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Abstract— Deep learning approaches for medical image analysis
are limited by small data set size due to multiple factors such as
patient privacy and difficulties in obtaining expert labelling for each
image. In medical imaging system development pipelines, phases
for system development and classification algorithms often over-
lap with data collection, creating small disjoint data sets collected
at numerous locations with differing protocols. In this setting,
merging data from different data collection centers increases the
amount of training data. However, a direct combination of datasets
will likely fail due to domain shifts between imaging centers.

In contrast to previous approaches that focus on a single data
set, we add a domain adaptation module to a neural network
model and train using multiple data sets. Our approach encourages
domain invariance between two multispectral autofluorescence
imaging (maFLIM) data sets of in vivo oral lesions collected with
an imaging system currently in development. The two data sets
have differences in the sub-populations imaged and in the cali-
bration procedures used during data collection. We mitigate these
differences using a gradient reversal layer and domain classifier.
Our final model trained with two data sets substantially increases
performance, including a significant increase in specificity. We
also achieve a significant increase in average performance over
the best baseline model train with two domains (p = 0.0341). Our
approach lays the foundation for faster development of computer
aided diagnostic systems and presents a feasible approach for
creating a single classifier that robustly diagnoses images from
multiple data centers in the presence of domain shifts.

Index Terms— Automated oral cancer diagnosis, domain
adaptation, gradient reversal, multispectral autofluores-
cence imaging, variance regularization

[. INTRODUCTION

Traditionally, a large data set is required for training a successful
deep learning model. Unfortunately, medical imaging data sets are
typically small and heterogeneous, creating issues with overfitting
and exhibiting lack of generalization to different domains and settings
across data centers. Many strategies have avoided deep learning
solutions altogether, instead, focusing on methods such as support
vector machines (SVM) and quadratic discriminant analysis (QDA)
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that offer less flexibility, but are less prone to overfitting [1]—
[3]. Other methods reduce problems associated with inter-patient
variability by including images from each patient in the training set
[4]. However, requiring an image from each patient in the training set
is impractical for clinical translation, because the model needs to be
re-trained with the addition of every new patient. Another alternative
approach for modalities with some similarities to natural images (e.g.,
magnetic resonance imaging (MRI) and digital histology) is to adapt
deep learning models pre-trained on large-scale data sets such as
ImageNet [5], [6]. However, other medical imaging applications are
highly specific and do not have a similar modality that can be pre-
trained on an extensive data set (i.e., in vivo fluorescent lifetime
images of oral lesions).

In the absence of a pre-trained model and to avoid using images
from each test patient in the training set, the combination of small
medical image data sets from different centers, including sets from
slightly different domains, can increase the size of the data set, and,
potentially, mitigate generalization problems. However, domain shifts
between data centers caused by differences in imaging systems, data
collection protocols, and sub-populations prevent direct combination
[7]. In addition, mismatches between data sets from different imaging
centers may occur when ground truth annotations contain ambiguity.
Specifically in oral cancer identification, histology ground truth labels
contain both inter- and intra- observer variability. Due to center-
specific variations, generalization problems persist even when a large
data set has been collected at a single imaging location [8]. Clas-
sification challenges due to domain shift have been documented in
multiple imaging modalities, including computed tomography (CT),
magnetic resonance imaging (MRI), ultrasound, and histology images
[8]-[14].

Previous studies on oral cancer classification using multispectral
autofluorescence imaging (maFLIM) focused only on a single, small
data set [1]-[3], [15], [16]. As a single large-scale maFLIM oral
lesion data set is not currently accessible, we would like to combine
images from various collection centers. Specifically, we aim to
improve performance on a main dataset through the inclusion of
auxiliary training data from a separate imaging center. Unfortunately,
preliminary results indicate that the new training data can actually
decrease performance on the main dataset. This result has been
observed in other medical imaging domains [17], showing the need
for domain adaptation techniques before combining databases. To
mitigate domain shift problems, we propose the use of domain
adaptation techniques in a deep learning framework to merge the
data sets and create domain invariance feature representations. While
domain adaptation techniques have been widely investigated for
combination of domains in other applications, little work has been
reported on domain adaptation in cancer diagnosis of oral lesions
from in vivo maFLIM. Although we focus on the main data set
performance, this work sets the foundations for a single, robust
classifier that can be used for the diagnosis of oral lesions across
multiple imaging systems and locations. The main contributions of
this work are as follows:
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e We quantify main performance decrease when training with
multiple domains for automated oral cancer diagnosis from
maFLIM.

e We propose a new domain adaptation model to mitigate the
domain shift between data collection centers for maFLIM.

e We investigate failure modes of standard gradient reversal for
domain adaptation in a small data setting.

e We propose a variance regularization technique to reduce mode
collapse in gradient reversal.

o We explore model selection techniques to further improve the
main domain performance.

We note that there is an important distinction between our formu-
lation and other machine learning methods using domain adaptation.
Our goal is to increase the size of the train set, which is different
from the common objective of other domain adaptation studies aiming
to improve the performance of a classifier on an unlabeled target
domain. The domain adaptation helps us to reduce mismatches so
we can combine the datasets in an effective way, which is crucial
in medical problems characterized with limited data obtained with
different protocols. Our approach borrows aspects from data augmen-
tation, where the new data included in the train set corresponds to
new samples from the auxiliary domain. This approach differs from
traditional data augmentation methods which create transformations
or modifications of existing samples to increase the train set. Our
formulation represents an effective use of domain adaptation to reduce
data mismatches so we can combine the datasets in an effective way.

This paper is organized as follows. Section II summarizes re-
lated studies in maFLIM cancer diagnosis and describes relevant
background for domain adaptation. Section III details our proposed
approach. Section IV presents the results of our method in comparison
to the baselines and analyzes each component of our model. Section
V summarizes the main contributions and results of this study.

II. RELATED WORK
A. In Vivo maFLIM Cancer Classification Methods

Although domain adaptation methods are commonly used in other
deep learning applications, approaches for cancer diagnosis and
margin delineation from in vivo maFLIM have been typically trained
using a single domain [1]-[3], [15], [16], [18]. For example, Jo
et al. [2] presented a solution based on a quadratic discriminant
analysis (QDA) classifier for oral cancer diagnosis using a single
data set. The inputs to the QDA classifier were hand-derived features
based on signal intensity (spectral) and lifetime (temporal) features
[2]. Marsden et al. [1] also used lifetime and intensity features to
train a support vector machine (SVM) and a random forest (RF)
classifier for margin detection in oral lesions from one imaging center.
Chen et al. [19] used a SVM, but for microscopy images from a
single collection site. Vasanthakumari et al. [3] used QDA and linear
discriminant analysis (LDA) classifiers with hand-crafted features
from phasor plots to classify skin lesions. Duran et al. [18] trained
LDA, QDA, SVM and logistic regression classifiers on data from one
imaging center and tests on data from another imaging center. How-
ever, the authors did not explore if an increase in performance might
be obtained by using domain adaptation techniques. In addition, the
authors report performance on the margin delineation task, while we
focus on cancer diagnosis. Studies have only recently started to use
deep learning solutions [1], [15]. Marsden et al. [1] explored the
use of a convolutional neural network (CNN) for oral lesion margin
delineation. However, the CNN-based model failed to outperform
baselines implemented with traditional machine learning classifiers
trained with hand-derived features [1]. In contrast, we previously
reported a joint autoencoder and classifier structure (see Fig. 1) for
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oral cancer diagnosis using data-driven features that showed improved
performance over the traditional baseline implemented with SVM in
a single-domain setting [15].

While our previous work focused on automated oral cancer diagno-
sis using a single data set, our deep learning structure can accommo-
date domain adaptation techniques that have been successfully used
in other domains. As our main data set is small, we wish to improve
performance on the main data set by including training data from
another data set. Unfortunately, domain shifts between data sets can
cause the model capacity to split between the domains, decreasing
performance on the main data set. We hypothesize that the addition
of domain adaptation methods to our joint autoencoder and classifier
structure can create invariant representations such that auxiliary data
from a different domain can act as augmented data for the main
domain. In our method, we use an auxiliary data set to increase the
training data set size, formulating the classification performance on
the main data as our primary evaluation criterion. This formulation is
radically different from other approaches used for in vivo oral cancer
diagnosis from maFLIM.

B. Domain Adaptation Background

The goal of domain adaptation is to mitigate the mismatch between
domains. Multiple domain adaptation techniques have been proposed,
including using fine-tuning [10], generative adversarial network
(GAN) [12], gradient reversal [20], transformation of data between
domains [11], and augmentation methods [21].

Several studies have used a fine-tuning, transfer learning approach
when at least some labels are present for both source and target data
sets [5], [6], [10]. In these methods, a base classifier was trained
using a source data set. Then, the model was minimally adjusted
using the labeled target data to maximize performance on the target
data. Fine-tuning differs from our objectives, as we wish to maximize
performance on the main data set, using a second domain to augment
the training set.

In contrast to fine-tuning, Zhang et al. [9] introduced a series of
source-only data augmentation methods for MRI and ultrasound that
minimized the performance gap between the source and target data
in both small and large data settings. Though not in the medical
imaging domain, Anaby et al. [22] similarly used a deep learning
method to create synthetic examples for data augmentation in a small
data setting. Our work takes inspiration from data augmentation and
domain adaptation.

Ganin and Lepinsky [20] proposed the gradient reversal layer,
which describes a popular plug-in general purpose technique for un-
supervised domain adaptation. The model consisted of three blocks: a
feature extractor, a domain classifier, and a task classifier. The domain
classifier was trained to generate gradient updates in the direction
of maximum domain separation. The gradients resulting from the
domain classifier were then reversed during back-propagation to
the feature extractor. Following training, the domain classifier was
discarded and the feature extractor and task classifier were used
for inference [20]. While Ganin et al. [20] focused on improving
generalization to a new domain, our focus is on improving the main
domain performance.

While the gradient reversal layer has been used in a variety
of domain adaptation applications in both unsupervised and semi-
supervised settings, some authors have noted issues retaining class-
discriminative information [23], [24]. Specifically, Li et al. [23] as-
serted that gradient reversal does not ensure that class-discriminative
information is preserved (referred to as mode collapse). Li et al. [23]
used joint adversarial domain adaptation (JADA) to train two task
classifiers using unlabeled target samples and labeled source samples.
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The model finds samples on the class boundary and optimizes
the feature extractor to minimize differences in the predictions of
the two classifiers. The authors hypothesize that since the two
task classifiers are randomly initialized, if the two task classifiers
disagree on the label of the target sample, it is likely near the
decision boundary of the source. By training the feature extractor
to minimize the discrepancy between the two task classifiers on the
target data, the trained target representation will be near the source
classes, improving task discrimination on the target data. Overall,
the two task classifiers encouraged distinct class boundaries, while
the domain classifier encouraged domain invariance [23]. Similarly,
Kurmi et al. [24] mitigated mode collapse in domain adaptation
by using an approach called informative domain discriminator for
domain adaptation (IDDA). IDDA used a modified domain classifier
and selection of source samples to train the domain classifier. The
modified domain discriminator classified each sample as belonging
to one of the source domain class labels or to a general label for
the target domain [24]. Furthermore, source samples that were miss-
classified in the task classifier were discarded from training the
domain classifier [24]. However, the feature extractor only tried to
make the domain classifier place the target sample in any of the
source classification label bins, disregarding the target label class.

While JADA and IDDA mitigated mode collapse in the unsuper-
vised domain adaptation framework, our framework is different. In
our approach, rather than having a single moderate-to-large labeled
source data set and an unlabeled target data set, both of our data
sets contain labels. The size of the train set is also different. The
JADA framework is implemented with thousands of examples [25].
Similarly, experiments with IDDA were run on multiple data sets,
most with thousands of examples [24]. The smallest dataset contained
600 labeled examples, but used a network pre-trained on ImageNet.
In contrast, we use only 113 images with no pre-trained model
available since our “pixels” are time series signals. In our setting,
task supervision helps prevent loss of discriminative information
during domain adaptation. The stability problem in our formulation
concerns the domain classifier and it is addressed with a variance
regularization that is simpler than both JADA and IDDA approaches.
In contrast to JADA, our variance regularization method does not
rely on randomization in task classifier initialization to prevent mode
collapse. Our work details a new method for reducing mode collapse
in the domain discriminator that improves domain adaptation in a
small data setting.

1. METHODS

A. Motivation

Our deep learning framework builds on our previously reported
neural network structure [15], shown in Figure 1. Our original
framework uses two blocks, an autoencoder and a classifier, that
are simultaneously trained on a single data set. The autoencoder
block provides regularization by reconstructing the input signal, but
cannot ensure a task-discriminative bottleneck representation. Adding
the task classifier provides supervision, ensuring the autoencoder
generates task-discriminative representations in the bottleneck. While
our original framework performed well when trained on a single
data set, we observed a decrease in performance when training
with multiple data sets. We extend our original framework to work
in a multi-center setting by adding a domain adaptation module.
This approach aims to create a feature representation that cannot
distinguish between data collected from different imaging centers.
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Fig. 1: Joint autoencoder and classifier neural network as presented in
Caughlin et al. [15]. Our base model uses the same general structure
of this neural network.
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Fig. 2: Proposed architecture with autoencoder, task classifier and
domain classifier implemented with gradient reversal layer. Two data
sets from separate imaging centers are preprocessed to minimize
center-specific differences and combined into a single data set before
training the neural network with domain adaptation on a pixel level.
At test time, the task classifier pixel-level diagnosis is aggregated for
each image with a 50% threshold.
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B. Domain Adaptation using Gradient Reversal Layer

Figure 2 describes our proposed approach, which combines the
autoencoder-classifier framework with a domain classifier with gra-
dient reversal. The model works at the pixel level, providing a
prediction for each pixel. Our architecture has three components:
a feature extractor built with an autoencoder, a task classifier, and
a domain classifier. In our architecture, the contracting path of the
autoencoder, from the input to the bottleneck layer, plays the role
of the feature extractor. Our domain classifier is trained to recognize
center-specific differences in order to distinguish between the data
sets (i.e., center one versus center two). The task classifier labels
each pixel with a diagnosis (i.e., it classifies each pixel as benign or
malignant). While margin delineation (classification of a pixel as a
lesion or healthy) is another common task in oral maFLIM analysis,
we only consider the diagnosis task in this work. The feature extractor
is connected to the task and domain classifiers. The network is trained
with an adversarial loss to maximize the performance of the task
classifier while minimizing the performance of the domain classifier.
We find a saddle point where the parameters of the feature extractor
minimize the domain classifier performance. The key step in this
formulation to minimize the performance of the domain classifier is
to reverse the sign of the gradient updates generated by the domain
classifier. When the performance of the domain classifier is at random
level, the bottleneck layer generates feature representations that are
indistinguishable between both domains, compensating for potential
differences. Our network looks for the parameters at the saddle point:

(éenm ét) = argmin Lyo¢q7 (Oenc, 0t, éd) (D
04 = argmax Lioa1(Ocnc, Ot, 0a) 2)

where Oene, ¢, and éd refer to the optimal parameters for the
encoder, task classifier, and domain classifier, respectively. Equation
1 states that we find the parameters for the encoder and the task
classifiers that minimize the task classifier loss, while Equation 2
states that we want the parameters for the domain classifier that
minimizes the domain classifier loss.

The trade-off between the domain classifier and the task classifier
is controlled by the hyperparameter A. The total loss (L;ot47) is given
by Equation 3,

Ltotal = aLtask + ﬂLAE + ‘CVR - A‘Cdmnain 3)

where L, is the cross entropy loss for the task classifier, Lap
is the reconstruction loss for the autoencoder, Ly p is a variance
regularization penalty discussed in Section III-C, and Lj,main 1S
the domain classifier loss. The negative sign on the term AL jomain
reflects the reversal of the gradient for the domain classifier. As in
Ganin and Lepinsky [20], the hyperparameter A gradually increases
during training, allowing the domain discriminator to distinguish the
classes before applying large updates to merge the domains.

Since the relative strength of the domain adaptation increases
during training as A increases, the model takes some time to achieve
domain invariance. Ideally, the domain classifier should approach
50% accuracy on both data sets. This scenario indicates that the
domain classifier can no longer tell the difference between the
domains (the domain classifier has converged). If we choose the best
model before the domain classifier converges, good performance on
only one domain may dominate the task classifier loss, while the other
domain may have poor classification performance. Thus, we select
the best model only after the validation set domain performance falls
near 50% for both the main and auxiliary data. Then, we select the
best model as determined by the task classifier performance on the
validation set.
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After training, the network predicts a label for each pixel in
the test images. The predicted diagnosis for an image is generated
by aggregating the pixel-level predictions using a 50% threshold.
Although better performance may be achieved by determining the
optimal threshold, we use the majority class of an image’s pixels
as the final image label for simplicity and to avoid adding an extra
hyperparameter that may lead to overfitting given the size of the
corpus. The long dashed borders and arrows in Figure 2 indicate
that the auxiliary data is only used during training. Similarly, the
decoder and the domain classifier are discarded after training. The
small dashed arrows indicate that the image-level aggregation only
applies during testing.

C. Strategies to Increase Regularization

Since we are dealing with small data sets, we implement several
approaches to increase the regularization of the architecture, improv-
ing the generalization of the model to avoid overfitting. Using an
autoencoder is our first regularization approach. The autoencoder
includes an unsupervised loss to reconstruct the input features. While
we do not have many images, we do have over 2.5 million pixels to
train this model.

Our second approach to increase regularization is the use of
dropout in the classifier layers. Dropout randomly removes nodes
during training, resulting in a model that approximates an average
over a collection of sub-models [26]. Dropout discourages the model
from relying on specific combinations of nodes (referred to as “co-
adaptation”) and reduces overfitting [26]. Each layer in the encoder
and decoder used batch normalization. Batch normalization was
introduced by loffe and Szegedy [27] to minimize internal covariate
shift and was placed before the activation layer. However, experiments
by Santurkar et al. [28] show that internal covariate shift is not always
reduced by batch normalization. Instead, the likely performance
improvements may be due to a smoother loss surface during the
optimization [28]. The results of batch normalization can also regu-
larize the network by encouraging favorable model initialization and
increasing generalization [28]. While loffe and Szegedy [27] asserted
that batch normalization can reduce the need for dropout, Chen et
al. [29] found improvements in combining batch normalization with
dropout and using these layers after the activation. In our framework
we do not use batch normalization and dropout in the same layer.
Instead, we use batch normalization in the autoencoder layers and
dropout in the task classifier layers. However, we acknowledge that
performance increases may be obtained by exploring alternatives such
as the combination of dropout and batch normalization in the same
layer.

A technical contribution in this study is the use of variance regular-
ization for adversarial domain adaptation. Although we experimented
with multiple schedules for the hyperparameter A, we were unable
to stabilize the domain classifier with hyperparameter tuning alone.
The domain classifier was unstable, reaching the expected 50%
accuracy by collapsing to the predictions of a single domain and
switching between which domain was predicted. During preliminary
experiments, we found switching was reduced by changing the
activation function to a sigmoid at the bottleneck layer (see original
activations in Figure 1). However, the sigmoid activation did not
entirely stabilize the training of the model, with the domain classifier
still frequently collapsing. One way domain collapsing can happen is
when the gradient updates cause the model to have low diversity in
the embedding representation that feeds directly the domain classifier.
In this case, the domain discriminator will collapse to predict a single
class. This phenomenon is similar to the well-studied mode collapse
problem in GANS, where the generator will only produce samples of
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one or few classes. The variance regularization penalizes the model
when the variance in the embedding drops below a threshold to reduce
the likelihood of our model to converge to this poor solution. We
implement the variance regularization proposed by Chong et al. [30],
shown in Equation 4,

P n n
Lyr = max{0,y — ﬁ > Z(ébi,q - % > kg’ @
g=1i=1 k=1

where Ly, is the variance regularization penalty, -y is the threshold,
p is the size of the bottleneck (16 in our implementation), n is the
number of samples in the mini-batch (256 in our implementation),
and ¢ is the value of the feature. The only change from the approach
presented by Chong et al. [30] is that our threshold v is a single
value that does not change as the training progresses. We apply the
regularization to the bottleneck layer, adding a penalty to the loss
when the variance within a mini-batch falls below a threshold. With
this approach, the input to the domain classifier is more varied and
reduces the likelihood that the domain classifier collapses to predict
every sample belonging to one domain.

D. Imaging System

The basis for fluorescence imaging of oral cancer is that changes in
the levels of endogenous fluorophores may reflect changes in tissue
structure and metabolism. Collagen, reduced nicotinamide adenine
dinucleotide (NADH), and flavin adenine dinucleotide (FAD) are
endogenous fluorophores of interest in cancer diagnosis and margin
delineation [1]-[3], [31]. Several morphological and biochemical
changes within the two primary layers of the human oral mucosa
have been shown to accompany the development of squamous cell
carcinoma (SCC). We can investigate these changes by studying the
autofluorescence properties of the two primary layers of the human
oral mucosa (the stratified squamous epithelium and lamina propria or
connective tissue). Morphological changes include thickening of the
epithelium and extracellular matrix remodeling in the lamina propria,
which lowers the measured collagen autofluorescence [32].

Several publications show that the development of SCC causes
changes in the concentration of the reduced form of NADH and
FAD in the epithelial tissue [33]-[35]. Autofluorescence properties
are typically quantified by two values: the intensity and the lifetime.
The ratio of the intensity between these two endogenous fluorophores
is referred to as the optical redox ratio and can indicate changes
in the cells metabolic processes [36]-[39]. A decrease in this ratio
is associated with an increase in the metabolic rate of cells, a
hallmark of neoplastic cell transformation [40]. In addition to the
intensity, changes in protein binding affect the lifetime of NADH
and FAD. Skala et al. [41] showed that these changes in lifetime
accompany carcinogenesis [42]. The excitation and emission bands
of the endoscope used in our study are designed to measure the
autofluorescence properties of collagen, NADH and FAD [31].

All images (~11 mm circular field of view, ~100 um lateral
resolution) were acquired using the maFLIM system described in
Cheng et al. [31]. Using this system, the tissue autofluorescence
was excited at 355 nm with a pulse width of Ins. During the
acquisition time, which was less than 3s, 2.8 mJ were deposited to the
tissue (maximum permissible exposure (MPE) = 29.8 mJ [43]). The
emission bands imaged collagen (390420 nm), NADH (452422.5
nm), and FAD (>500nm). Following imaging of the biopsy region,
an incisional tissue biopsy was performed following standard clinical
protocols. The histopathological diagnosis for each lesion biopsy was
used as the ground truth for training and evaluating the proposed
classifier. This process results in an image where each pixel contains
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TABLE |: Anatomical distribution of the lesions in the main data set
collected in Doha, Qatar.

Location [ Benign | Dysplasia | SCC
Mucosa 10 3 9
Floor of Mouth 2 0 1
Gingiva 0 2 3
Lip 10 0 2
Mandible 0 0 1
Palate 1 0 0
Maxilla 0 0 1
Retromolar 1 0 0
Tongue 9 0 12
Total [ 33 ] 5 [ 29

a three-channel fluorescence decay. Figure 3 shows an example of
this three-channel fluorescence decay. As shown in the figure, the
raw images provide no direct visual information on cancer diagnosis
or lesion appearance. Feature representations need be estimated from
the data.

E. Data: Main and Auxiliary Sets

Data was collected from two imaging centers. Each imaging center
used two separate prototype versions of the maFLIM endoscope
system previously reported in Cheng et al. [31]. At both centers,
each patient in the study had a clinically suspicious oral lesion.
Each lesion was imaged in vivo with the maFLIM endoscope,
followed by surgical resection and histopathological diagnosis. Each
lesion was imaged only once following our protocol (i.e., we do
not have multiple images from each lesion). All images contained
160x160 pixels, with three channel decays per pixel corresponding to
collagen, reduced NADH, and FAD, respectively. In both data sets,
we use the raw signal instead of iterative deconvolution to avoid
signal approximations. We rely on our neural network to adjust for
differences in the impulse response of the imaging systems.

The main data set contains 67 oral lesions from nine anatomical
locations, as shown in Table I. The data was collected in Doha, Qatar.
The institutional review board (IRB) for the main data collection and
processing was approved by the Hamad Medical Corporation in Doha,
Qatar (with study number HMC-IRB 16332/16, and approval date of
January 29, 2019). The histopathological diagnosis revealed that 33
lesions were benign, 5 lesions were dysplasia, and 29 lesions were
squamous cell carcinoma (SCC).

The full auxiliary data set contained 84 oral lesions, including 9
dysplasia, 14 SCC, and 61 benign lesions. The data was collected
in Dallas, USA. To avoid introducing highly imbalanced data, we
used only 23 of the 61 benign lesions from the auxiliary data set.
Our preliminary results show that using different sets of randomly
selected benign images led to minimal variations in the average
between sensitivity and specificity. Therefore, we used the same 23
benign lesions for all experiments reported in our paper. Therefore,
the auxiliary data used in this study contains 46 oral lesions from 6
anatomical locations (see Table II). IRB approval for the auxiliary
data set experimental protocol was obtained from Texas A&M
University (with protocol number IRB2010-0177D, and approval date
of October 22, 2014). Notably, the auxiliary data set contains a larger
portion of dysplasia cases compared to the main data set distribution.
Dysplasia cases from both data sets were considered as malignant in
our problem formulation. In our binary classification task, the positive
class consists of dysplasia and SCC lesions, and the negative class
consists of benign lesions.

In addition to different anatomical locations and dysplasia distribu-
tions, the experimental protocol was not consistent between imaging
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TABLE II: Anatomical distribution of the lesions in the auxiliary data
set collected in Dallas, USA.

Location [ Benign | Dysplasia_| SCC
Mucosa 8 1 2
Floor of Mouth 1 0 0
Gingiva 5 1 5
Mandible 1 0 1
Palate 1 0 0
Tongue 7 7 6
Total 23] 9 [ 14

centers. Specifically, the main data was collected after calibrating the
imaging system before each image acquisition. In contrast, the aux-
iliary data set was initially calibrated, but not subsequently adjusted
throughout the experiment. The lack of precise calibration factors
corrupts the relative intensity values between channels, especially
without patient normalization. While an image from the normal
contralateral side was collected for each patient, this study only
uses the lesion information, resulting in greater challenges due to
calibration differences.

F. Implementation

Table III shows the sizes and activations of the layers for the
autoencoder and classifier. Each layer is fully conncected. The
autoencoder accounts for most of the parameters, with 1,261,500
trainable parameters. The task classifier adds 695 parameters, while
the domain classifier used for gradient reversal adds only 154
parameters. The total number of floating point operations per second
(FLOP) (as calculated using the keras-flops library) is 0.00253G,
which is significantly lower than conventional image-based networks.
Though the domain classifier slightly increases the model complexity
during training, the domain classifier is not used during inference.
Once the model and data is loaded, our implementation (AMD Ryzen
9 3900X 12-Core Processor, NVIDIA GeForce RTX 3090) generates
a pixel prediction in an average of 0.02ms (i.e., approximately
512ms per image). Images from the separate data sets are separately
preprocessed to reduce correctable variations between data sets. We
describe the preprocessing steps in Section III-G. After preprocessing
of each pixel, the data sets are combined and the classifier is trained
on a pixel level.

Our training auxiliary data set is smaller than that of the main
data set (Sec. III-E). Therefore, we use sample weighing on the
domain classifier output to prevent the model from collapsing to only
predicting the domain with more samples. The values for the sample
weights are given by the sci-kit learn toolkit based on the training
domain distribution as detailed in Pedregosa et al. [44]. Similarly, we
reduce class bias by using the same strategy on the task classifier,
generating the sample weights from the class distribution of the
training data.

The dropout rates are set to p = 0.5 and p = 0.25 for the
task and domain classifiers, respectively. We use Adam [45] as the
optimizer with a learning rate of 1075, training all the models for
25 epochs. All models are trained using Keras with Tensorflow [46].
The hyperparameter for the gradient reversal layer () is initialized
to zero and incremented by 0.025 for five epochs. After five epochs,
we reduced the increment to 0.015 for the remainder of the training.
The threshold v for the variance regularization is set to 0.05 for all
experiments, based on the stability of the domain classifier observed
on the validation set.

Our training strategy for the main data relies on cross-validation
given the limited size of our data sets. We split the data into 10
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TABLE Ill: Model structure of our architecture. The description
includes the encoder, decoder, task classifier and domain classifier.

Block [ Layer [ SizeIn [ Size Out | Activation
1 900 512 ReLU
Encoder 2 512 256 ReLU
3 256 128 ReLU
4 128 16 Sigmoid
1 16 128 ReLU
Decoder 2 128 256 ReLU
3 256 512 ReLU
4 512 900 ReLU
1 16 21 ReLU
gzlleslls(siﬁer 2 21 14 Rel.U
3 14 2 Softmax
Domain GR 16 16 .None.
Classifier 1 16 8 Sigmoid
2 8 2 Softmax

partitions, with each partition as class-balanced as possible. One
partition is reserved as the test set, which is only used to evaluate
the performance of the system. From the remaining nine partitions,
two are randomly selected as the validation set, and the other seven
partitions as the train set. We denote the experiments in a specific
division of the data into train, validation and test sets as a run. The
data is partitioned by patient, where all the pixels of a single image
belong only to the train, validation, or test set within a specific run.
With the cross-validation, every partition is eventually used as the
test set. We build the system using the train set, maximizing the
performance on the validation set. The final model is then evaluated
on the test set. We refer to this cross-validation process as a trial.
Since the partitions of the data set can affect the performance of the
system, we repeat this process 10 times, creating different partitions
for each trial. We report the average results across the 10 trials. In
addition to the train and validation sets for the main data, we append
train and validation partitions from the auxiliary data set. The same
auxiliary data is added to the training and validation sets in each run.
We use 34 lesions in the auxiliary training set and 12 lesions in the
auxiliary validation set.

Across all experimental conditions, we use consistent data splits
to minimize sources of variation across conditions due to variations
in the pairing of train, validation, and test sets. Therefore, the
comparisons across baselines are consistent since they are using the
same partitions.

G. Preprocessing

Both the main and auxiliary data sets were preprocessed with signal
inversion, spatial averaging, and SNR masking to reduce noise and
reject pixels with low or saturated SNR. Since the spatial averaging
used a sliding window, the original number of pixels in each image is
maintained. We did not average all pixels from the image into a single
decay. Each channel was chopped or zero padded to a consistent
length. In addition, each data set had individual preprocessing steps
to reduce variations between the domains. Figure 3 shows an example
pixel from each domain and the initial preprocessing steps.

The preprocessing for each data set is identical through the second
column in Figure 3, which shows the fluorescence decay following
spatial averaging and signal inversion. Arrows 1A and 2A in the figure
highlight the first dataset-dependent variation, where the different
gain used in image acquisition changes the peak value of the channels
by 100 units. In the next preprocessing step, the decays are calibrated
and normalized to sum to 100 to put the peak values on a similar
scale between data sets. In addition, each main data set channel had
a temporal resolution of 0.25 ns and length of 300 samples after zero
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Fig. 3: Visualization of the preprocessing steps for main and auxiliary domains. Each domain was separately preprocessed to reduce variation
from gain and peak locations. Peak value trends by channel remained different between domains, even among images from the same class.
The arrows labeled 1A-2C denote points of interest discussed in Section III-G. Top row: main domain. Bottom row: auxiliary domain.

padding. The auxiliary data set had a temporal resolution of 0.16 ns
and length of 375 samples after zero padding. The auxiliary data set
was interpolated to match the length and sample rate of the main data
set. The peak of each channel in the auxiliary data set was also shifted
to approximately match the peak of each channel in the main data set
(see Arrows 1B and 2B in Figure 3). Finally, Arrows 1C and 2C show
an unmitigated difference between images. Both pixels represented
in the figure are from benign lesions. However, the ratios between
channels peaks are different, with the main domain pixel showing a
much higher channel 3 peak than that of the auxiliary domain. While
this could partially be due to inter-patient variability, the difference
highlights the difficulty in merging images from heterogeneous, small
data sets. The relationship between the pre-processed data and the
overall image is noted in Figure 2, where each pixel in the 160x160
image contains a time series signal similar to the one shown in Figure
3.

IV. EXPERIMENTS

All experimental results are reported using the main domain on
the cancer diagnosis task (classification of benign versus malignant).
While we report a total of six metrics, we focus our analysis
on sensitivity, specificity, and the average between sensitivity and
specificity.

A. Comparison with Baselines

We report baseline results from a variety of methods, as shown
in Table IV. We use SVM and different feature selection methods
with standard features as input, following the work of Jo et al. [2]
and Marsden et al. [1]. The standard feature set includes 21 features
derived from signal lifetime, intensity, and bi-exponential decay
parameters. The lifetime (73) and intensity (/) of a single channel
are given by Equations 5 and 6 below:

[ thy(t)ot

[ hi(t)ot ®)

Tk
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I = /hk(t)at (6)
where t specifies the sample time point and h; denotes the decon-
volved fluorescence decay for channel k. The deconvolved fluores-
cence decay was obtained by iterative least-squares deconvolution
using a bi-exponential decay model, as shown in Equation 7:
hk _ afast’keft/‘l'fast,k + aslow,ke*t/ﬂqlow,k

@)

where o fq5¢ 1 and augpoq 1 are the coefficients of the two exponential
terms and Tgg,k and Typge g determine the decay rates of the
exponential terms. We also use two different methods to focus
the model on the best features: sequential feature selection (SFS)
and L1 regularization. SFS sequentially chooses the best features,
while L1 regularization produces a sparse solution, where coefficients
corresponding to less discriminative features approach zero during
training. We report results for SVM classifiers for single-domain
training, as well as the results for training with the main and auxiliary
sets (i.e., training and validation sets), denoted as joint in Table IV.

In addition to the SVM classifiers with standard features, we list
the single-domain results using the autoencoder and classifier neural
net shown in Figure 1 and reported by Caughlin et al. [15]. This
neural network structure uses the pre-processed fluorescence decays
without iterative deconvolution and generates data-driven features. As
detailed in Section III, the autoencoder for our approach is modified
with a sigmoid activation at the bottleneck. We report the single-
domain training performance using the modified autoencoder in Table
IV to ensure that the improved results with our method are not due
to an improved autoencoder structure. While the change in activation
helps domain stability with gradient reversal, the sigmoid activation
may lose some performance benefits resulting from sparsity in the
bottleneck representation when using the rectified linear unit (ReLU)
activation.

Table IV shows the results. Joint training reduces the average
main domain performance in all baseline models. For the modified
autoencoder method, joint training reduces the average performance
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TABLE |V: Benign versus malignant classification results for the
proposed approach and the baselines. Note: sensitivity equals recall.

Model [ Sens. [ Spec. | Avg. [ Prec. | FI [ Acc.
AE [15] 87.50 | 67.58 | 77.54 | 76.25 | 79.80 | 77.62
AE Joint 70.08 | 81.17 | 75.62 | 75.68 | 70.80 | 75.74
AE (modified) 85.08 | 68.42 | 76.75 | 74.74 | 78.04 | 76.93
AE (modified) Joint | 77.33 | 74.92 | 76.13 | 74.20 | 73.63 | 76.21
SVM SES [15] 81.00 | 67.25 | 74.13 | 73.82 | 74.92 | 74.05
SVM SFS Joint 82.00 | 50.83 | 66.42 | 6541 | 70.78 | 66.57
SVM L1 [15] 79.17 | 7333 | 76.25 | 78.10 | 7592 | 76.36
SVM L1 Joint 88.00 | 63.50 | 75.75 | 73.48 | 78.32 | 75.74
Proposed Approach | 80.83 | 75.75 | 7829 | 79.09 | 77.73 | 78.05

TABLE V: Contributions of the model’s components. The best model
uses both domains in training (joint), gradient reversal (GR), and
variance regularization (VR). Note: sensitivity equals recall.

Joint [GR [ VR | Sens. [ Spec. [ Avg. [ Prec. [ FI [ Acc.

v 8533 | 64.67 | 75.00 | 73.89 | 77.27 | 75.19
v v 79.75 | 72.83 | 76.29 | 76.23 | 7534 | 76.26
v 7733 | 7492 | 76.13 | 74.20 | 73.63 | 76.21
v v 80.00 | 71.67 | 75.83 | 7497 | 75.06 | 75.67
v v v 80.83 | 75.75 | 7829 | 79.09 | 77.73 | 78.05

by 0.62% compared with the main only model. The performance
of the joint SVM model with L1 regularization dropped an average
of 0.5% compared with the main only model. Joint training with
SVM and SFS completely failed, with an average performance of
7.71% below the single domain SVM SFS model. The decrease in
average performance highlights the problem of domain shift, which
causes the main performance to decrease when the model is trained
with both main and auxiliary sets, even in a fully-supervised setting.
Furthermore, a similar performance drop in models trained using
hand-crafted features from the deconvolved signal (SVM models) and
the preprocessed signal without deconvolution (autoencoder models)
shows that the domain shift problem cannot be solely attributed to
differences in the imaging system impulse response.

In contrast to all other baseline models, our full neural network
with domain adaptation and variance regularization improves the
main domain performance over all other methods including the main-
only training settings. Our full model significantly increases the
average performance over the best SVM multi-domain baseline by
2.54% (p = 0.0341 using a one-tailed, paired t-test). Similarly, our
full model shows no significant change in specificity and significantly
increases sensitivity over the single-domain training using the same
base structure (i.e., modified autoencoder trained on the main data
only) by 7.33% (p = 0.0023 using a two-tailed, paired t-test). The
improved results show that domain shift between data centers can be
reduced using gradient reversal.

B. Contributions of the Model’s Components

To evaluate the contributions of each component in our domain
adaptation framework, we present a breakdown of each component
in Table V. Joint refers to training with both main and auxiliary data
in the training and validation sets. GR refers to joint training with
gradient reversal. VR refers to the addition of variance regularization
to the bottleneck representation (discussed in Section III). Comparing
rows two (Joint) and three (Joint+GR) from Table V, we find that
gradient reversal failed to correct the performance drop when the
variance regularization is not used. This setting produces similar main
performance to the model trained without any domain adaptation.
After analyzing the domain performance during adaptation, we found
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evidence of domain collapse where the domain classifier always pre-
dicts a single class. When this happens, the domain adaptation module
does not achieve its goal of reducing the mismatch between main
and auxiliary sets. We provide further analysis on domain collapse
and the effect on domain adaptation in Section IV-D. The domain
collapse problem is corrected with the variance regularization. Since
domain adaptation failed until the addition of variance regularization,
we confirm that the increased performance of the full model is due to
an appropriate implementation of domain adaptation, rather than an
unforeseen effect of variance regularization by training our main-only
autoencoder model with variance regularization at the bottleneck (row
1 in Table V). As expected, the addition of variance regularization
outside of domain adaptation reduces average performance by 1.75%
compared with our base autoencoder. When training the joint model
with variance regularization but not gradient reversal, the average
performance is within 0.16% of the joint only model. This result
shows that the variance regularization is not effective without gradient
reversal. The full model using joint training, gradient reversal, and
variance regularization successfully merged the domains, with an
increase of 3.50% sensitivity and 0.83% specificity compared to joint
training without domain adaptation. Furthermore, the full domain
adaptation model outperforms single-domain classifier performance
using the same autoencoder by an average of 1.54%. Taken together,
Table V shows that all three components of our model (multi-center
training, gradient reversal, and domain adaptation) are required to
successfully train using multiple data sets.

C. Model Selection Constraints

In addition to the use of domain adaptation, the model performance
is also affected by the model selection criteria. In general, the best
model from the training process is chosen by the performance on
the validation set. However, in our domain adaptation framework, the
task and domain classifiers are trained at the same time. However, the
trade-off hyperparameter for gradient reversal increases over training.
If the best model is selected based on the minimum validation set
performance without considering domain convergence, the model
may be selected before the domains have merged. To prevent sub-
optimal model performance, we used a model selection constraint in
our full model, as described in Section III-B. We verify the efficacy
of our model selection constraint for two settings. One setting uses
joint training and gradient reversal, and the other setting uses joint
training, gradient reversal and variance regularization. Table VI shows
the results when we either select the model with the best results on
the validation set, even if the domain adaptation has not fulfilled its
role, or we select the best results in the validation set after waiting for
the domain adaptation to converge (denoted with the symbol v'). In
both settings, adding the model selection constraint improves average
performance by 1.08% and 0.42%, respectively. The greater need for
model selection criteria without variance regularization may be due
to increased domain instability.

We hypothesized that when the domains have merged, the inclusion
of the auxiliary data in the validation set will increase the main
performance. The validation set is used to identify the best model to
be used in the test set. If the domains have not merged, the validation
performance may be skewed by higher classification performance
on the auxiliary data set, affecting the performance of the main
domain. We test this hypothesis for all three joint training scenarios:
joint training without domain adaptation (Joint), joint training with
gradient reversal (Joint + GR), and joint training, gradient reversal
and variance regularization (Joint + GR + VR). Notice that in the
three conditions, the auxiliary set is used on the training set. Table
VII shows the results, denoting with the symbol v* when the auxiliary
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set samples from the main data set. Right column: Domain accuracy for the validation set samples from the auxiliary data set.

TABLE VI: Effect of domain stability in model selection. Joint + GR:
Joint model trained with the main and auxiliary datasets implemented
with gradient reversal. Joint + GR + VR: joint model with gradient
reversal and variance regularization. MS: model selection. Note:
sensitivity equals recall.

Model [ MS [ Sens. [ Spec. [ Avg. [ Prec. [ FI [ Acc.
oL GR — [ 7707 | 7233 | 7405 | 331 | 302 | 7470
° v | 8000 | 7167 | 7583 | 7497 | 7506 | 75.67
) — (8150 | 7425 | 7787 | 7184 | 7745 | 7821
Joint+GR+VR | | 8583 | 7575 | 7829 | 79.09 | 77.73 | 78.05

data is included in the validation set. When the variance regularization
is not used and the system ineffectively merges the domains (Joint
and Joint + GR models), removing the auxiliary data from the
model selection (i.e., validation set) resulted in better performance
on the main domains. Specifically, the joint model without domain
adaptation dropped 0.70% on average. The joint model with domain
adaptation dropped 1.46%. The decrease in performance with the
auxiliary validation data indicates that any advantages from a larger,
more diverse data set were offset by the domain shift. In contrast, our
full model with variance regularization and gradient reversal benefits
from the addition of auxiliary data in the validation set by 1.55% on
average. Therefore, Table VII further confirms our hypothesis that
the main domain performance can be increased by the inclusion of
data from another domain when domain shift has been corrected with
domain adaptation.

D. Domain Adaptation Verification

We plot the domain accuracy to monitor the effects of gradient
reversal. Figure 4 shows the performance of the train and validation
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TABLE VII: Effect of auxiliary data in model selection. Using
the auxiliary data in the validation set (aux. dev.) only improves
performance when the domains are merged using gradient reversal
(GR) and variance regularization (VR). Joint: model trained with the
main and auxiliary datasets. Joint + GR: Joint model implemented
with gradient reversal. Joint + GR + VR: joint model with gradient
reversal and variance regularization. AD: auxiliary in development
set. Note: sensitivity equals recall.

Model [ AD [ Sens. | Spec. [ Avg. | Prec. [ FI | Acc.
Joint - 78.33 | 75.33 | 76.83 | 72.91 73.71 76.86
v 77.33 | 7492 | 76.13 | 74.20 | 73.63 | 76.21
Joint+GR - 79.83 | 7475 | 77.29 | 74.89 | 7522 | 77.31
° v 80.00 | 71.67 | 75.83 | 74.97 | 75.06 | 75.67
. - 80.92 | 7225 | 76.58 | 77.10 | 76.46 | 76.81
Joint+GR+VR | | 9083 | 7575 | 7829 | 79.00 | 77.73 | 78.05
set. We set the gradient reversal hyperparameter A = —0.25 for

the first epoch and increment it by 0.025 for five epochs and 0.015
thereafter. Note that this setting only applies to this section to verify
domain adaptation. For the rest of the evaluation, we begin with A =
0 and gradually increment it. The negative sign allows the domain
accuracy to initially increase, showing that the domain classifier
is working properly. Once the value of A increases and domain
adaptation progresses, the domain accuracy should reach near random
performance, indicating domain invariance. The top row of Fig. 4
shows this process for the model without variance regularization.
The validation accuracy reaches above 75.0% and then decreases as
expected (Fig. 4a, epoch 3). However, the way the model achieves
50% domain accuracy matters. For example, Kim and Kim [47]
show that semi-supervised domain adaptation does not ensure that the
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representations are well-ordered. Rather than creating a compact and
homogeneous mix of the domains, the main domain can encompass
distinct clusters of the target domain and prevent improvements in
target performance [47]. Similarly, we find that the domain classifier
can reach a 50% accuracy by always predicting a single domain.
In the top row of Figure 4, the initial domain performance is split
between the main and auxiliary data sets, with the main accuracy at
100% (Fig. 4b, epoch 1) and the auxiliary performance at 0% (Fig.
4c, epoch 1). Furthermore, the domain performance again collapses
at epoch 4, when the main domain performance is 0% (Fig. 4b,
epoch 4) and the auxiliary domain performance is 100% (Fig. 4c,
epoch 4). When the domain classifier predicts a single domain,
the overall domain accuracy calculated using the validation sets
from both domains reaches ~50%, but incorrectly indicates domain
invariance. In contrast, the model with variance regularization reaches
approximately 95% initial accuracy (Fig. 4d, epoch 2), with similar
domain accuracy for both domains by the end of training (Figs. 4e and
4f, epoch 25). The overall performance of the domain classifier is near
random by the end of training. Additionally, the collapse at epoch 4
is not present, showing that the model with variance regularization
had greater stability.

We expect the changes in domain invariance to appear in ?-
distributed stochastic neighbor embedding (T-SNE) plots as improved
domain invariance. T-SNE plots use distribution matching to create a
lower dimensional representation in which points that are close in the
original distribution remain nearby in the reduced representation [48].
We randomly sample 10 data points from each image in the validation
set using the 16-dimensional bottleneck representation to create the
T-SNE plots. We use the MATLAB’s implementation of T-SNE from
the Statistics and Machine Learning Toolbox. We use the sampling
of points to prevent the visualization from showing local structure
associated with the similarity of data from each lesion rather than
the more global structure associated with differences in the domains
(Kobak and Berens [49] describe the trade-off between local and
global structure visualization in medical data cases where data points
easily cluster by subgroups in the data). The resulting T-SNE plots for
the models trained with and without variance regularization are shown
in Figure 5. Rows 1 and 2 show the T-SNE embedding of the same
points before and after gradient reversal without variance regulariza-
tion and with variance regularization, respectively. In contrast, Figure
5d shows that the model at the end of domain adaptation has the more
distributed T-SNE plots, with the data from both domains mixed
together. Taken together, the T-SNE plots show a two-dimensional
visualization that indicates improved domain invariance following
domain adaptation.

E. Heartbeat Classification

To show the flexibility of our domain adaptation approach, we
apply our method to another computer aided diagnosis problem
using three publicly available arrhythmia databases from PhysioNet
[50]: MITDB, SVDB, and INCART databases. The task is to use
a single-lead electrocardiogram (ECG), as is commonly found in
personal health monitoring devices, and our neural network model to
detect three types of irregular heart beats. The MITDB, SVDB, and
INCART databases are commonly used to evaluate domain adaptation
algorithms [51], [52]. We chose to apply our method to heartbeat
classification due to the similarities in the shape of the model input
(i.e., a time series rather than an entire image such as computed
tomography (CT) or MRI). Like our three biexponential-like FLIM
input, we use three beats as the input to our model and classify the
third beat as normal (N), ventricular ectopic (VEB), supraventricular
ectopic (SVEB), or fusion (F).
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Fig. 5: Visualization of domain invariance using T-SNE plots. (main
domain: x’s. Auxiliary domain: circles). The axes represent the
values of the projected embedding created by T-SNE. Top row: T-
SNE representation of the bottleneck embedding for the Joint, and
Joint + GR models without variance regularization. Bottom row:
T-SNE representation of the bottleneck embedding for the Joint
+ VR and Joint + GR + VR models. Left column: Bottleneck
representation before GR. Right column: Bottleneck representation
after GR. Domain invariance improves during training with variance
regulation.

We use the same set up used for our oral cancer detection task,
with a main domain (the MITDB corpus) and an auxiliary domain
with a domain shift (either SVDB or INCART corpus). We define
the main domain as the MITDB data set, splitting the samples into a
train, validation, and test sets. We use the entire SVDB or INCART
data set as the auxiliary data. We use the same method discussed
in Section III-F for our oral cancer detection system. Since the
input dimension of each heartbeat is 128 and we use three beats,
the total input length is 384. We adjust the size of the autoencoder
to account for the smaller input. Our adjusted encoder layers have
input size 384, 256, 128, and 16 (bottleneck). The encoder and
decoder are symmetric. In addition, we increase the size of the
task classifier output to accommodate all four classes. Table VIII
shows the result. The baseline model is improved by training on two
domains without domain adaptation, indicating that the two datasets
likely show less domain shift than the fluorescence lifetime images.
However, our network with gradient reversal further improves results
on the MITDB test set for N, VEB and F. We note that our method
does not include features such as the pre-RR interval included in other
networks, relying only on features extracted from the bottleneck in
the autoencoder. The pre-RR interval provides the network with a
summary of the patient’s typical heart rate. Exploring a way to add
this information into our network is likely to improve the results.
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TABLE VIII: Classification results on heartbeat classification task,
reported as F1 score. N: normal, VEB: ventricular ectopic beat,
SVEB: supraventricular ectopic beat, F: fusion beat.

Main | Auxiliary | GR | N | VEB | SVEB | F
MITDB - — [ 091 [ 050 [ 0.7 | 0.00
MITDB | SVDB - | 094 ] 085 | 043 | 0.04
MITDB | SVDB v | 095 | 087 | 042 | 006
MITDB - [ 091 [ 030 [ 0.7 | 0.00
MITDB | INCART | - | 092 | 057 | 015 | 0.00
MITDB | INCART | v | 093 | 067 | 0.1 | 004

V. CONCLUSIONS

This study presented a neural network framework for merging
data from multiple maFLIM collection sites using gradient reversal.
This model is valuable for clinical practice because current oral
cancer diagnosis requires a biopsy. Models such as ours will enable
clinicians to immediately and non-invasively diagnose oral cancer.
Our experiments showed that joint training data from two centers
without considering the domain shift decreases classifier performance
on an individual data set. However, on small data sets, gradient
reversal suffers from domain collapse even in the supervised setting.
‘We presented an architecture adjustment and a variance regularization
method to stabilize the training process and successfully merge the
two domains. In future work, we plan to use a similar method to
create a margin delineation classifier (using data from multiple sites)
that can help ensure the margin is fully removed during surgical
resection. Effective margin removal is clinically challenging, but
essential to prevent recurrence.

In addition to oral cancer diagnosis and delineation, our methodol-
ogy can have relevance for the development of data-driven tools for
other medical applications, as a common requirement is the access to
comprehensive health data collected from different institutions, using
diverse instrumentation. For example, our group is also developing a
FLIM dermoscopy system for early detection and margin assessment
of malignant skin lesions [53]. Our methodology can also be applied
in very different medical diagnosis tasks that share a similar data
type. Although arrhythmia detection is a different task than cancer
detection, due to the type of data, we can also apply our method to
heartbeat classification as demonstrated in our evaluation.

In future work, we plan to extend our approach to the semi-
supervised setting, using task labels for the main domain only and
introducing the images from the auxiliary domain as unlabeled data.
Labeling the images is one of the difficult tasks since it involves sur-
gical resection and histopathological diagnosis. Therefore, we expect
that this semi-supervised approach will allow us to leverage more
images. Likewise, we are interested in evaluating domain adaptation
in related problems, where the domain shift can be expected to be
larger. For example, the proposed approach can be useful in detection
of skin and oral lesions. We expect domain shift from differences in
sub-populations and imaging centers, as discussed here, as well as
in the underlying tissue and pathology characteristics. Extension to
domain adaptation for multiple imaging centers and lesion types will
aid the validation of a single robust classifier that can be used by
the same endoscope for multiple applications. In addition, we would
like to explore the generation of domain invariant representations
to new domains unseen during training. Domain adaptation is often
used when two or more domains are used during training. Data from
some domains may be unlabeled, but available during training. The
setting where a model is trained on multiple domains and tested on a
third domain not used in training is called domain generalization. In
our paper, we focus on the domain adaptation problem. The unique
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formulation of our domain adaptation technique is that the auxiliary
data is only used to augment the size of the train set. Unfortunately,
we currently lack a third data set to further test our model in the
domain generalization setting. However, we very recently began
collecting data with an improved version of the imaging system
at multiple locations. We are interested in exploring the domain
generalization problem when we have collected enough data with the
new system. When extending our approach to more than two domains,
we expect regularization strategies (such as those we present) to
become increasingly important. Studies have used domain adaptation
techniques for multi target domains [54]. Therefore, we are confident
that a variation of our approach can be effective in these settings.
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