in non-ideal environments such as missing entire audio/video seg-
ments or having access to partial audio/video information only. We
use two training procedures to evaluate our model’s performance
and robustness. First, we have a standard training, which consists
of training our framework with the entire data available for training.
Second, we have an optimized training procedure, which consists of

randomly replacing the visual or the acoustic features layers with
zeros with 20% probability each during training.

5. EXPERIMENTAL AND ARCHITECTURE EVALUATION

5.1. Experimental Settings
The multi-head attention layers and self-attention layers are all five
layers deep, and each layer has 10 attention heads. We set a dropout
rate of 0.25 to the output embeddings obtained from the attention
layers, along with a 0.1 dropout rate for the residual connections.
The model uses adaptive moment estimation (ADAM) as the opti-
mizer with an initial learning rate set to 7.25E-04. During training,
we have a learning decay set to 5 epochs. We set the gradient clip-
ping threshold to 0.8, batch size to 32, and use ReLU as the activa-
tion function. λva, λa, λv are set to have equal contribution (i.e. 1

3
).

The model was trained for 20 epochs with an early stopping crite-
rion based on the development loss. Everything was implemented in
Pytorch and trained using a Nvidia QUADRO RTX 8000.

We compare our model with three baselines to verify our
model’s performance under ideal conditions against strong frame-
works. Baseline 1 was derived from the AuxFormer framework. The
only difference is that we removed the audio and the visual auxiliary
networks from our framework. This baseline only uses the fusion
attention layers, self-attention layers with learnable parameters, and
MLP layer for emotion recognition. Baseline 2 was derived from the
architecture presented in Tsai et al. [8] which proposed a multimodal
transformer architecture for human language time-series data. We
implemented their model making a few changes to their original
architecture to adapt their method from three modalities (textual,
visual, and acoustic) to two modalities (audiovisual). Baseline 3
was implemented using the transformer-based approach studied in
Parthasarathy and Sundaram [3]. Furthermore, we analyze a single-
modality version of our proposed model. All models were trained for
20 epochs. We also generate random splits in a speaker-independent
manner amongst sets of 70% for training, 15% for development, and
15% for testing sets. We trained each model 20 times with different
splits every time. We evaluated the models’ performances using both



Table 1. Comparison of our model results with baseline audiovisual
models. The table reports the average F-Score values across 20 ex-
periments using different random seeds. ( l indicates that one model
is significantly better than baseline 1; © indicates that one model is
significantly better than baseline 2; 6 indicates that one model is
significantly better than baseline 3.)

MSP-IMPROV CREMA-D
Architecture Micro-F1 Macro-F1 Micro-F1 Macro-F1
AuxFormer 0.765 6© 0.704 6l© 0.717 6l© 0.713 6l©

Baseline 1 0.742 0.669 0.649 0.641
Baseline 2 [8] 0.737 0.666 0.614 0.604
Baseline 3 [3] 0.729 0.653 0.517 0.483

Table 2. Performance of our single-modality network architec-
ture versions compared with the AuxFormer with optimized training
model’s performance on audio and visual only scenarios. The ta-
ble reports the average F-Score values across 20 experiments using
different random seeds. ( © indicates that the model is significantly
better than the Video Only architecture; 6 indicates that the model
is significantly better than the Audio Only architecture.)

MSP-IMPROV CREMA-D
Architecture Micro-F1 Macro-F1 Micro-F1 Macro-F1
AuxFormer (V) 0.721 0.598 0.531 © 0.513 ©

Video Only 0.736 0.652 0.510 0.493

AuxFormer (A) 0.624 6 0.519 0.587 6 0.578 6

Audio Only 0.617 0.539 0.582 0.574

the macro-averaged F1-score and micro-averaged F1-score averaged
across the 20 experiments performed on each model. Experimental
results were recorded and compared using a one-tailed matched pair
t-test over the 20 results with significance level at p-value <0.05 to
assert statistical significance.

5.2. Evaluation with Baselines
In this section, we compare our proposed AuxFormer model’s per-
formance with the three baseline models. The models in this section
were trained using standard training. Table 1 shows the F-scores
of the models for the MSP-IMPROV and CREMA-D corpora. The
AuxFormer architecture achieves the best F-Scores across both cor-
pora, significantly outperforming all the baselines. We also notice,
by comparing our model’s performance with baseline 1, that the aux-
iliary networks play an important role in the performance of our
model. This result supports our hypothesis that the auxiliary net-
works deliver an extra layer of important audiovisual information to
our main architecture. Without the auxiliary networks we notice a
significant drop in performance, as seen in Table 1.

5.3. Robustness Evaluation
In this section, we re-evaluate our model’s performance under
single-modality scenarios. We implement a unimodal version of our
model and contrast it with the AuxFormer network under single-
modality scenarios. We also evaluate the importance of performing
optimized training procedures when training our framework.

We contrast the performance of our proposed model imple-
mented with the optimized training method with the AuxFormer
model implemented with the standard training method when we
only have a single modality present during testing. Here, we clip
the audio and video inputs to our networks by zeroing the acoustic
and visual feature vectors, and individually record the performance
with each modality on each corpus under standard and optimized
training (Fig. 2). We notice that under the optimized training, the
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Fig. 2. Graphs contrasting the performance of the AuxFormer model
when using an standard training method versus the optimized train-
ing method to increase the model’s robustness in non-ideal scenarios.

AuxFormer architecture outperforms the standard training network
by 11.2% for video-only scenarios and by 4.8% for audio-only sce-
narios on the MSP-IMPROV corpus. It outperforms the standard
training network by 11.2% for the video-only scenarios and by
10.3% for the audio-only scenarios on the CREMA-D corpus, while
keeping strong performance in audiovisual scenarios.

To verify how our model performs under non-ideal conditions,
we set up a unimodal baseline version of our model. In the uni-
modal version of our architecture, we replace the fusion attention
layers with self-attention layers without learnable parameters and
remove the auxiliary branch of the second modality from the frame-
work. The unimodal network is then trained and tested with one
modality at a time. Table 2 shows the performance of the unimodal
version of our model, where the audio network performance is rep-
resented by the “Audio Only” entry and the visual network perfor-
mance is represented by the “Video Only” entry. Table 2, shows that
the AuxFormer network trained with the optimized training mecha-
nism achieves better or consistently close performance to our single-
modality baseline in audio-only and video-only scenarios for both
corpora used in this study. The optimized training mechanism com-
bined with auxiliary networks adds robustness to our model by en-
abling our model to learn from scenarios that simulate situations
where a modality might be missing during test time, ensuring that
our model does not lose important information from either of the
modalities available during training.

6. CONCLUSIONS
We presented the AuxFormer framework, a new robust approach to
audiovisual emotion recognition for non-ideal scenarios. The Aux-
Former approach is able to perform audiovisual emotion recognition
that effectively handles temporal alignment of modalities, is robust
to missing modalities, and does not lose important information from
either modality throughout training. We achieve this goal by using
the transformer architecture and auxiliary networks with a shared
losses mechanism that enables information to flow from the auxil-
iary networks to the main audiovisual network. By using a train-
ing strategy which simulates scenarios where certain modalities are
missing during training, we achieve further performance robustness.
Future work for this study is to explore self-supervised methods for
pre-training our framework aiming to strengthen the model’s perfor-
mance and robustness against all possible scenarios. A promising
future direction is to incorporate this framework to solve tasks out-
side of the emotion recognition tasks, such as audiovisual automatic
speech recognition [25, 26].
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