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Abstract—The externalization of emotion is intrinsically speaker-dependent. A robust emotion recognition system should be
able to compensate for these differences across speakers. A natural approach is to normalize the features before training
the classifiers. However, the normalization scheme should not affect the acoustic differences between emotional classes. This
study presents the iterative feature normalization (IFN) framework, which is an unsupervised front-end, especially designed for
emotion detection. The IFN approach aims to reduce the acoustic differences, between the neutral speech across speakers,
while preserving the inter-emotional variability in expressive speech. This goal is achieved by iteratively detecting neutral speech
for each speaker, and using this subset to estimate the feature normalization parameters. Then, an affine transformation is
applied to both neutral and emotional speech. This process is repeated till the results from the emotion detection system are
consistent between consecutive iterations. The IFN approach is exhaustively evaluated using the IEMOCAP database and a
dataset obtained under free uncontrolled recording conditions with different evaluation configurations. The results show that the
systems trained with the IFN approach achieve better performance than systems trained either without normalization or with
global normalization.

Index Terms—Emotion recognition, speaker normalization, emotion, features normalization.
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1 INTRODUCTION

AUTOMATIC emotion recognition has the potential
to change the way humans interact and com-

municate with machines. Some of the domains that
could be enhanced by adding emotional capabilities
include call centers, games, tutoring systems, am-
bient intelligent environments and health care. The
promising results shown by the early technological
developments in automatic emotion recognition how-
ever have not materialized into significant advances
in real life applications. One of the main barriers
toward detecting the emotional state of a human is the
inherent inter-speaker variability found in emotional
manifestations. It is in this context, we propose a
novel normalization scheme designed to reduce the
speaker variability, while preserving the discrimina-
tion between emotional states.

Data normalization is an important aspect that
needs to be considered for a robust automatic emo-
tion recognition system [1]. The normalization step
should reduce all sources of variability, while pre-
serving the differences between normal and emo-
tionally expressive speech. In particular, it should
compensate for speaker variability. Speech production
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is the result of controlled movements of an individ-
ual’s vocal tract apparatus that include the lungs,
trachea, larynx, pharyngeal cavity, oral cavity, and
nasal cavity. As a result, the properties of speech
are intrinsically speaker-dependent. For example, the
fundamental frequency is physically constrained by
the anatomy of the larynx, which explains some of
the gender differences observed in speech. Likewise, a
robust emotion recognition system should cope with
differences in the recording conditions. The quality
and property of the speech highly depend on the
sensor and technology used to capture and transmit
the speech (e.g., mobile versus landline systems, close-
talking versus far-field environment microphones).
Any mismatch in the recording condition between
the training and testing speech sets will affect the
features extracted from the signals. For instance, it
is well-known that the energy tends to increase with
angry or happy speech [2]. If the energy of the speech
signal is not properly normalized, any difference in
the microphone gain will affect the performance of
the system (e.g., high signal amplitude speech may
be confused with emotional speech).

Most of the current approaches to normalize speech
or speech features are based on gross manipulation
of the speech at utterance or dialog turn level. In
many cases, either speech is not normalized or the
approach is not clearly defined. Given the importance
of the normalization step, the limited progress in this
area is surprising. Some of the approaches that have
been widely used are z-standardization (subtract the
mean and divide by the standard deviation) [3], min-
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max normalization (scaling features between -1 and
1) [4], and subtraction of mean values [1]. All these
manipulations applied across speakers and speech
samples affect the discrimination between emotional
classes. An interesting approach was proposed by
Batliner et al. [5]. For a given lexical unit (i.e., word
or phoneme), the speech features were normalized
by estimating reference values for “average speakers”
learned from a training database. These reference
values were used to scale the duration and energy of
the speech. However, this normalization scheme does
not cope well with inter-speaker variation.

In previous work, we had proposed a speaker-
dependent normalization scheme [6], [7]. The main
idea of the approach is to estimate the linear scaling
parameters for each speaker based only on his/her
neutral speech. Then, the normalization parameters
are applied to all speech samples from that speaker,
including the emotional speech set. Given that the
normalization is an affine transformation, the scal-
ing factors will not affect emotional discrimination
in the speech, since the differences observed in the
features across emotional categories will be preserved.
The rationale behind this normalization is that, while
individuals may express emotions differently, the
patterns observed in their neutral utterances should
be similar across speakers. The assumptions made
in this normalization approach are that the identity
of the subjects is known, and that the labels for
a neutral speech set are available for each speaker.
These assumptions are not realistic in many practical
applications. This paper describes an iterative feature
normalization (IFN) scheme to overcome this issue in
the context of emotion detection [8], [9]. This un-
supervised feature normalization approach extends
the aforementioned ideas by iteratively detecting a
neutral speech subset for each speaker, which is used
to estimate his/her normalization parameters. The
speaker-dependent scaling parameters are then ap-
plied to the entire corpus including expressive speech.
The approach is implemented using z-normalization
of statistics derived from acoustic features. Notice that
the mean and standard deviations are only estimated
from the detected neutral subset.

Although the IFN approach addresses the assump-
tion that neutral speech is available to estimate
the normalization parameters, it still requires the
speaker identity (i.e., speaker-dependent normaliza-
tion scheme). However, our results suggest that the
normalization is not sensitive to errors in the speaker
assignments (automatically determined). The experi-
mental results demonstrate the potential of the pro-
posed approach.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 introduces the
proposed normalization scheme for emotion recogni-
tion. Section 4 describes the database and acoustic
features used in this study. Section 5 presents the

experimental design and results of the proposed nor-
malization scheme. The paper concludes with Section
6, which gives the discussion, future work and final
remarks.

2 BACKGROUND

2.1 Motivation

A variety of acoustic features have been used to
recognize emotions from speech [10], [11]. Features
that are commonly used include the fundamental
frequency, energy, formants, speech rate and voice
quality features. These features are not only affected
by the externalization of emotion, but also by the
speaker and phonetic variabilities. Therefore, a nor-
malization scheme is important to reduce variability
while preserving the emotion-related patterns. This
normalization step is critical for building a robust
speech emotion recognition system.

Let us consider, for example, the fundamental fre-
quency (F0) mean, which is widely used as a feature
for emotion recognition. In fact, our previous analysis
has indicated that the F0 mean is one of the most emo-
tionally prominent aspects of the F0 contour, when
properly normalized [6]. The fundamental frequency
is directly constrained by the structure and size of the
larynx and vocal folds [12]. The F0 contour for men
is in the range 50-250Hz, while for women is higher
(120-500Hz) [12]. Figure 1(a) shows the distribution of
the F0 mean for neutral and angry sentences recorded
from five men and five women (IEMOCAP corpus –
Sec. 4.1). Although angry speech has higher F0 values
than neutral speech [13], speaker variability increases
the confusion between both emotional classes. As
a result, emotional differences are blurred by inter-
speaker differences. Figure 1(b) shows the same dis-
tribution after speaker normalization (see Sec 3). The
overlap between both classes is now reduced. The
shift in the distributions can be directly associated to
emotional variations.

2.2 Related Work

Despite the importance of the feature normaliza-
tion, as illustrated in Section 2.1, few studies have
addressed this problem for emotion detection and
recognition. Various types of normalization schemes
can be implemented according to the target problem.
For example, speaker normalization can be used to
compensate for speaker-dependent variability. How-
ever, this scheme assumes that we know or can
infer the speaker identity. Similarly, a normalization
scheme can be used to compensate for phonetic (lex-
ical) variability. This approach assumes that either
the transcriptions or an automatic speech recognition
(ASR) system is available. For multi-corpora studies,
feature normalization can be designed to compensate
for variability in recording conditions. This approach
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Fig. 1. Speaker versus emotion variability. (a) F0
mean distribution without normalization, (b) F0 mean
distribution with normalization (Sec. 3).

can prove to be useful for the deployment of emotion
recognition system in real applications. This section
discusses some of the most common approaches for
feature normalization. Table 1 summarizes the feature
normalization approaches proposed in previous stud-
ies.

A simple approach that requires no speaker or
phonetic information is to normalize all the available
features regardless of the speaker or lexical content.
A common approach is z-standardization, in which
the features are separately normalized by subtracting
their mean and dividing by their standard deviation
(i.e., zero mean, unit variance). These parameters are
estimated across the entire data [3], [14], [15], [16],
[17]. An alternative normalization method is min-
max normalization, where features are scaled within
a predefined range (e.g., from -1 to 1) [4], [16], [18].

Pao et al. [19] used zero mean normalization for all
features. Another global feature normalization is the
approach described by Yan et al. [20]. They proposed
an exponential transformation to normalize speech
features so that they follow a normal distribution.
They showed that the approach generates features
that improve the performance of emotion classifica-
tion using quadratic discrimination functions (QDFs).

Previous studies have considered speaker-
dependent normalizations. A common approach
is to use z-standardization by computing speaker-
specific means and variances [16], [21], [22], [23],
[24]. The min-max normalization scheme can also
be implemented by considering speaker-specific
transformations [16], [25]. Wollmer et al. [16]
compared these normalization approaches (z-
standardization, min-max and combination of both
techniques), implemented in a speaker-dependent
and speaker-independent manner. Their results
while instructive are not conclusive since the best
normalization performance varies across the adopted
machine learning approaches. Other speaker-specific
normalization approaches include division of speech
energy by its mean [1], [26], and the common cepstral
mean subtraction of Mel frequency cepstral coefficients
(MFCCs) [21], [27]. Sethu et al. [28] have described
another interesting approach. They proposed a
feature warping scheme that maps the initial feature
distribution into a pre-determined distribution (i.e.,
standard normal distribution). They separately warp
the features of each speaker, including his/her neutral
and emotional samples. Their results indicate that
the proposed speaker-dependent feature warping
approach improves emotion recognition performance.

Schuller et al. [24] explored the case when the
training and testing partitions were created from dif-
ferent corpora. For this problem, they normalized the
features by estimating corpus-specific and speaker-
specific z-standardization parameters. A speaker and
lexical dependent normalization approach was pre-
sented by Fu et al. [31]. The scheme uses relative
features that capture the differences of a feature with
respect to a neutral reference. This reference is com-
puted using neutral, speaker-specific and utterance-
specific samples from the database. However, it is not
clear how this approach can be generalized for cases
where the information about speaker, emotion and
lexical content is not available. Mariooryad and Busso
[29] proposed a shape based lexical normalization
scheme that uses the whitening transformation to
compensate for the variability observed across dif-
ferent phonemes. Finally, Zeng et al. have presented
an approach closest to this work [30]. Each feature is
divided by the feature mean, computed per speaker
from held-out samples of neutral speech. These sam-
ples are assumed to be available in advance.

We have shown in our previous work that global
normalization is not always efficient in improving the
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TABLE 1
Summary of feature normalization approaches for speech emotion recognition.

Method References Description

Global Normalization
z-standardization [3], [14], [15],

[16], [17]
mean and variance of each feature is computed using all available data

min-max normalization [4], [16], [18] scaling of all feature values within a predefined range
min-max and z-standardization [16] combination of the above two schemes for all available data
zero mean normalization [19] mean value computed for all available data
exponential transformation [20] use a modified exponential transform so that the transformed features follow a normal distribution

Speaker-dependent normalization
z-standardization [16], [21],

[22], [23], [24]
mean and variance of each feature is computed using speaker-specific data

min-max normalization [16], [25] scaling of speaker-specific feature values within a predefined range
min-max and z-standardization [16] combination of the above two schemes for speaker-specific data
divide energy by energy mean [1], [26] mean value computed per speaker
divide energy by energy peak [27] peak value computed per speaker’s utterance
cepstral mean subtraction [21], [27] performed for spectral features such as MFCCs
feature warping [28] speaker-specific feature warping so that features follow a normal distribution
whitening normalization [29] speaker-specific feature normalization with whitening transformation of a shape-based representation

Speaker and corpus-dependent normalization
z-standardization [24] mean and variance of features are computed using speaker-specific data when many corpora are available

Speaker and emotion-dependent normalization
divide each feature by its mean [6], [30] mean is computed from speaker-specific neutral set which is assumed available in advance

Speaker, text and emotion-dependent normalization
relative features [31] use of relative features which measure change with respect to a reference computed from neutral, speaker-

specific and text-specific data

performance of an emotion recognition system [8]. We
have argued that this type of normalization affects
the discrimination between emotional classes. While
estimating normalization parameters that are depen-
dent on the underlying lexicon, speaker or emotional
classes may give better performance, an unsupervised
approach is needed for practical applications. This
work proposes a robust unsupervised front-end to
normalize the acoustic features for emotion detection.
Although the approach is speaker-dependent, the
evaluation results reveal that the scheme is not sensi-
tive to errors made on the assumed speaker identity.
This novel normalization approach produces higher
accuracies in data obtained from both controlled and
uncontrolled recording settings, as demonstrated in
section 5.

3 METHODOLOGY

3.1 Ideal Feature Normalization

We have previously proposed a speaker-dependent
normalization scheme to compensate for inter-speaker
variability and recording conditions [6], [7]. The main
idea is to reduce the differences observed in neutral
speech across speakers, while preserving the emo-
tional discrimination observed between emotional cat-
egories. This goal is achieved by separately estimating
the normalization parameters for each speaker using
only his/her neutral speech. For each subject, the
estimated normalization parameters are then applied
to his/her entire speech data, including the emotional
set. These normalizations are performed such that
the properties of their neutral speech become similar
across speakers (e.g., first and second order statistics).

If the normalization uses an affine transformation,
the relative differences between neutral and emotional
speech in the feature space will be preserved.

The motivation on this ideal normalization scheme
is given in Figure 2. Figure 2(a) shows a schematic
characterization of emotional clusters in the fea-
ture space for two subjects before normalization.
Emotional classes are overlapped given the intrinsic
speaker dependency. For example, neutral samples
from speaker 1 are mixed with sad samples from
speaker 2. Figure 2(b) describes the approach which
aims to normalize the corpus such that neutral sets
across speakers have similar properties. Figure 2(c)
gives the clustering of the emotional classes in the
feature space after this ideal normalization. Notice
that this normalization approach is general and can
be applied using different transformations (e.g., z-
standardization, min-max normalization and feature
warping). Likewise, it can be applied to other modal-
ities such as facial features. For example, Zeng et
al. [30] proposed to use neutral facial poses to nor-
malize their facial features.

One assumption made in this approach is that neu-
tral speech will be available for each speaker to esti-
mate his/her normalization parameters. There are two
major implications/limitations of this assumption: (i)
the identities of the speakers are known, and (ii)
reference neutral speech is available for each speaker.
For real-life applications, these assumptions are rea-
sonable when the speakers are known, and a few
seconds of their neutral speech can be pre-recorded.
For example, this speaker-dependent normalization
scheme can be used for personalized interfaces with
emotional capabilities designed for mobile devices.
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Fig. 2. Schematic description of ideal feature normalization from neutral speech. (a) emotional classes in feature
space before normalization, (b) corpus is normalized such that neutral portions of the corpus have similar
statistics across speakers, and (c) emotional classes in feature space after normalization.

However, in many applications either the identity of
the speaker is unknown or neutral speech data are not
readily available. In those cases, this normalization
scheme cannot be implemented.

3.2 Iterative Feature Normalization (IFN)

Given the limitations of the ideal feature normaliza-
tion approach, the present paper proposes the iterative
feature normalization (IFN) framework. This scheme
is an unsupervised front-end that overcomes the re-
quirement of having prerecorded neutral sets for the
test speakers. However, we assume that for the train-
ing speakers, neutral speech samples are provided,
which is a reasonable assumption given that classifiers
are built with emotional labels. For each training
speaker the acoustic features are normalized with
respect to the statistics extracted from their neutral
samples (i.e., ideal normalization). Then, inspired by
co-training strategies [32], the IFN approach itera-
tively detects the neutral speech set to estimate the
normalization parameters for the test speaker. The
parameters are then applied to all the samples of
that speaker, including his/her emotional sentences,
preserving the differences between emotional classes.

Figure 3 describes the IFN approach. The follow-
ing procedure is separately implemented for each
speaker in the test data. First, the normalization pa-
rameters are initialized. Then, the speech features
are normalized using an affine transformation, which
can be implemented using various approaches (e.g.
z-standardization, see Sec. 3.3). Then, an emotional
speech detection algorithm is used to discriminate
between neutral and emotional speech (details are
given in Section 3.3). The emotional labels assigned
to the speech files are compared with the emotional
labels from the previous iteration. If the percentage of
emotional labels that are modified during the iteration
is higher than a given threshold, a new iteration is
computed. An alternative stopping criterion is set-
ting a predefined maximum number of iterations.
For each iteration, only the speech samples labeled
as neutral are used to estimate the normalization
parameters. The performance of the emotion detection

system is expected to increase as the error estimation
on the normalization parameters decreases. A better
classification result will produce a better estimation
of the neutral subset to estimate the normalization
parameters.

Notice that the IFN scheme is a speaker-dependent
normalization (i.e., the identity of the speaker is re-
quired). In some applications, it is safe to assume
that only one speaker uses the system at a time (e.g.,
call center application). In other cases, we may be
interested in tracking emotion in multi-person inter-
action (e.g., in smart room environment [33]). In these
applications, the identity of the speakers will need to
be predicted using either supervised or unsupervised
speaker identification. However, the experiments in
Section 5.3 reveal that the IFN approach is not very
sensitive to errors made in identifying the speakers.

Automatic emotion 
speech detection

Emotional speech

Neutral speech

Features 
Normalization

Estimating parameters 
for normalization

Have 
labels changed?

Yes

No

Monday, October 7, 13

Fig. 3. Iterative feature normalization. This unsuper-
vised front-end uses an automatic emotional speech
detector to identify neutral samples, which are used to
estimate the normalization parameters. The process is
iteratively repeated until the labels are not modified any
further (see Sec. 3.2 and 3.3).

3.3 Implementation
The proposed approach in Figure 3 is general and can
be implemented with different affine transformations
and emotion detection systems. In this paper, we im-
plemented the approach with z-standardization and
support vector machine (SVM).

Equation 1 describes the z-standardization ap-
proach. This affine transformation aims to preserve
the first (mean) and second (variance) order statistics
between the sentence level features derived from the
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neutral subsets across speakers. For a given speech
feature from the speaker s, fs, its mean value, µfs

neu,
and standard deviation, σfs

neu, are estimated using only
the neutral samples. Then, the normalized feature f̂s

is estimated as described in Equation 1.

f̂s =
fs − µfs

neu

σfs

neu

(1)

One important component of the proposed ap-
proach is the automatic emotional speech detector
(Fig. 3). Unlike other emotion classification systems
that recognize multiple emotional labels, the goal of
this detection system is to identify neutral speech
with high precision rate. This study uses a linear ker-
nel SVM with sequential minimal optimization (SMO).
Among many hyperplanes, SVM selects the one that
has the largest margin between two classes (i.e., max-
imum margin classifier). We have successfully used
this machine learning framework in paralinguistic
recognition problems such as emotion recognition [9],
[34] and sleepiness detection [35]. The SVM is trained
and tested with the WEKA data mining toolkit [36].
For consistency across the evaluations, we set the
complexity parameter of the classifier to 0.1. This
value provided good performance in preliminary ex-
periments.

An important aspect of the IFN approach is setting
the values of the normalization parameters in the
first iteration (i.e., initialization). These parameters
can be initialized with different approaches. Given
that it is not clear which approach provides better
performance, we evaluate different possibilities. First,
we estimate µfs

neu and σfs

neu using all the training
data (IFNTr). Following the ideas behind the ideal
normalization approach, we also initialize the param-
eters using only the neutral samples of the training
data (IFNTrN ). Likewise, we estimate the initial pa-
rameters with all the test data, including emotional
and neutral samples (IFNTe). Finally, we calculate
the parameters using the neutral samples of the test
data (IFNTeN ). Notice that the IFNTeN setting ini-
tializes the parameters with the ones used for ideal
normalization. This initialization is implemented for
comparison purpose, since it is not suitable for real
applications (the emotional labels are unknown).

4 DATABASE AND ACOUSTIC FEATURES

4.1 IEMOCAP Database
The proposed approach is evaluated with the interac-
tive emotional dyadic motion capture (IEMOCAP) corpus
[37]. Ten trained actors (5 male and 5 female) took part
in five dyadic interactions using scripts and sponta-
neous improvisations, which were carefully selected
to elicit happiness, anger, sadness, and frustration. As
a result of the spontaneous dialog between the sub-
jects, other emotions were also observed. The spon-
taneous interactions between actors elicit expressive

reactions with mixed and ambiguous emotions that
are similar to the ones observed in naturalistic human
interactions (i.e., non-acted data). This is an important
characteristic of this corpus that differentiates it from
other acted databases in which actors are asked to
read sentences portraying a given emotion.

The corpus contains approximately twelve hours
of data, which was manually segmented and tran-
scribed at the turn level. We evaluate the emotional
content of the corpus using perceptual evaluations
by external observers. While it is not clear that per-
ceived emotions match the actual felt emotions [38],
emotional labels derived from subjective evaluations
are commonly accepted as good approximation of the
intended emotion conveyed by the speaker. Each turn
was annotated by three evaluators with the following
categorical labels: anger, sadness, happiness, disgust,
fear, surprise, frustration, excited, neutral and other.
An analysis of the assigned labels reveal fair/ mod-
erate agreement across evaluators – details are given
in Busso et al. [37]. We only consider samples that
reached agreement using majority of votes. Since we
are interested in emotion detection (i.e., neutral versus
emotional speech), we discard emotional samples that
receive neutral labels. We implement this approach to
increase the inter-evaluator agreement, reducing the
ambiguity in the emotional labels.

4.2 Acoustic Features and Feature Selection

The study considers the set of acoustic features pro-
posed for the INTERSPEECH 2011 Speaker State Chal-
lenge [39]. The set includes an exhaustive number
of sentence level features that has been commonly
used for emotion recognition. First, 59 frame-by-frame
features are extracted from each sentence including
prosodic (e.g., energy and F0 contour), spectral (e.g.,
MFCCs, RASTA, spectral flux, and spectral entropy)
and voice quality features (e.g., jitter, shimmer). Ta-
ble 2 lists these low level descriptors (LLDs). Then,
functionals such as mean, maximum, range, kurtosis,
skewness and quartiles are extracted for each of the
frame-by-frame features. Table 3 reports these func-
tionals. Altogether, the set includes 4368 sentence level
features, which are extracted using the openSMILE
toolkit [40].

Given the high dimension of the feature space,
we reduce the set using feature selection. Instead of
using a wrapper method, in which the performance
of a classifier is used as a criterion, we implement
a correlation feature selection (CFS) technique [41]. CFS
aims to identify a feature set that has low correlation
between the selected features, but high correlation
between the features and the emotional labels. We
implement CFS with best first search approach, which
is a greedy hill-climbing search method with back-
tracking capability. Starting from an empty set, the
best first search method sequentially adds feature



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, JUNE 2012 7

TABLE 2
The set of frame-level acoustic features used in this
study. This set is referred to as low level descriptors

(LLDs) in the Interspeech 2011 speaker state
challenge [39].

Spectral Features
Spectral energy 25-650Hz, 1k-4kHz
Spectral roll-off point 0.25, 0.50, 0.75, 0.90
Spectral flux, entropy, variance, skewness, kurtosis, slope

Rasta
RASTA-style filtered auditory spectrum bands 1-26 (0-8kHz)

MFCC
MFCCs 1-12

Energy
Sum of auditory spectrum (loudness)
Sum of RASTA-style filtered auditory spectrum
RMS Energy
Zero-crossing rate

Fundamental frequency (F0)
F0
Probability of voicing

Voice Quality (VQ)
Jitter (local, delta)
Shimmer (local)

TABLE 3
The set of sentence-level functionals extracted from

the LLDs (see Table 2).

33 base functionals
Quartiles 1-3
3 inter-quartile ranges
1% percentile (≈min), 99% percentile (≈max)
Percentile range 1%-99%
Arithmetic mean, standard deviation
Skewness, kurtosis
Mean of peak distances
Standard deviation of peak distances
Mean value of peaks
Mean value of peaks-arithmetic mean
Linear regression slope and quadratic error
Quadratic regression a and b and quadratic error
Contour centroid
Duration signal is below 25% range
Duration signal is above 90% range
Duration signal is rising/falling
Gain of linear prediction (LP)
LP coefficients 1-5

6 F0 functionals
Percentage of non-zero frames
Mean, max, min, standard deviation of segments length
Input duration in seconds

to the current subset and grades the subset using
correlation base criterion. If five consecutive features
do not improve the performance of the feature set, the
feature selection stops. This strategy helps the search
to avoid local maxima. Although a wrapper feature
selection approach may provide a more discriminative
feature set, we select CFS to fix the feature set for all
the experiments. Since this feature selection approach
does not depend on any particular classifier, the re-
ported results are not biased to any condition and
can be directly compared. Notice that feature selection
is conducted after ideal normalization (see Sec 3.1).

Energy
5%F0

6%

VQ
7%

Spectral
30%

MFCC
22%

Rasta
30%

Fig. 4. Distribution of the sentence level features, or
functional, selected by CFS per feature group listed in
Table 2.

For emotion detection, CFS selected 172 features out
of 4368 sentence level features. Figure 4 shows the
distribution of the selected features across the six most
important LLD categories listed in Table 2.

5 EXPERIMENTS AND RESULTS

We have used a preliminary version of the proposed
front-end scheme showing promising results [8], [9],
[42], [43]. For example, the normalization scheme was
part of the framework that was awarded the first
place in the Intoxication Sub-Challenge at Interspeech
2011 [42], [43]. This section provides an extensive
evaluation of the proposed front-end scheme. The
evaluation includes emotion detection problems (Sec.
5.1, neutral versus emotional speech), convergence
analysis (Sec. 5.2), sensitivity analysis against errors
on speaker identity (Sec. 5.3) and performance in
recordings obtained under unconstrained experimen-
tal conditions (Sec. 5.4).

5.1 Emotionally-Expressive Speech Detection
The first experiment consists in evaluating the effect
of the IFN approach in emotion detection problems
– binary classification between neutral and emotional
speech. The sentences with emotional labels are clus-
tered together, forming two classes (neutral versus
emotional). This scheme yields 1125 neutral and 3839
emotional utterances. The evaluation considers clas-
sification (a) without normalization (WN), (b) with
global normalization (GN), (c) with ideal normalization
(IN) (Sec. 3.1), and (d) with the IFN approach (Sec.
3.2). In global normalization, the mean and stan-
dard deviation of the features are estimated across
the entire training or testing data of the speakers
(speaker-independent normalization). Ideal normal-
ization corresponds to the speaker-dependent nor-
malization scheme, estimated from the neutral por-
tions of each speaker (Sec 3.1). For consistency, all
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Fig. 5. Performance of the emotional speech detection
system with different feature normalization condition.
Results are reported in terms of average accuracy
across all the speakers. IN: ideal normalization, GN:
global normalization, WN: without any feature normal-
ization, IFN: iterative feature normalization. Normal-
ization parameters of the IFN approach are initialized
with IFNTr: all the training set, IFNTrN : the neutral
samples of the training set, IFNTe: all the testing set,
IFNTeN : the neutral samples of the testing set.

the experiments are conducted with linear kernel
SVM classifiers trained with SMO. The evaluation
is implemented with leave-one-speaker-out, ten-fold
cross validation approach (i.e., speaker-independent
evaluation). To avoid dealing with unbalanced classes
for the experiments, the emotional utterances are
randomly selected to match the number of neutral
sentences for both training and testing sets (i.e., train-
ing with under-sampling). To make use of the entire
database, this random selection is repeated ten times.
Hence, the results correspond to the average results
achieved across all random selections of the ten folds.

Figure 5 gives the performance of the classifiers
trained with different normalization strategies. The
results are presented in terms of accuracy. With this
metric, the chance level is 50%. The best performance
is achieved with the ideal feature normalization ap-
proach described in Section 3.1. This result confirms
the intuition behind this feature normalization (Fig.
2). The figure shows that global normalization can
also improves the emotion discrimination. However
it is not as effective as the ideal normalization. The
SVM implementation of WEKA provides a prediction
probability per each emotional class. This probability
is used to select the neutral samples for the IFN
parameter estimations. Our preliminary analysis indi-
cated that selecting samples with neutral probability
of 0.3 or higher yields better performance than 0.5.
Notice that this lower threshold increases the number
of samples used to estimate the neutral parameters.

Therefore, it gives a more robust estimation with
lower variance. The accuracies across iterations are
given in Figure 5 for each of the four initialization
approaches described in Section 3.3. Notice that the
first iteration of IFNTeN corresponds to the ideal nor-
malization. However, after the first iteration the errors
in detecting the neutral and emotional labels causes a
deviation from the optimal parameters. Therefore, the
performance decreases for the IFNTeN setting. Ten
iterations are used as the stopping criterion. How-
ever, after few iterations, different initializations of
the IFN converge almost to the same accuracy level.
According to the proportion hypothesis test, the dif-
ferences in performance across different initialization
schemes are not statistically significant after 10 itera-
tions (p − value > 0.46). This is an important finding
since it indicates the stability of the proposed method
regardless of the initial parameter estimation. The IFN
approach improves the performance of the classifiers,
compared to the cases with global normalization and
without normalization. Notice, that the ideal normal-
ization is the upper bound performance of the IFN
approach (case where the emotion detection system
does not have errors). According to the proportion
hypothesis test, the effect of ideal normalization is
statistically significant compared to the cases without
normalization (p − value < 1e − 20) or with global
normalization (p − value < 0.003). Also, the IFN
approach gives statistically significant improvement
over the classifier trained without feature normaliza-
tion (p− value < 0.026)

5.2 Convergence of IFN
Figure 6 shows the number of emotional labels (neu-
tral versus emotional) changed by the emotion detec-
tion system in each iteration of the IFN approach. This
figures shows that after five iterations all instances of
the IFN approach converge, regardless of the initial-
ization process. When the parameters are initialized
with neutral samples (IFNTrN , IFNTeN ), the number
of samples changing labels from emotional to neu-
tral is almost the same as the number of samples
changing from neutral to emotional. However, when
we initialize the parameters with all the samples
(IFNTr, IFNTe), we observe more samples changing
from neutral to emotional classes than from emotional
to neutral classes. During training, the features are
normalized by statistics from neutral samples. How-
ever, the initialization of the normalization parameters
during testing is done with all the samples. Therefore,
the emotion detection systems yield higher number
of false neutral detections. On average, the number
of samples that changed labels after five iterations
is less than 11 samples, which only represents 0.48%
of the data. This criterion can be used as a stopping
threshold.

In each iteration, the IFN tries to improve the esti-
mate of the normalization parameters, converging to
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(a) Labels that change across iteration
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Fig. 6. Number of labels changed in the test data for different iterations of the IFN approach. The normalization
parameters of the IFN method are initialized with IFNTr: all the training set, IFNTrN : the neutral samples of the
training set, IFNTe: all the testing set, and IFNTeN : the neutral samples of the testing set. (a) all samples that
changed labeled, (b) samples changed from emotional to neutral, (c) samples changed from neutral to emotional.

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

IFN Iteration

E
rr

or
 in

 th
e 

es
tim

at
io

n 
of

 th
e 

m
ea

n

 

 
IFN

Tr

IFN
Tr

N

IFN
Te

IFN
Te

N

Fig. 7. Estimation error of the mean in the z-
standardization for different iterations. The normaliza-
tion parameters of the IFN approach are initialized
with IFNTr: all the training set, IFNTrN : the neutral
samples of the training set, IFNTe: all the testing set,
and IFNTeN : the neutral samples of the testing set.

a sub-optimal set of normalization parameters. These
sets are pretty close to the optimal normalization
parameters (i.e., ideal normalization). Figures 7 and
8 show the average absolute errors in the estimation
of µfs

neu and σfs

neu across the entire selected feature set,
with respect to the optimal parameters corresponding
to the ideal normalization. Notice that the features
have different dynamic range. For better visualization,
we have normalized the errors by dividing them by
the corresponding standard deviation of each feature.
This normalization approach has the same effect as us-
ing z-normalization before running the experiments.
Notice that the initial step of IFNTe corresponds to
the ideal normalization, which yields zero estima-
tion errors. In the following iterations, the emotion
detection errors increase the errors of the estimated
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Fig. 8. Estimation error of the standard deviation in
the z-standardization for different iterations. The nor-
malization parameters of the IFN method are initialized
with IFNTr: all the training set, IFNTrN : the neutral
samples of the training set, IFNTe: all the testing set,
and IFNTeN : the neutral samples of the testing set.

parameters. For other initialization settings, the error
decreases during the IFN iterations. These results
indicate the stability of the proposed IFN method.

5.3 Performance with Speaker Identification Error

The proposed IFN approach relies on the speaker
identity given for the test data. We assume that test
samples come from a single speaker. This section
studies the effect of speaker identification errors in
the test set. The data is divided into two sets of
five speakers each. The emotion detection models
are built on one set by using the correct speaker
identity. Then, the data of each of the test speakers
is mixed with the other four test speakers accord-
ing to the target percentage in speaker errors. This
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Fig. 9. Accuracy (%) of the emotion detection system
with errors in speaker identification.

scheme simulates the errors introduced by a speaker
identification system. Notice that the parameters of IN
are estimated with all the neutral samples associated
with each speaker, which may contain neutral samples
of the other speakers as well. Given the differences
in experimental settings, the results of this section
are different from the ones presented in Section 5.1,
even when no error in speaker identity is introduced
(classifiers are trained with only 5 speakers). Similar
to Section 5.1, the training and testing partitions are
randomly balanced. Different error rates in speaker
identification are introduced among the samples in
the testing partition (e.g., 0%, 5%, 10%, 20%, 25%
and 50%). Then, the different normalization schemes
are evaluated under different error rates on speaker
identification.

The reported results correspond to the average
obtained by considering each of the two sets as train-
ing and testing partitions (two-fold cross-validation).
Figure 9 displays the achieved average performance
for each of the normalization schemes. Since the
condition without feature normalization (WN) and
global normalization (GN) perform the classifications
without any assumption on the speaker identity, the
accuracy is constant regardless of the percentage of
speaker identity error parameter. However, the per-
formance of ideal normalization drops when the er-
ror rate of the speaker identity increases. IFN, as a
speaker-dependent front-end, normalizes the feature
space to better match the feature space in the training
data. According to Figure 9, IFN presents robust
performance against speaker identity errors, dropping
the accuracy only when speaker identity error is 50%.
However, it still outperforms the global normalization
setting. This result is important since, if needed, the
accuracy of a speaker identification system does not
need to be perfect for the IFN system to provide
accurate emotion detection results.

5.4 Performance in Uncontrolled Recordings

The proposed normalization approach is finally evalu-
ated on data from realistic recordings in uncontrolled
settings. For this purpose, we downloaded from a
video-sharing website several talks and interviews
given by a recognized celebrity (only the audio is
used in this study). The videos span different ages
of the target individuals (from 15 to 30 years), and
were recorded in different environmental conditions.
They include various undesirable factors such as
background music, background noise and overlapped
speech of multiple speakers (the recordings come
from interviews during TV shows). Dealing with all
these factors is a challenging problem that requires in-
sights from speech enhancement, voice activity detec-
tion, speaker diarization, among other related fields.
Therefore, we manually remove noisy and overlapped
segments to simplify the evaluation of the IFN ap-
proach in naturalistic recordings.

The corpus was split into 5 sec segments, which
were emotionally annotated by six graduate students.
Unlike similar studies that consider emotional di-
mensions such as valence and arousal [44], [45], we
directly asked the evaluators to assess whether the
samples are emotional or neutral. The subjects used
a slider bar to assess each speech segment on a con-
tinuous scale from 0 (neutral) to 1 (emotional). To es-
timate the reliability of the perceptual evaluation, we
estimated the correlation between each evaluator and
the average scores across the other five evaluators.
In average, we observe a correlation of ρ=0.52, which
represents a strong agreement for this task. Notice that
this low level of agreement is commonly observed
across perceptual emotional evaluations. The average
of the scores across evaluators is considered as ground
truth. The assigned scores are skewed toward 0 (neu-
tral samples). This result is expected, since most of
the sentences do not convey emotional information in
natural recordings. To address the unbalanced emo-
tional content of the corpus, the speech segment is
considered as neutral if its average value is lower
than 0.4. Otherwise, it is considered as emotional. This
threshold is similar to the ones used in previous
studies [46], [47]. Altogether, the corpus includes 837
speech files, with more neutral (727) than emotional
(110) samples. We evaluate the IFN approach with
unbalanced and balanced classes in the testing set
(see Fig. 10). Detailed information about this corpus
is given by Rahman and Busso [9].

The uncontrolled recordings are only used for test-
ing the IFN approach. The training of the emotion
detection system is implemented with the IEMOCAP
database. Similar to the experiments presented in
Section 5.1, we select a balanced set of neutral and
emotional sentences for each of the ten speakers in
the IEMOCAP corpus. Then, the SVM-based emotion
detection models are built with this data. Given that
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Fig. 10. Performance of emotion detection methods in uncontrolled recordings for unbalanced and balanced
settings (WN= without normalization,GN= global normalization IFN= iterative feature normalization, and IN=
ideal normalization).

we present results with balanced and unbalanced
classes in the testing partitions, we measure the per-
formance with F-score (F ), in addition to accuracy
(A). Equation 2 gives the formula for F , where R̄
and P̄ are the average recall and average precision of
the two classes, respectively. Notice that we estimate
both the recall and precision rate for the neutral and
emotional classes, separately, and then we take their
corresponding averages. Therefore, F is not sensitive
to the selection of the positive class. A random clas-
sifier gives an F-score of 50% regardless of the prior
distribution of the classes.

F = 2
P̄ R̄

P̄ + R̄
(2)

5.4.1 Evaluation with unbalanced classes

Figures 10(a-b) give the evaluations on the uncon-
trolled recordings when the classes in the testing set
are highly unbalanced (110 versus 727). These figures
give the performance using the same initialization
conditions described in section 5.1. They also provide
the performance of the emotion detection system with
global feature normalization and without feature nor-
malization. According to the proportion hypothesis
test, the F-scores reported in Figure 10(b) are signifi-
cantly higher than 50% (p − value < 1e − 20). Figure
10 shows that when no normalization approach is
used, the emotion detection system cannot cope with
the mismatched condition of training with the IEMO-
CAP corpus and testing with the uncontrolled record-
ings (18.2% accuracy). Similarly, the global normal-
ization does not yield satisfactory performance (55%
accuracy). However, the ideal normalization provides
more robust results. Notice that accuracy of ideal
normalization is more than 19% higher than global
normalization. In spite of the challenging recording
conditions and the highly unbalanced corpus, the
system trained with the IFN approach is also able
to provide results comparable to the ideal normaliza-
tion. These results suggest the potential of the IFN
approach on real-life, non-laboratory data.

5.4.2 Evaluation with balanced classes
We also evaluate the performance of the IFN approach
when the emotional classes are balanced in the test set.
We select the top 111 neutral samples with the lowest
ratings to achieve a fairly balanced set (110 emotional,
111 neutral). Figures 10(c-d) show the accuracy and F-
score achieved by the corresponding emotion detec-
tion systems using the balanced dataset. The figures
show that the IFN approach outperforms global nor-
malization. It also provides better performance than
when no feature normalization is used. The figures
reveal trends consistent with the rest of the evaluation,
highlighting the benefits of using the IFN approach.

6 DISCUSSION AND CONCLUSIONS

This paper presented the iterative feature normalization
(IFN) framework as an unsupervised front-end for
emotion recognition systems. The speaker-dependent
approach iteratively detects emotionally neutral sam-
ples which are used to estimate the normalization
parameters. The normalization is applied to the entire
corpus, including the emotional samples. This nor-
malization reduces the differences in neutral speech
across speakers and recordings, while preserving the
differences between emotional classes in the feature
space. An exhaustive evaluation is conducted to as-
sess the performance of the IFN approach. The results
reveal that the performance of the emotion detec-
tion (neutral versus emotional speech) based on the
IFN framework gives better accuracies than the ones
achieved with classifiers trained without normaliza-
tion or with global normalization. The IFN approach
also improves the accuracy in detecting emotional
speech obtained from real life, unconstrained record-
ings. While the approach is speaker-dependent, the
evaluations reveal that the performance is not very
sensitive to speaker identification errors, which make
it suitable for practical applications.

There are several interesting directions that we
are considering to improve the proposed IFN ap-
proach. First, the current implementation based on z-
standardization corresponds to a simple affine trans-
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formation. We are exploring the benefits of using other
transformations including feature warping. Another
research direction is developing approaches to recog-
nize the identity of the speakers, which is a non trivial
task with emotional speech. We are exploring speaker
clustering strategies that will reduce the impact of
speaker identification errors. We also leave as future
work the evaluation of the IFN approach with over-
lapped speech collected in noisy environments during
multiparty interactions. These challenging conditions
will affect the estimation of the speaker-dependent
normalization parameters. Potential solutions are to
detect overlapped speech, so that these segments can
be discarded, and to apply speech enhancement solu-
tions. Finally, this unsupervised front-end framework
can be coupled with model adaptation strategies.
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