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Abstract
The uncertainty in modeling emotions makes speech emotion
recognition (SER) systems less reliable. An intuitive way to
increase trust in SER is to reject predictions with low confi-
dence. This approach assumes that an SER system is well cal-
ibrated, where highly confident predictions are often right and
low confident predictions are often wrong. Hence, it is desir-
able to calibrate the confidence of SER classifiers. We eval-
uate the reliability of SER systems by exploring the relation-
ship between confidence and accuracy, using the expected cal-
ibration error (ECE) metric. We develop a multi-label variant
of the post-hoc temperature scaling (TS) method to calibrate
SER systems, while preserving their accuracy. The best method
combines an emotion co-occurrence weight penalty function, a
class-balanced objective function, and the proposed multi-label
TS calibration method. The experiments show the effectiveness
of our developed multi-label calibration method in terms of ac-
curacy and ECE.
Index Terms: Speech emotion recognition, confidence calibra-
tion, class-balance loss, multi-label classification

1. Introduction
Speech emotion recognition (SER) is a key technology for ad-
vanced human-centered computing and human-machine inter-
action. Recently, the performances of SER systems have sub-
stantially improved with advances in speech representations
with self-supervised pre-training models [1, 2]. Wagner et
al. [2] achieved state-of-the-art (SOTA) performance in predict-
ing sentiment on two well-known emotional databases (IEMO-
CAP [3] and MSP-Podcast [4]) using the Wav2vec2.0 architec-
ture [5]. In fact, the top systems on the emotion recognition
(ER) task in the SUPERB leaderboard [6] have utilized self-
supervised pre-training models. In spite of the improved per-
formance, the uncertainty associated with modeling emotions
still opens questions about the reliability of SER predictions.

Guo et al. [7] discovered that predictions of modern neural
networks are over-confident (e.g., high confidence for samples
with low accuracies), which might affect the decision-making
of machine learning systems. Studies have addressed this prob-
lem by developing confidence calibration methods [8, 9]. We
use a multi-label SER model using the SOTA SER framework
proposed by Wagner et al. [2] to assess, quantify, and address
this calibration problem in SER systems. We surprisingly find
that the predictions of SER systems are under-confident instead
of over-confident. Having models’ predictions that are under-
confident is a problem. For example, strategies relying on a
reject option, such as the work of Sridhar and Busso [10, 11],
may reject too many “low confident” predictions for samples
that are actually correctly predicted. It is important to develop

strategies to calibrate the predictions of an SER model while
improving or at least maintaining its performance.

This study analyzes the calibration level of SER systems,
exploring potential approaches to calibrate their predictions.
Specifically, we use the expected calibration error (ECE) [7]
as the calibration metric to demonstrate the reliability of multi-
label SER systems. We evaluate whether the class-balanced ob-
jective function and the emotion co-occurrence weight penalty
function can improve the calibration and classification perfor-
mance of SER systems. The class-balanced cost function [12]
introduces a weight based on the number of samples for each
class. We expect that this loss improves the calibration since
models trained on imbalanced databases are more miscalibrated
than the ones trained on balanced databases [13]. The emo-
tion co-occurrence weight penalty function [14] considers fre-
quent annotator disagreements between emotional classes, pe-
nalizing more infrequent emotions that do not co-occur. This
loss function is expected to improve classification performance.
Finally, we modify the well-known posthoc calibration method
temperature scaling (TS) [7] to calibrate the proposed multi-
label SER systems. The original TS method was designed for a
single-label task. We develop an extension of the TS approach
for multi-label systems by learning different emotion-dependent
“Temperatures” to calibrate the confidence of the predictions for
each individual emotion.

We validate our experiments on the MSP-Podcast corpus
[4]. Compared to a baseline model, the class-balanced objec-
tive function leads to a 7.16% improvement gain in ECE, which
shows better calibration, and an improvement gain of 4.26%
in macro-F1 scores, which shows better performance. We ob-
serve the best performance when the class-balanced objective
function is combined with the emotion co-occurrence weight
penalty function. The proposed multi-label temperature scal-
ing calibration method leads to clear improvements in ECE,
with gains between 15.43% and 20%. We summarize the three
main contributions of the paper: (1) we demonstrate the need
for model calibration in SER, (2) we show that integrating a
class-balanced objective function during the training process
can improve the calibration and performance of a multi-label
SER classifier; (3) we introduce a multi-label TS calibration
method to improve the confidence of multi-label SER classifiers
while preserving the classification performance.

2. Background
2.1. Multi-Label Emotion Classification

Multi-label emotion classification has been recently explored
across many domains including facial expression classification
[15], and text emotion classification [16]. Emotion perception
is highly subjective, so annotator disagreements often exist in



annotations [17–19], which are then used as ground truth la-
bels. It is also common to have a sentence conveying more
than one emotion [20]. However, most previous SER studies
regard disagreements as noise, relying on consensus labels to
decide a single-label emotion class based on rules such as the
majority vote or plurality rule [21–23]. Studies have shown the
benefits of using labels that do not agree with the consensus
label [18, 21, 24–26]. This study follows the work of Chou et
al. [14, 27] to formulate the SER task as a multi-label problem.

2.2. Calibration of the Model Confidence

Deep neural networks are increasingly integrated into decision-
making processes in many classification applications, such as
speech recognition [28] and self-driving cars [29]. In classi-
fication tasks, the output probabilities of the model’s predic-
tions for each class can be regarded as confidence scores. The
decision-making process might be affected if the confidence in
the model’s predictions cannot reflect the accuracy of the mod-
els. Guo et al. [7] observed that the predictions of modern neural
networks are often over-confident in image and document clas-
sification tasks. The calibration of the confidence of a model
has recently received researchers’ attention to obtaining reliable
systems [30]. However, most (if not all) existing calibration
methods are designed for a single-label task instead of a multi-
label task. Given our interest in multi-label SER, we choose
to modify a well-known posthoc TS calibration method [7] to
work for multi-label classification tasks.

3. Methodology
Our goal is not only to reveal the relationships between the con-
fidence and the accuracy of multi-label SER systems, but also
to explore approaches to calibrate confidence and improve the
classification performance of SER systems. We add two exist-
ing objective functions and develop one calibration method to
train and calibrate multi-label SER systems.

3.1. Task Definition and Multi-Hot Label Processing

While studies often define the objective of SER as a single-
label recognition task, we formulate the problem as a multi-
label recognition task. We calculate the proportion of the evalu-
ations assigned to each emotional class by the annotators, form-
ing a distribution. We select all the emotional classes with pro-
portions above a given threshold. We use the threshold 1/K to
binarize the distribution probabilities, which is the approach fol-
lowed in previous studies [14,27,31]. K is the number of emo-
tional classes. This step removes emotions that are not consis-
tently provided by annotators, reducing label noise. As a result,
we create a multi-hot vector representing multiple emotions.

We build a SOTA SER model implemented with the pro-
posed losses. As a multi-label problem, this paper uses the bi-
nary cross-entropy (BCE) as the objective function. We define
the N×K matrices for the ground truth and model prediction as
Y T and Y P , respectively. N is the number of samples. Notice
that Y T and Y P are different. Y T is a multi-hot vector, and
Y P is the prediction probability. The BCE loss value (LBCE )
can be calculated as follows:

LBCE = −
K∑

j=1

N∑
i=1

(Y T
ij · log(Y P

ij ) + (1− Y T
ij ) · log(1− Y P

ij )).

(1)

3.2. Class-Balanced Objective Function
Spontaneous emotional databases collected in natural settings
reflect the imbalance between emotions in their labels. This is
the case for the MSP-Podcast corpus (Sec. 4.1), as can be seen
in Figure 1. Most previous studies on SER have ignored im-
balanced class distribution, which might cause miscalibration in
the model predictions. This paper first explores whether consid-
ering class-balanced loss (CBL) during training SER systems
can improve classification performance and get better calibrated
SER systems. We integrate the “class-balanced sigmoid cross-
entropy loss” in the study of Cui et al. [12], but we did not con-
duct other existing class-balance objective functions. The main
idea is to add a weighting factor to adjust the values of the used
loss function based on the inverses of the class frequency. The
factor is 1−β

1−β
nj , where nj is the number of positive samples in

the jth emotion class in the train set, and β ∈ (0, 1] is a hyper-
parameter. For our task, we have eight emotional classes, so we
have eight factors to weigh the loss values. The CBL value can
be calculated using Eq. 2, where LBCE

(j) is the value of Eq. 1
for the jth emotion.

LCBL =

K∑
j=1

(
1− β

1− βnj
· LBCE

(j)). (2)

3.3. Loss Function with the Co-occurrence Weight Matrix
Previous studies often use consensus labels in SER, ignoring
the annotations that do not agree with the dominant emotional
class. As a result, the relationships between emotions are hardly
explored. Chou et al. [14] recently proposed an objective func-
tion that relies on the co-occurrence of emotional classes ob-
served in the individual labels provided by the annotator. This
cost function increases the penalty for cases when the models
predict infrequent co-occurring emotions. The approach first
calculates the K × K co-occurrence matrix by counting the
frequencies that pairs of emotional classes appear in the anno-
tations of a sentence. This matrix is set using the annotations in
the train set. A variation from the approach presented by Chou
et al. [14] to remove noise in the labels is that we use the co-
occurring emotions after the label processing step presented in
Section 3.1 (the original implementation used all annotations to
estimate the co-occurrence matrix). The approach transforms
the co-occurrence matrix into a penalization matrix, P . Finally,
P is integrated into the loss function. We use the BCE variant
presented in Chou et al. [14] (Eq. 3), where Pjz are the entries
in matrix P ,

PL = −
N∑
i=1

(

K∑
j=1

K∑
z=1

(Pjz · Y T
ij · log(Y P

ij ) (3)

+ Pjz · (1− Y T
ij ) · log(1− Y P

ij ))).

Based on the analyses in Chou et al. [14], we also use a
weight factor, α, in Eq. 4 to combine the penalized loss function
(PL) and the BCE loss (LBCE ), where α ∈ R (e.g., 0.2) for
better classification performance. We did not optimize the alpha
value. The penalization matrix can be integrated into the class-
balanced loss (CBL), and we denote it as the LP+CBL in Eq. 5.
The analysis will compare these cost functions.

LP = (1− α) · LCBL + α · PL, (4)

LP+CBL = (1− α) · LCBL + α · LP+CBL. (5)
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Figure 1: The histogram shows the distribution of “multi-label”
emotion classes for the MSP-Podcast corpus. Emotion includes
anger (A), sadness (S), happiness (H), surprise (SU), fear (F),
disgust (D), contempt (C), and neutral (N).

3.4. Multi-Label Temperature Scaling Calibration

The temperature scaling (TS) calibration was originally used to
calibrate the models’ confidence on single-label tasks. We adapt
the calibration method for a multi-label task. We follow the
assumption proposed in Guo et al. [7] to regard the maximum
probabilities of the predictions as the confidence values.

For a binary classification task, we obtain the predicted
probabilities of the model, Y P , which is a N × 2 matrix. The
confidence value of each prediction is the maximum probability
of the predictions. Then, we can use the TS value to calibrate
the confidence of the predictions. The TS calibration method
contains the following steps. First, we extract the prediction
probabilities from the pre-trained models by freezing the mod-
els’ weights. Then, we calculate the logits matrix by using the
LogSoftmax activation function. We divide the logits vector by
the learnable single scalar Temperature (T ). Finally, the model
learns the optimal value for T by minimizing the negative log
likelihood (NLL) loss on the development set.

The task in this paper is a multi-label emotion classifica-
tion task. We formulate the multi-label classification problem
with multiple binary classification tasks. In this setting, we can
use the TS calibration approach to learn the scalar parameter
for each of the emotions (denoted T (j) for emotion j). We
estimate the predicted probabilities of the model, creating the
N × K matrix Y P . Its jth column corresponds to the model
prediction Y P

j (N × 1) for the emotion j. We convert Y P
j

into a N × 2 matrix denoted by ZP (j). The first column of
the matrix (ZP

0 (j)) corresponds to Y P
j . The second column

(ZP
1 (j)) can be obtained by using 1-Y P

j . The confidence can
be calibrated by using the following steps. First, we obtain the
N × 2 logit matrix (a(j) for the emotion j) by applying the
LogSoftmax function, as shown in Eq. 6. Finally, the calibrated
confidences (c(j) for emotion j) are calculated using Eq. 7.
The result is a set of K temperatures (T ), one for each emotion.
When T (j) equals 1, it maintains the original confidence val-
ues. When T (j) is larger than 1, it “smooths” the confidence of
the predictions.

a(j) = LogSoftmax(ZP ) = log(
exp(ZP )∑2
q exp(Z

P
q )

), (6)

c(j) = Softmax(
a(j)

T (j)
) =

exp(a(j)/T (j))∑2
q exp(aq(j)/T (j))

. (7)

4. Experimental Settings
4.1. The MSP-Podcast Corpus
We develop and evaluate the proposed calibration strategy using
release 1.10 of the MSP-Podcast corpus [4], which has English
speech. This version contains about 166 hrs of audio recordings,
including 63,076 sentences in the train set, 10,999 sentences in
the development set, and 16,903 in the test set. These sets aim

to create speaker-independent partitions. Each sentence has at
least five annotators collected with a crowdsourcing protocol
adapted from the study of Burmania et al. [32]. This study fo-
cuses on the annotations of the primary emotions, where ev-
ery annotator can only select one emotion from the following
list: anger (A), sadness (S), happiness (H), surprise (SU), fear
(F), disgust (D), contempt (C), neutral (N). They can also select
“other.” We show the emotion distribution of the corpus in Fig-
ure 1 based on the multi-label setting described in Section 3.1.
One sentence might have more than one emotional label.

4.2. Speech Emotion Classifier and Implementation Details
To investigate whether modern SER systems need calibration,
we employ the SER architecture proposed by Wagner et al. [2].
This framework obtained SOTA performance on valence pre-
diction using release 1.7 of the MSP-Podcast corpus Based on
results of the study [2], we choose the “wav2vec2-L-robust-12”
model, which only uses the first 12 transformers of the full
wav2vec2-large-robust model [2]. This method is an efficient
approach that preserves the performance of the full model with
half the transformers.

The model has one average pooling function for the out-
puts of the last transformer layer. Then, it has a two-hidden
layer with batch normalization, and one output layer having a
sigmoid function. We freeze the weights of the convolutional
neural network (CNN) layers, and fine-tune the parameters of
the transformer layers with the MSP-Podcast corpus to mini-
mize the total cost function. We use the Adam optimizer with a
learning rate of 0.0001 and a batch size of 32. We train for ten
epochs, selecting the best model with the lowest loss value on
the development set. All the other hyper-parameters for training
the model are the same as the “wav2vec2-L-robust-12” model
introduced by Wagner et al. [2]. We implement the SER ar-
chitecture using the HuggingFace library [33]. The code was
implemented on PyTorch using an NVIDIA RTX A6000 GPU.

4.3. Evaluation Metric and Statistical Analysis
This study analyzes and optimizes not only the performance of
the models, but also their calibration. The following metrics
allow us to study relationships between the accuracy and the
confidence of models’ predictions.
Calibration Metric: We use the expected calibration error
(ECE) proposed by Guo et al. [7] as a metric. The ECE is a
well-used metric to measure the calibration of a model. The
ECE can be estimated by the weighted average of the difference
between the accuracy observed in each bin and its confidence.
Eq. 8 shows this process, where B is the number of bins, and
Nb is the number of samples in the bth bin.

ECE =

B∑
b=1

Nb

N
|accuracyb − confidenceb|. (8)

The bins split the confidence scores of the predictions into
15 groups (B = 15) with the same width. For instance, the first
bin includes the samples whose confidence scores range from
0 to 1/15 shown in Figure 2. For a perfectly calibrated model,
having a confidence of 0.6 implies that 60% of the predictions
are correct. We calculate the ECE scores for the eight emotions,
reporting the average across emotions as the final score.
Classification Performance Metric: We use the macro-F1
(maF1), micro-F1 (miF1), and weighted-F1 (weF1) scores to
estimate classification performances of the models. These met-
rics consider the corresponding precision and recall rates.
Statistical Analysis: We split the test set into 40 subsets to as-
sess the statistical significance of the experimental results. We
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Figure 2: Confidence versus accuracy diagrams of predictions
for a model trained with LP+CB (α = 0.2) for happiness be-
fore and after the multi-label TS calibration method. The grey
bars are the distribution of the data based on confidence.

report the average predictions of the models across the 40 sub-
sets. We perform a two-tailed t-test to assign statistical signifi-
cance if the p-value≤ 0.05. The symbol ∗ denotes if a method
is significantly better than the baseline model.

5. Evaluation
Our goal is to study the confidence of SER systems, and to
explore whether considering the class-balanced objective loss
(CBL), the emotion co-occurrence weight penalty loss (PL),
and the proposed multi-label TS calibration method can im-
prove both the classification performance and calibration of the
SER system. We evaluate the following loss functions:

• LBCE (Eq.1): We use the BCE loss to train the SER system.
• LCBL (Eq.2): We use the CBL loss to train the SER system.
• LP (Eq.4): We add the PL loss in the loss functions to train
the SER systems. We set α in Eq. 4 to 0.0, 0.2, 0.5, and 0.8.
• LP+CB (Eq.5): We use the same setting as the previous
scenario, but we consider the CBL loss.

Table 1 summarizes the results of the SER systems trained
with different loss functions on the MSP-Podcast corpus. The
macro-F1 score on the 8-class primary emotion classification
task is 0.352 using the LBCE loss function, which is a SOTA
performance on the MSP-Podcast corpus. However, we observe
that the ECE value of the model trained with Eq. 1 is only
0.335. This value means that around 33% of the predictions
are miscalibrated. Hence, the predictions of the SOTA SER
systems need to be calibrated. Figure 2(a) shows the accuracy
and confidence for happiness using the LP+CB with α = 0.2.
The figure shows that the SER system is under-confident, since
the accuracy is clearly higher than the confidence for the first
seven bins. Other emotions have similar patterns.

Can CBL and PL improve the performance and calibra-
tion of an SER system? Table 1 shows that CBL (Eq. 2, LCBL)
can improve both the classification performance and calibration
of an SER system. However, PL only improves the classifica-
tion performance (LP , Eq. 4).

Can we improve the confidence of the predictions of
SER systems without performance drops? Due to the high
ECE values in Table 1, we apply the proposed multi-class tem-
perature scaling calibration method on all models. The column
with the symbol ⋆ means that the confidence of the model’s pre-
dictions is calibrated by the multi-label TS calibration method.
We observe that classification performances for all the models
are not changed, which is a similar finding reported by Gun

Table 1: Performance and ECE results of the models. The col-
umn α provides the weight used in either Eqs. 4 or 5. “✓”
indicates the use of the class-balanced objective functions. The
column for ECE(⋆) indicates the use of a multi-label TS cali-
bration method. ↑ signals that a metric is better if it is higher.
Otherwise, we use ↓. The symbol ∗ indicates that the values of
the models are statistically significant over the baseline (Eq. 1).

Loss α CB maF1↑ miF1↑ weF1↑ ECE↓ ECE(⋆)↓ Gain

LBCE (Eq. 1) - - 0.352 0.539 0.489 0.335 0.276 0.176
LCBL (Eq. 2) - ✓ 0.367 0.548 0.504 0.311* 0.263* 0.154

LP (Eq. 4)

0.2

-

0.320 0.535 0.464 0.352 0.292 0.170
0.5 0.360 0.531 0.490 0.365 0.292 0.200
0.8 0.331 0.539 0.473 0.345 0.286 0.171
1.0 0.329 0.535 0.470 0.351 0.289 0.177

LP+CB (Eq. 5)

0.2 ✓ 0.401* 0.560* 0.532* 0.328 0.270 0.177
0.5 ✓ 0.385* 0.555 0.518 0.339 0.277 0.183
0.8 ✓ 0.400* 0.573 0.537* 0.329 0.273 0.170
1.0 ✓ 0.371 0.555 0.507 0.316 0.266 0.158

et al. [7]. However, this approach improves the ECE values
with gains between 15.4% and 20% (see column Gain in Tab.
1). The best model in terms of macro-F1 score is the system
trained with both the co-occurrence weight penalty function
and the class-balanced objective function (Eq. 5, LP+CB , with
α = 0.2). Figure 2(b) shows this model for happiness after the
calibration. This model achieves the macro-F1 score of 0.401.
After the multi-label TS calibration, the ECE value is 0.270,
which is just slightly higher than the best ECE value reported
in Table 1 (ECE = 0.263 using LCBL and the multi-label TS
calibration). This result suggests that we can achieve high per-
formance and improved calibration by combining the CBL, PL,
and multi-label TS calibration methods.

6. Conclusions
This paper investigated the relationships between the confi-
dence and the accuracy of predictions of multi-label SER sys-
tems. We surprisingly observed that multi-label SER sys-
tems’ predictions are under-confident instead of over-confident.
We combined two strategies to simultaneously improve per-
formance and calibration: the emotion co-occurrence weight
penalty function and the class-balanced objective function. The
results revealed that the class-balanced loss can not only cali-
brate the predictions (7.16 % improvement gain in ECE), but
also improve classification performance (4.26% improvement
gain in macro-F1 score) of SER systems compared to the base-
line model. The emotion co-occurrence weight penalty function
leads to further improvements in classification performance. Fi-
nally, we proposed the multi-label TS calibration method to sep-
arately calibrate the prediction of individual emotions. Using
this strategy, the ECE metric improves for all models with gains
between 15.4% and 20%. Using the developed multi-label TS
calibration method with the two loss function strategies, we ob-
tain the best recognition accuracy (0.401 in macro-F1 score),
achieving an ECE equal to 0.27. Compared to the baseline
model, this model has a 13.92% performance gain in macro-
F1 score and a 2.22% improvement gain in ECE. This study
showed the importance of paying attention to the calibration of
a system to improve confidence in SER tasks.
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