EXPLOITING ANNOTATORS’ TYPED DESCRIPTION OF EMOTION PERCEPTION TO
MAXIMIZE UTILIZATION OF RATINGS FOR SPEECH EMOTION RECOGNITION

Huang-Cheng Chou'?, Wei-Cheng Lin', Chi-Chun Lee?, Carlos Busso*

'Multimodal Signal Processing (MSP) lab, Department of Electrical and Computer Engineering
The University of Texas at Dallas, Richardson TX 75080, USA
2Department of Electrical Engineering, National Tsing Hua University, Taiwan

ABSTRACT

The decision of ground truth for speech emotion recognition (SER)
is still a critical issue in affective computing tasks. Previous studies
on emotion recognition often rely on consensus labels after aggre-
gating the classes selected by multiple annotators. It is common
for a perceptual evaluation conducted to annotate emotional corpora
to include the class “other,” allowing the annotators the opportunity
to describe the emotion with their own words. This practice pro-
vides valuable emotional information, which, however, is ignored in
most emotion recognition studies. This paper utilizes easy-accessed
natural language processing toolkits to mine the sentiment of these
typed descriptions, enriching and maximizing the information ob-
tained from the annotators. The polarity information is combined
with primary and secondary annotations provided by individual eval-
uators under a label distribution framework, creating a complete rep-
resentation of the emotional content of the spoken sentences. Fi-
nally, we train multitask learning SER models with existing learning
methods (soft-label, multi-label, and distribution-label) to show the
performance of the novel ground truth in the MSP-Podcast corpus.

Index Terms— Emotion recognition, Distribution-label learn-
ing, Soft-label learning, Multi-label learning

1. INTRODUCTION

Emotion recognition is receiving more attention in human-centric
computer interaction. With the proliferation of ubiquitous speech-
based interfaces, speech emotion recognition (SER) is an appealing
modality to estimate emotion [1]. While many studies have pro-
posed solutions for SER, there are still critical challenges to address.
One of them is the ground truth labels used to train SER models.
The most common approach to annotate an emotional corpus is with
perceptual evaluations, where evaluators provide their judgments by
completing questionaries with fixed options after listening or watch-
ing a stimulus. However, emotion perception is a subjective process,
leading to essential disagreements in the labels [2—4]. Most previous
research on emotion classification (EC) regards the disagreement as
noise, calculating a consensus label relying on the wisdom of the
crowd. However, the consensus labels hide relevant information in
the annotations, ignoring the natural subjectivity and variability in
human emotion perception. While some studies had employed soft-
label/multi-label learning to learn the subjectivity and uncertainty in
the labels [5-11], exploring further this area can lead to more robust
SER models where all the data is used, even ambiguous samples
without clear consensus labels.

Conducting perceptual evaluations with a fixed number of op-
tions can lead to bias in the labels [12], where a class may be the
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best option available, even when it does not describe well the emo-
tional content in the stimulus. A common solution to attenuate this
problem is to allow annotators to select “other,” or “none of the
above,” providing the opportunity to describe the emotions with their
own words. This approach has been used in several emotional cor-
pora [3,4, 13, 14]. The typed descriptions in the labels have never
been used to enrich the emotional labels used in emotion recognition
tasks. Instead, most prior studies directly discard the class “other.”
These typed descriptors provide valuable information to characterize
the emotional content in the stimulus, and they should be used.

This paper proposes a novel method to maximize the utiliza-
tion of emotional annotations by exploiting the typed descriptions in-
cluded in the database. Our approach mines these typed descriptions
using natural language processing (NLP) tools, transforming them
into a three-class polarity vector (positive, negative, and ambigu-
ous). We rely on the linguistic inquiry and word count (LIWC) 2015
toolkit [15] to understand the sentiment of the data samples. We
evaluate several training strategies for SER using soft-label, multi-
label, and distribution-label leanings with the polarity information.
By fully utilizing the emotional annotations from multiple evalua-
tors, we demonstrate clear improvements in performance by using
polarity labels. We also showed that using distribution-label learning
is more suitable when the classification task includes more classes.

2. BACKGROUND

This study addresses how to leverage information from perceptual
evaluations to create a more robust ground truth for EC. This section
discusses relevant studies on soft-learning, multi-label learning, and
distribution-label learning for EC.

2.1. Soft-label Learning for EC

Instead of using a one-hot vector for the consensus label, a soft-label
is generated by considering all the evaluations provided by multi-
ple annotators. It consists of a vector, where each dimension corre-
sponds to an emotional class. The values assigned to the dimensions
represent the proportion that each class was selected by the evalu-
ators. For example, if we have a four-class emotion classification
task (N: neural, A: anger, S: sadness, and H: happiness), and five
evaluators annotated the stimulus as “H, H, H, N, N”, then the soft-
label is (0.4, 0.0, 0.0, 0.6). Soft-label learning can reduce the loss
of data discarded when estimating consensus labels, exploring the
uncertainty and variability among annotators’ ratings during train-
ing [6]. Studies have shown that this approach often leads to better
performance than consensus labels [6,7,9, 16].

A common practice when using soft labels is to evaluate the
model performance with consensus labels [6,9]. As a result, the
ambiguous sentences without consensus labels in the test set are not
used to evaluate the model performance. However, these ambiguous
stimuli are often seen in daily interactions. Furthermore, these stud-
ies often formulate soft-label learning as a single-label task. How-



ever, a stimulus can be equally described by more than one emo-
tional class (e.g., depressed and disappointed), especially for stimuli
conveying emotions with ambiguous boundaries [17].

2.2. Multi-label Learning for EC

Multi-label learning is introduced to train EC models to deal with
the coexistence of multiple emotions. The conventional multi-label
learning approach is the “multiple-hot” format. For instance, when
we use the example presented in Section 2.1, the multi-label vector is
(1,0, 0, 1). Kang et al. [18] formulated EC as a multi-label task (not
a single-label task). They employed multi-label learning to train EC
models and used various evaluation metrics for multi-label emotion
classification (e.g., macro F1-score, accuracy metric, and Hamming
Loss) by converting the prediction probabilities into binary predic-
tions by setting the value 0.5 as a threshold. However, this approach
does not distinguish if some emotions may be more prominent than
another (e.g., in the example, the emotion “happiness” is more rel-
evant than the class “neutral”). Therefore, it is questionable if the
multi-label approach can correctly represent the detailed perceived
emotional content. Therefore, studies have modified conventional
“multiple-hot” vectors in the multi-label approach into a “soft” vec-
tor [10,19]. While this approach is similar to the soft-label in Section
2.1, the formulation during training followed a multi-label approach
using the binary cross-entropy cost function instead of the cross-
entropy used in the soft-label approach. However, these studies still
utilized the highest probability category as the final prediction to as-
sess performance on the test set. This setting loses the principle that
multiple emotions can coexist. In contrast, our study uses “soft”
multi-label as ground truth, but relies on multi-label classification
metrics to estimate model performance.

2.3. Distribution-label Learning for EC

The distribution-label learning approach creates a distribution as the
output vector, and the goal is to reduce its distance with the distribu-
tion for the ground truth [20]. This objective is often achieved with
cost functions such as the Kullback—Leibler divergence (KLD). With
KLD, the output probabilities during inference do not have to be dis-
cretized into binary classes as required by soft-label (cross-entropy)
or multi-label (binary cross-entropy) approaches. This study uses the
distribution-label learning formulation proposed by Ren et al. [21],
which used this method for multimodal sentiment analysis.

3. RESOURCES

3.1. The MSP-Podcast corpus

We use release 1.9 of the MSP-Podcast corpus [3], which consists
of 55,283 sentences in the train set, 9,546 sentences in the develop-
ment set, and 16,570 sentences in the test set. All the audio record-
ings come from spontaneous conversations from podcasts available
on audio-sharing websites. The collection of this corpus builds on
the retrieval-based method proposed in Mariooryad et al. [22]. The
annotation of the corpus includes primary emotions (i.e., the most
dominant emotion) and secondary emotions (i.e., all the emotions
perceived by the evaluators). The primary emotions contain nine op-
tions: anger, sadness, happiness, surprise, fear, disgust, contempt,
neutral, and other. The evaluators have to select a single class. The
secondary emotions include the primary emotions plus eight more
classes: amusement, frustration, depression, concern, disappoint-
ment, excitement, confusion, and annoyance (17 options in total).
The evaluators can select all the classes that they want. They are
asked to include the emotion selected as the primary emotion. This
study uses primary and secondary emotions. Notice that the primary
and secondary emotions have the class “other.” The evaluators are

asked to describe the emotions in their own words. This typed de-
scription of their emotional perception allows us to mine additional
emotional information. Every speaking turn is annotated by at least
five evaluators with a crowdsourcing protocol adapted from Burma-
nia et al. [23]. Table 1 shows the annotations for one of the sentences
in the corpus for the primary (second column) and secondary (third
column) emotions. Each row in the table represents the annotations
from an evaluator. For the class other, we add in brackets the de-
scription typed by the evaluators. The study of Lotfian and Busso [3]
provides more details about the corpus.

3.2. Acoustic Feature Extraction and Pre-processing

The analysis of Keesing et al. [24] revealed that the wav2vec feature
set [25] is one of the most effective feature extraction approaches for
SER tasks. Therefore, we rely on this feature set as the input for our
SER system The wav2vec extracts feature representation for a 30 ms
window of raw audio (consider a total of 210 ms reception field),
producing a 512-dimensional vector. We use the z-normalization
function to normalize all the features, where the parameters for the
mean and standard deviation are estimated from the train set.

4. METHODOLOGY

4.1. Polarity Label Processing

Our study explores the benefits of using the typed descriptions pro-
vided by evaluators when they selected the class “other” in the pri-
mary or secondary emotions. We propose a three-dimensional po-
larity vector (positive, negative, and ambiguous words). We mine
the emotional information from the typed descriptions using NLP
tools, using the following steps. First, we transform the typed de-
scription into lowercase, employing the Google Spell Check API
via SerpApi to correct spelling mistakes. Then, we determine if
the typed words belong to the primary or secondary classes, since
some of the typed descriptions were variations of the options pro-
vided in the questionnaire (e.g., “angry” instead of “anger”) or vari-
ations were adjectives were added to describe the degree of the emo-
tion (e.g., “slightly angry”). For these cases, we add these selections
to the corresponding primary or secondary classes. Next, we use
the LIWC 2015 toolkit [15] to classify the typed descriptions into
positive and negative emotions. We get 6,852 (primary) and 5,605
(secondary) words grouped in the positive class and 9,131 (primary)
and 2,893 (secondary) words in the negative class. Figures 1(a) and
1(c) visualize the typed words assigned to the positive and nega-
tive classes, respectively. If the words can not be categorized into
positive or negative classes by LIWC, we assign these words to the
ambiguous class. There are 4,129 (primary) and 7,536 (secondary)
words assigned to the ambiguous emotions. Figure 1(b) visualizes
the typed words assigned to the ambiguous class. The next step is
to correct cases where an annotator omitted the primary emotion as
part of the secondary emotions, as instructed during the perceptual
evaluation. For the example in Table 1, the third annotator selected
the class “surprise” as the primary emotion but not as the secondary
emotions. We correct cases like this one by adding “surprise” as a

Table 1. One annotation example in the MSP-PODCAST. The
words in “()” is the typed descriptions; ID means the unique raters.

ID | Primary Emotion | Secondary Emotion

1 Other(Inquisitive) Excited,Other(Inquisitive )
2 Other(Energetic) Other(Energetic)

3 Surprise Amused,Other(interested)
4 Other(curiosity) Amused,Concerned,Confused
5 Neutral Neutral




secondary emotion. This correction also includes the class “other.”
For the example in Table 1, the fourth annotator selected the class
“other,” providing the typed description curiosity. This term is not
used for the secondary emotions. Therefore, we add this term as part
of the secondary emotions.

Some sentences do not have typed descriptions since the class
“other” was not selected by any of the annotators. Furthermore,
the primary and secondary emotions can also inform the polarity of
the speaking turns. For these reasons, we include all the secondary
emotions in the estimation of the polarity (notice that primary emo-
tions are already included in the secondary emotions). Based on
the LIWC 2015 toolkit, the terms anger, sadness, fear, disgust, con-
tempt, frustration, depression, concern, disappointment, confusion,
and annoyance are considered as negative emotions, the terms hap-
piness, amusement, and excitement are considered as positive emo-
tions, and the terms surprise and neutral are considered as ambiguous
emotions. Finally, we follow the operation used in previous studies
by estimating soft-labels [6, 8] by normalizing the polarity vectors,
so their sum adds to 1. We also use the label smoothing strategy pro-
posed by Szegedy et al. [26] to smooth the vector using the smooth-
ing parameter 0.05, where a small probability is given to emotional
classes with zero value. The same soft-label approach is also used
for the primary (8D vector) and secondary (16D vector) emotional
labels.

4.2. Learning Label Processing
We hypothesize that using detailed information from the annotators
can lead to better ground truth models for SER. We aim to lever-
age annotations from primary emotions (P), secondary emotions (S),
and our proposed polarity labels (Po). We implement multi-task ex-
periments to show whether the SER performance can be improved
by adding the polarity labels. Figure 2 shows the multi-task frame-
works, which have one, two, or three tasks. The tasks are combina-
tions of (P), (S) or (Po). Section 4.3 describes the core SER model.
We leverage three label learning methods to train the SER mod-
els: soft-label, multi-label (soft-label like instead of multiple-hot ap-
proach), and distribution-label (Section 2). The main differences be-
tween these three approaches are the cost function and the assump-
tion about the coexistence of emotion labels. The soft-label learning
method uses the cross-entropy (CE), which assumes that the clas-
sification task can only have a single class. The multi-label learn-
ing approach uses binary cross-entropy (BCE), which allows having
multiple coexisting classes. The distribution-label learning approach
uses KLD as a cost function, which also allows multiple classes.

4.3. Emotion Classification Model

We follow the chunk-level SER modeling methodology proposed by
Lin and Busso [27] as our core model. The model hierarchically
captures emotional-relevant information at the frame-level, chunk-
level, and sentence-level. The approach splits the speaking turns
into a fixed number of chunks, which have a fixed duration regard-
less of the duration of the recordings. This goal is achieved by us-
ing a dynamic chunking formula that changes the overlap between
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(a) Positive words (b) Ambiguous words ~ (c) Negative words
Fig. 1. Example of sentiment words in the MSP-Podcast corpus.

chunks. The chunk representations are combined with a chunk-level
attention mechanism, which can be efficiently implemented since
the number of chunks is fixed. The framework results in improved
recognition performance and robustness regardless of the duration of
the sentences. In this paper, we choose to use long short-term mem-
ory (LSTM) as the chuck-level feature encoder equipped with the
RNN-AttenVec chunk-level attention model, which was one of the
best combinations proposed by Lin and Busso [27]. For each chuck,
we extracted the wav2vec feature maps, which are processed by the
LSTM. The last time-step output of the LSTM feature encoder is
extracted as the chunk-level representation vector of each input data
chunk. These chunk-level representations are then fed into the RNN-
AttenVec to perform the chunk-level attention, obtaining a weighted
(via the trainable attention weights) combination vector as the final
sentence-level representation to train with the desired emotion tasks.
The detailed network architectures and parameters are the same as
the original paper [27], with the exception of the number of hidden
nodes, which are set to 512 for all the layers to match the dimension
of the wav2vec input. Notice that the model structure is flexible, and
it could be replaced by any other sentence-level SER models to train
using our proposed polarity labels.

5. EVALUATION

5.1. Experimental Setup

We evaluate different multi-task experiments by considering subsets
of the output layers for the primary, secondary, and/or polarity labels.
The ground truth and the data to train and test all the models are the
same in all the experiments for fair comparisons. Unlike most prior
studies on emotion classification, we did not discard data or labels
in the training and testing stages. For simplicity, the weights for all
the tasks in the cost function are equal in the multi-task experiments.
The activation function of the output layer is the softmax for CE and
KLD, and the sigmoid for BCE. We use the Adam optimizer with
a learning rate set to 10™*. We use batch sizes of 128, training the
models for 100 epochs, and selecting the best model based on the
lowest loss on the development set. The best model is used to assess
the system on the test set.

We consider multiple evaluation metrics to compare the pre-
dicted labels with the ground truth. First, we consider the cosine
similarity (Cosine), which measures the similarity between the pre-
dicted and ground truth vectors. Second, we use the root mean-
square-error (RMSE), which estimates the differences between the
ground truth and the model prediction. The next three metrics follow
the metrics proposed by Fei et al. [28] to evaluate multi-label clas-
sification performance: macro F1-score (maF1), ranking loss (RL),
and hamming loss (HL). The multi-label learning method requires
hard labels to estimate performance, so the values in the soft-label
vector have to be binarized. The threshold used to convert the pre-
diction probabilities into binary values depends on the dimensions
of the output layer in the task. The thresholds for P is 1/8, for S is
1/16, and for Po is 1/3. We consider that an emotion is present if its
probability value is larger than the corresponding threshold.
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Fig. 2. The overview of multi-task experiments. (a) One single-task;
(b) Two multi-tasks; (c) Three multi-tasks.




Table 2. Single-task and multi-task evaluation results using primary
emotions (P), secondary emotions (S), and the polarity labels (Po).
The symbol 1 means that the performance increases with higher val-
ues of the metric. The symbol | means that the performance in-
creases with lower values of the metric. The bold numbers indicate
the best performance for a given cost function. The underlined num-
bers represent the best results in the task across all cost functions.

Task Loss Target RMSE| Cosinet HL| RL] maF11
P 0.194 0.597  0.287 0.510  0.299
KLD P+Po 0.194 0.607  0.285 0.509  0.285
P+S 0.194 0.598  0.286 0.510  0.297
P+S+Po 0.196 0.586 0291 0.524  0.316
P 0.201 0.584 0279 0.527  0.260
P BCE P+Po 0.203 0.574 0277 0534  0.267
P+S 0.199 0.580  0.284 0.523  0.286
P+S+Po 0.201 0.571 0.280 0.535  0.282
P 0.194 0.602  0.292 0511  0.305
CE P+Po 0.193 0.602  0.288 0.508  0.304
P+S 0.195 0.598  0.287 0.513  0.296
P+S+Po 0.194 0.601 0.281 0.507  0.282
S 0.089 0.613  0.314 0579  0.326
KLD S+Po 0.088 0.610 0321 0.568  0.380
S+P 0.088 0.615 0315 0574  0.340
S+P+Po 0.089 0.606  0.318 0.577 0.364
S 0.090 0.605 0313 0.576  0.350
S BCE S+Po 0.090 0.610 0.319 0.582  0.349
S+P 0.092 0.600  0.329 0.615 0.307
S+P+Po 0.092 0.591 0317 0596  0.333
S 0.089 0.610 0.316 0.568  0.359
CE S+Po 0.089 0.609  0.317 0579  0.347
S+P 0.090 0.610  0.323 0595 0.323
S+P+Po 0.088 0.617 0316 0.571  0.339
Po 0.240 0.799  0.369 0.502  0.452
KLD Po+P 0.238 0.808 0376 0.510  0.442
Po+S 0.241 0.793  0.365 0.496  0.460
Po+P+S 0.241 0.791 0373  0.505 0475
Po 0.266 0.760  0.371 0.507  0.441
Po BCE Po+P 0.254 0.772  0.366 0.498  0.465
Po+S 0.259 0.771 0361 0.494 0435
Po+P+S 0.259 0.762  0.366 0.498 0474
Po 0.243 0.792  0.365 0.497 0.457
CE Po+P 0.238 0.803  0.365 0.498  0.455
Po+S 0.238 0.796  0.378 0.510  0.490
Po+P+S 0.235 0.805  0.373 0506  0.492

5.2. Experimental Results

Table 2 summarizes the overall results. For each metric, we add
the symbol 7 to indicate that the result is better when the value is
higher. Otherwise, we add the symbol |. The table has three blocks
for the prediction of primary (P), secondary (S) and polarity Po la-
bels (column Task). Each of the blocks has different combinations of
multi-task formulation trained using KLD (distribution-label learn-
ing), BCE (multi-label learning), or CE (soft-label learning), as indi-
cated in column Loss. The column Zarget indicates the learning tar-
gets for the models. For instance, P means a single-task model that is
only trained to predict primary emotions; P+Po means a multi-task
model that is trained to estimate primary and polarity labels. The
bold numbers indicate the best performance for a condition when
trained with a given cost function. The bold and underlined numbers
indicate the best result for a task for a given metric across all cost
functions. Figure 3 visualizes the maF1 results for the prediction of
primary and secondary emotions.

Is the polarity label useful? Table 2 shows that most of the best
results correspond to cases when the polarity label is included in the
multi-task model. For example, the model to predict primary emo-
tions trained with KLD using the multi-task system P+S+Po achieves
a 6.4% relative improvement in maF1 over the multi-task system

s BCE s CE

0.26 0.27 0.28 0.29 0.30 0.31
maF1

(a) The macro-F1 scores for primary emotion recognition.
I KLD

s BCE B CE

0.30 0.32 0.34 0.36 0.38
maF1

(b) The macro-F1 scores for secondary emotion recognition.

Fig. 3. maF1 results for primary and secondary emotion predictions.

P+S (see Fig. 3(a)). In the prediction of secondary emotion using
KLD, the multi-task model S+Po gives a 16.56% performance gain
over the single task learning model S (see Fig. 3(b)). The typed
descriptions have valuable emotional information, showing that the
polarity label is indeed helpful to improve the recognition perfor-
mance for primary and secondary emotions.

Is there any difference between soft-label, multi-label, and
distribution-label learning? The distribution-label learning with
KLD achieves the best results in two out of five metrics on the
classification of primary emotions and three out of five metrics on
the classification of secondary emotions. The soft-label learning
with CE achieves the best results in two out of five metrics for the
classification of primary emotions, one out of five metrics for the
classification of secondary emotions, and two out of five metrics on
the classification of the polarity label. Table 2 and Figure 3 shows
that multi-label learning with BCE often leads to worse performance
across conditions. We conclude that distribution-label learning is
more suitable when the classification task includes more classes than
the other two learning methods.

6. CONCLUSION AND FUTURE WORK

This paper maximized the emotional information from the annota-
tors’ typed descriptions to generate a three-class polarity label. This
approach fully exploits all the emotional information included in the
perceptual evaluations during the training and evaluation of the EC
model. The results demonstrated that the proposed three-class po-
larity label is helpful to increase the recognition accuracy of pri-
mary and secondary emotions. Moreover, our results showed that
distribution-label learning with KLD as the cost function is more
suitable when the dimension of the emotional descriptor is high. Our
future work will explore other emotional attributes extracted from
the typed descriptions that describe the perceived emotion beyond
its sentiment (e.g., activation, dominance).
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