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1 Introduction

With the development of new trends in human-machine interfaces, animated
feature films and video games, better avatars and virtual agents are required
that more accurately mimic how humans communicate and interact. Gestures
and speech are jointly used to express intended messages. The tone and energy
of the speech, facial expression, rigid head motion and hand motion combine
in a non-trivial manner as they unfold in natural human interaction. Given
that the use of large motion capture datasets is expensive and can only be
applied in planned scenarios, new automatic approaches are required to syn-
thesize realistic animation that capture and resemble the complex relationship
between these communicative channels. One useful and practical approach is
the use of acoustic features to generate gestures, exploiting the link between
gestures and speech.

Since the shape of the lips is determined by the underlying articulation,
acoustic features have been used to generate visual visemes that match the
spoken sentences [4, 5, 12, 17]. Likewise, acoustic features have been used to
synthesize facial expressions [11, 30], exploiting the fact that the same muscles
used for articulation also affect the shape of the face [44, 46]. One important
gesture that has received less attention than other aspects in facial animations
is rigid head motion.

Head motion is important not only to acknowledge active listening or re-
place verbal information (e.g. “nod”), but also for many aspect of human

1 This is a preprint of a book chapter to appear at “Data-Driven 3D Facial
Animation”, Zhigang Deng and Ulrich Neumann, Springer-Verlag Press, 2007,
(in print). http://www.springer.com/west/home?SGWID=4-102-22-173735422-
0&changeHeader=true&SHORTCUT=www.springer.com/978-1-84628-906-4
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communication (for details see [26]). Graf et al. suggested that rigid head mo-
tion is used to segment the linguistic units of spoken content, since the timing
between the prosodic structure and head motion are consistent [23]. Head mo-
tion also improves acoustic perception, as noted by Munhall et al. [36]. They
also suggested that head motion helps to distinguish between interrogative
and declarative statements. Hill and Johnston show that head motion is used
to recognize speaker identity [27]. Moreover, Jefferies et al. suggest that head
motion influences the perception of the personality of the animated character.
Similarly, our previous work indicates that head motion affects the emotional
perception of facial animations [6].

Given the importance of head motion in human-human interaction, this
non-verbal channel needs to be properly modeled for realistic facial anima-
tion. Kuratate et al. have estimated the correlation levels between prosodic
and head motion features [32]. Based on the high correlation levels achieved
(r = 0.8), they concluded that the production of speech and head motion
are internally linked. Even though head motion patterns depend on many
other factors such as the underlying semantic content and the personality of
the subjects, these results suggest that speech can be used to generate head
motion sequences.

In this chapter, the relationship between rigid head motion and prosodic
speech is analyzed, in terms of emotional categories (neutral state, sadness,
happiness and anger). The results show that head motion and prosodic speech
are strongly connected. However, the relationship varies from emotion to emo-
tion, suggesting that emotional models need to be built to generate realistic
head motion sequences. Based on this study, a novel approach to synthesize
head motion sequences from prosodic speech is presented. In this framework,
head poses are quantized in a finite number of clusters or codebooks. For each
of these codebooks, a Hidden Markov Model (HMM) is built, taking prosodic
features as observations. In the synthesis step, the acoustic features of the test
speech are entered in the HMMs and the most likely head motion sequences
are generated. Smoothing techniques based on first order Markov models fol-
lowed by spherical cubic interpolation are used to ensure continuous head
motion sequences. To include emotional patterns in the generated sequences,
different sets of HMMs are built for each emotional category. Evaluations
of this framework reveal that the generated sequences follow the temporal
dynamics of speech well. Moreover, the generated sequences were judged by
human raters at the same level of naturalness as the captured head motion
sequences. Previous versions of this framework were published in [6, 7].

This chapter is organized as follows: Section 2 presents previous work on
head motion synthesis. It also motivates the importance of modeling emo-
tion for engaging animated characters. Section 3 describes the audio-visual
database and the procedure used to extract the audio-visual features. In Sec-
tion 4, the relationship between head motion and prosodic features is analyzed
in terms of emotional categories. Section 5 describes the framework used to
synthesize head motion sequences. Section 6 presents the objective and sub-
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jective evaluations of this approach. Finally, Section 7 gives the concluding
remarks and our future research directions.

2 Related work

2.1 Head motion synthesis

Different approaches have been used to synthesize head motion sequences,
given the relationship between head motion and the verbal message. For in-
stance, plain text enriched with manual annotations of discourse functions
were used to synthesize well-known head motion gestures such as head ”tilt”
and “nod”. De Carlo et al. present a coding-based platform for real-time fa-
cial animation that supports head motion rotation and translation [14]. The
movements of the head were driven by manual annotations of specific head
motion gestures co-occurring with prominent words in the text. Pelachaud
et al. propose a rule-based system to synthesize head movement from text
responding to discourse function (e.g. conversational signal and punctuators)
[37]. If the emotion of the animation were specified, the velocity and the global
pose of the head motion were modified according to pre-defined rules (e.g. for
sadness, the global pose was set with downward direction). Similar rule-based
systems are presented in [10, 43].

Instead of using text, other approaches have been proposed to exploit the
prosodic structure of the acoustic signal. The prominence in speech prosody
is closely related to head motion [10, 24, 32]. Therefore, it can be used to
estimate head motion sequences. Albrecht et al. propose the generation of
head movements based on the pitch contour [1]. If the difference between two
maxima of the pitch exceeded a threshold, the head was raised. If the differ-
ence between two minima exceeded a given threshold, the head was lowered.
The amplitude of the upward and downward movements was proportional to
the magnitude of the differences. Random movements in the horizontal and
vertical axes were added to prevent repetitive movements.

Graf et al. analyze the relationship between head motion and the prosodic
structure in the speech [23]. They define few primitives to describe head mo-
tion (e.g. “nod”) that were consistently observed across speakers. The co-
occurrence between these primitives and prosodic events, which were labeled
using the Tones and Break Indices (ToBI) scheme, are used to estimate the
conditional probability of major head movement given pitch accents. A sim-
ilar approach is presented by Sargin et al. , in which specific head motion
sequences for “nod” and ’tilt” are generated when pitch accent is detected
[40]. Unfortunately, these approaches only generate limited head motion ges-
tures, which do not reflect the wide range of head motion patterns displayed
during human-human interaction.

Chuang and Bregler present a data-driven approach to synthesize head
motion sequences [11]. In this approach, the head motion and pitch contour
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corresponding to segments in the training data were recorded. The prosodic
structure of each new speech signal is compared with the ones in the database
with similar emotional content. After selecting the top M matches for each
segment in that sentence, a dynamic programming algorithm was used to
find the optimum path of the head motion sequences. The cost function was
designed to achieve smooth transitions between segments. Deng et al. devel-
oped a similar head motion synthesis technique [16]. In addition to searching
the M best matches between the novel speech material and the ones in the
database, they proposed the inclusion of optional key framing controls. With
this extension, the designers were able to incorporate specific rigid head ges-
tures in the animation, such as “head nod”. Then, a dynamic programming
algorithm maximized the optimum path between the head motions segments,
constrained by the specified key head poses. One advantage of these two stud-
ies is that the head motion sequences are not restricted to a few prototype
rigid head gestures.

In the proposed framework, the focus is on modeling the temporal relation-
ship between head motion and prosodic features. HMMs are used to estimate
discrete representation of head poses from prosodic features. As shown in
Section 6, the resulting head motion sequences preserve the temporal relation
between head motion and speech. More importantly, in the context of facial
animation, human evaluators perceived them as natural as the captured head
motion sequences.

2.2 Emotion in facial animation

For engaging talking avatars, special attention needs to be given to include
emotional capability in the virtual characters. Importantly, Picard has un-
derscored that emotions play a crucial rule in rational decision making, in
perception and in human interaction [38]. In fact, Gratch and Marsella have
proposed the use of emotions as a crucial component in the decision-making
model of human-like characters [25]. Therefore, applications such as virtual
teachers, animated films and new human-machine interfaces can be signifi-
cantly improved by designing control mechanisms to animate the character to
properly convey and react according to the desired emotion. Human beings
are especially good not only at inferring the affective state of other people,
even when emotional clues are subtly expressed, but also in recognizing non-
genuine gestures, which challenges the designs of these control systems.

The production mechanisms of gestures and speech are internally linked in
the brain. Cassell et al. mention that these mechanisms are not only strongly
connected, but also systematically synchronized in different scales (phonemes-
words-phases-sentences) [10]. They suggest that hand gestures, facial expres-
sions, head motion, and eye gaze occur at the same time as speech, and con-
vey information similar to that in the acoustic signal. Similar observations
are mentioned by Kettebekov et al. [31]. They studied deictic hand gestures
(e.g. pointing) and speech prosody in the context of gesture recognition. They
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concluded that there is a multimodal coarticulation of gestures and speech,
which are loosely coupled.

From an emotional expression point of view in communication, it has been
observed that human beings jointly modify gestures and speech to express
emotions. Communicative channels such as facial expressions [21, 22], head
motion [6, 37], pitch [13, 41] and short time spectral envelope [47] all present
specific patterns under emotional states. Therefore, a more complete human-
computer interaction system should include details of the emotional modula-
tion of gestures and speech.

In sum, all these findings suggest that the control system to animate virtual
human-like characters needs to be closely related and synchronized with the
information provided by the acoustic signal. In addition, these control systems
need to model the emotional content that the animated character is supposed
to convey. This chapter proposes the use of emotion-dependent models driven
by prosodic features to synthesize realistic head motion sequences.

3 Audio-visual database

The audio-visual database was recorded from an actress who was asked to read
a semantically-neutral, custom-made, phoneme-balanced corpus four times,
expressing different emotions: neutral state, sadness, happiness and anger,
at each reading. Facial markers were attached to her face according to the
layout illustrated in Fig. 1. The markers were tracked with a VICON motion
capture system with three cameras at a sampling rate of 120 frames per second
(right of Fig. 1). Her speech was simultaneously recorded with a close talking
SHURE microphone at 48Khz. In total, 640 sentences were used in this work.
Notice that the actress was instructed to act naturally without any specific
instructions about how to move her head.

After the data were collected, the markers’ positions were translated to
make the lower nose marker the center of the coordinate system. After that,
the three degrees of head rotation were estimated using a technique based
on Singular Value Decomposition (SVD) [2]. In this technique, a reference
frame was selected from a neutral pose. The 3D position of the markers were
arranged as a 102 × 3 matrix, referred here on as Mref . Each of its rows
contains the x, y and z location of the markers. Then, for frame t, a matrix
Mt is created following the same order as in Mref . Then the SVD, UDV T ,
of the matrix Mt · Mref is calculated. The product V UT gave the rotation
matrix for frame t.

MT
ref ·Mt = UDV T (1)

Rt = V UT (2)

Finally, head motion is modeled as the 3D Euler angles, xt, corresponding
to head rotation, which are derived from Rt (Fig. 2). Notice that head motion
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Fig. 1. Audio-visual database. The left figure shows the layour of the 102 facial
markers, and the right figure shows the motion capture system.

is usually parameterized with 6 degrees of freedom (DOF), corresponding to
rotation (3 DOF) and translation (3 DOF) [16, 45]. As discussed in Section
5, the proposed framework requires discrete head poses, which are estimated
using vector quantization. For a constant quantization error, the number of
clusters significantly increases if 6 DOF are considered instead of 3 DOF.
Fortunately, from a practical point of view, most applications require close-
view of the face, in which translation effects are less important than rotation
effects.

Fig. 2. Head motion parameterization.
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The acoustic features were extracted using the Praat speech processing
software [3]. The analysis window was set to 25 milliseconds with an overlap
of 8.3 milliseconds, producing 60 frames per second. The pitch (F0) and the
RMS energy were estimated. The pitch was smoothed to remove any spurious
spikes, and interpolated to avoid zeros in the unvoiced region of the speech,
using the corresponding options provided by the Praat software. The first and
second derivatives of these features were also considered, since they provided
useful temporal information. In sum, a 6D feature vector was used. Notice
that prosodic features predominantly describe the source of the speech rather
than the vocal tract. Therefore, this head motion framework is independent of
the specific lexical content of the sentence, reducing the size of the database
needed to train the models.

4 Analysis of head motion during expressive speech

In this section, a brief analysis of the relationship between head motion and
prosodic features in terms of emotional categories is studied. For this purpose,
the database was split into emotional categories, and different statistical mea-
sures were computed. The main goal of this study is to quantify differences in
the head motion patterns displayed under expressive utterances.

Table 1. Statistics of head rotation [6].

Neu Sad Hap Ang

Canonical correlation Analysis
0.74 0.74 0.71 0.69

Motion Coefficient [◦]
α 3.32 4.76 6.41 5.56
β 0.88 3.23 2.60 3.67
γ 0.81 2.20 2.32 2.69

Range [◦]
α 9.54 13.71 17.74 16.05
β 2.31 8.29 6.14 9.06
γ 2.27 6.52 6.67 8.21

Velocity Magnitude [◦/sample]
Mean .08 0.11 0.15 0.18
Std .07 0.10 0.13 0.15

To measure the relationship between head motion and prosodic features,
Canonical Correlation Analysis (CCA) [28] was applied to the data. CCA
provides a scale-invariant optimal linear framework to measure the correla-
tion between two streams of data with equal or different dimensionality. In
this method, the feature vectors are projected into a common space in which
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Pearson’s correlation can be measured. Table 1 shows the average first or-
der canonical correlation between head motion and speech. The results show
correlation levels higher than r = 0.69 across emotional categories. This re-
sult agrees with the observation made in [32], about the close relation between
head motion and prosodic features. Notice, however, that the correlation levels
vary from emotion to emotion [8]. A one-way analysis of variance (ANOVA)
evaluation indicates that there are significant differences between emotional
categories (F[3,640], p = 0.0013). In fact, multiple comparison tests reveal
that the average CCA of neutral head motion sequences is different from the
average CCA of sadness (p = 0.001) and anger (p = 0.001).

To measure the level of head movement activity, a motion coefficient, Ψ , is
defined as the standard deviation of the sentence-level mean-removed signal,

Ψ =

√√√√ 1
N · T

N∑
u=1

T∑
t=1

(xu
t − µu)2 (3)

where T is the number of frames, N is the number of utterances, and µu is the
mean of the sentence u. The average results of this motion coefficient when
applied to head motion features are presented in Table 1. The results indicate
that head motion activity during emotional utterances is significantly higher
than in neutral utterances. Happiness and anger present the highest levels of
head motion activity. As an aside, it is interesting to notice that similar trends
were also observed in the articulatory domain for tongue and jaw movement
[33].

Table 1 also gives the average range and velocity of expressive head motion
patterns. These results indicate that during emotional utterances the head
moves over a wider range than in the neutral case. Likewise, for happiness
and anger the head motion velocity increase more than 90%, compared to
the neutral case. These results, which agree with previous work [37], indicate
that the temporal dynamics of head motion during neutral speech presents
important differences compared to the patterns displayed during emotional
speech.

A discriminant analysis was applied to the data, to infer how distinct the
head motion patterns are under different emotional categories. The mean,
standard deviation, range, maximum and minimum of the head motion fea-
tures computed at the sentence-level were used as features. Fisher classifi-
cation was implemented with leave-one-out cross validation method. Table 2
shows the results. On average, the recognition rate was 65.5% using only head
motion features. Notice that the emotional class with the lowest performance
(anger) is correctly classified with accuracy higher than 50% (chance is 25%).
These results suggest that there are distinguishable emotional characteristics
in rigid head motion. Also, the high recognition rate of neutral state implies
that global patterns of head motion in normal speech are completely different
from the patterns displayed under an emotional state.
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Table 2. Emotional discriminant analysis of head rotation [6].

Neu Sad Hap Ang

Neu 0.92 0.02 0.04 0.02
Sad 0.15 0.61 0.11 0.13
Hap 0.14 0.09 0.59 0.18
Ang 0.14 0.11 0.25 0.50

Previous work has shown than prosodic features are also affected by emo-
tional modulation [13, 41]. As a result, it is not surprising that the relationship
between head motion and prosodic features is emotion-dependent.

These results agree with our previous work, which indicates that head
motion is one of the facial gestures that is less constrained by articulatory
processes [9]. As a result, it can be used with less restriction to express other
non-linguistic messages, such as emotions. Therefore, emotion-dependent head
motion models are needed for human-like expressive facial animation. Further
details on the analysis can be found in [6, 8, 9].

5 Head motion framework

As discussed in the previous section, head motion and prosodic features are
closely related across time. Hidden Markov Model (HMM) is a statistical time-
series framework that has been used to model similar data. Accordingly, we
propose to generate head motion sequences using HMMs. Instead of estimating
a mapping function [23], designing rules according to specific comunicative
functions [10, 37, 43], or finding similar samples in the training data [11, 16],
we model the problem as classification of discrete representations of head
motion using acoustic prosody as feature. That is to say, the relationship
between head motion and prosodic features is directly learned from data,
without specifying the high-level functions in the speech. We will discuss this
point further in Section 7.

Since an HMM will be built for each head pose, a discrete represen-
tation of head motion is needed. This representation is obtained by using
the Linde-Buzo-Gray Vector Quantization (LBG-VQ) technique [34]. The 3D
space spanned by the head motion features is split in K Voronoi cells. For cell
Vi with i ∈ {1, . . . ,K}, the mean, Ui, and covariance matrix Σi of the points
inside the cluster are estimated (Fig. 3). In the quantization step, the con-
tinuous Euler angles of each frame are approximated with the closest vector
code in the codebook.

For each of the head pose cluster (Vi), an HMM is built to generate the
most likely head motion sequence, given the observation O, which corresponds
to the prosodic features. Therefore, the number of models that will be built
is given by the number of clusters (K) used to represent the head poses. The
HTK toolkit is used to build these HMMs [48].
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Fig. 3. 2D projection of the Voronoi regions using 16-size vector quantization.

To guarantee a continuous head motion sequence without breaks, two
smoothing constraints are imposed. The first smoothing technique takes place
in the decoding step of the HMMs. In this approach, transition between head
motion cluster are constrained according to their appearance in the training
data. The second smoothing constraint is imposed as a post-processing step,
by using spherical cubic interpolation. Further details of these smoothing tech-
niques are given in Sections 5.1 and 5.2, respectively.

As discussed in Section 4, the relationship between head motion and
prosodic features depends on the emotional content of the utterance. If human-
like facial animations are required, the specific emotional patterns of the ges-
tures, in this case head motion, need to be appropriately designed. In this
proposed approach, the relationship between head motion and prosodic fea-
tures is learned in terms of emotional categories. The data is split according
to the emotional labels, and emotion-dependent HMMs are separately built.
Therefore, the specific emotional patterns are directly included in the models.

5.1 Learning head motions

To synthesize human-like head motion, our technique searches for the se-
quences of discrete head poses that maximize the posterior probability of the
cluster models V = (V t

i1
, V t+1

i2
, . . .), given the observations O = (ot, ot+1, . . .).

arg max
i1,i2,...

P (V t
i1 , V

t+1
i2

, . . . |O) (4)

Instead of directly modeling this posterior probability, the problem
is solved by training the prior probability, P (O), and the likelihood,
P (O|V t

i1
, V t+1

i2
, . . .), by making use of Bayes’ rule:

P (V |O) =
P (O|V ) · P (V )

P (O)
(5)
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The likelihood distribution, P (O|V ), models how well the head motion
models fit the data. Here, it is modeled as a first order Markov process with
S states. Therefore, the probability description at time t includes only the
current and the previous states, which significantly simplifies the problem.
In each of the states, the distribution of the observations are modeled with
a Mixture of M Gaussians. As noted in [6, 7], the mapping between head
motion and prosodic features is many-to-many. By using Mixture of Gaussians
to model the distribution of the observations, this ambiguous relationship
is included in the models. Under this formulation, building the likelihood
distribution of head motion sequences is reduced to learning the parameters
of standard HMMs. For this training problem, well-known techniques such
as forward-backward and Baum-Welch re-estimation algorithms are used. For
more information about HMM, the readers are referred to [39, 48].

The prior probability, P (V ), in Equation 5 plays an important role in this
framework. It models the transition probability between head motion clus-
ters based only on prior information. Here, P (V ) is used as a first smoothing
technique to guarantee valid transitions between the discrete head poses. Sim-
ilar to bi-gram models used for language models [48], this prior probability is
modeled as a first-order state machine. The transitions between clusters are
learned by counting their relative frequency in the training data. In the de-
coding step of the HMMs, this prior information is used to reward or penalize
transitions that are frequently or seldom observed in the database, respec-
tively. According to the analysis presented in Section 4, head motion dynam-
ics are also affected by the underlying emotion of the subject. Therefore, this
prior probability is separately learned from each emotional category.

P(O) does not depend on the head motion models and is a constant in
Equation 4. Therefore it can be ignored in this framework.

Notice that in the training procedure the segmentation of the acoustic
signal is obtained from the vector quantization of the head motion space.
Therefore, the HMMs were initialized with this known segmentation, avoid-
ing the use of forced alignment, as it is usually done in automatic speech
recognition to align phonemes with the speech features.

5.2 Head motion synthesis

Figure 4 describes the proposed framework to generate human-like head mo-
tion sequences. After the HMMs are trained, the prosodic features described
in Section 3 are extracted from the acoustic signal of the test database. This
feature vector is used as an observation of the HMMs, which generates the
most likely sequences of head poses codebooks, V̂ = (V̂ t

i1
, V̂ t+1

i2
. . .), according

to Equation 5. After the sequence V̂ is generated, the means of the clus-
ters are used to form a 3D sequence, Ŷ = (U t

i1
, U t+1

i2
. . .), which is the first

approximation of the head motion.
The next step in this approach is to blur the sequence Ŷ with additive

colored noise (Equation 6). The purpose of this step is to compensate for
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Fig. 4. Emotion-dependent head motion synthesis framework.

the quantization error yielded during vector quantization. Hence, the noise is
added such that the covariance of the noise matches the covariance matrix
associated with the codebooks (Σ). Therefore, the power of the noise is dis-
tributed in proportion of the quantization error. The parameter λ is included
in Equation 6 to attenuate, if desired, the noise level used to blur the sequence
Ŷ (e.g. λ = 0.7). Notice that this is an optional step that can be ignored by
setting λ equal to one, if no attenuation is desired, or to zero if no noise is
desired. The solid blue line in Fig. 5 shows an example of the noisy version of
the head motion sequences, Ẑ.

Ẑt
i = Ŷ t

i + λ ·W (Σi) (6)

As can be observed from Fig. 5, the noisy version of the head motion
sequence (Ẑ) presents a break in the cluster transitions. This problem is ob-
served even when the number of codebooks or the noise level is increased (K).
To avoid these discontinuities, a second smoothing technique is applied to the
sequence. If a standard cubic interpolation is separately applied to each of
the Euler’s angles, it is well known that the resulting sequence may present
jerky movements and undesired effects such as Gimbl lock [42]. Instead, the
proposed smoothing technique is based on spherical cubic interpolation [20].
With this technique, the 3D Euler angles are jointly interpolated in the unit
sphere by using quaternion representation, avoiding the artifact mentioned
before.

In the interpolation step, the sequence Ẑ is downsampled to 6 points per
second to obtain equidistant frames. These frames are referred, from here on,
as key-points and are marked in Figure 5 as a black circle. These 3D Euler an-
gle points are then transformed into the quaternion representation [20]. Spher-
ical cubic interpolation (squad) is then applied over these quaternion points.
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The squad function builds upon the spherical linear interpolation (slerp). The
functions slerp and squad are defined by equations 7 and 8, respectively:

slerp(q1, q2, µ) = sin(1−µ)θ
sin θ q1 + sin µθ

sin θ q2 (7)
squad(q1, q2, q3, q4, µ) = slerp(slerp(q1, q4, µ), slerp(q2, q3, µ), 2µ(1− µ))(8)

where qi (with i ∈ {1, . . . , 4}) are quaternions, cosθ = q1 · q2 and µ is a
parameter that ranges between 0 and 1 and determines the frame position of
the interpolated quaternions. With these equations, the head motion sequence
is interpolated in the unit sphere by varying the parameter µ to recover the
original sample rate (120 frames per second). The last step in this smoothing
technique is to transform the interpolated quaternions into an Euler angle
representation.
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Fig. 5. Example of a synthesized head motion sequence. The solid blue line rep-
resents the 3D noisy signal Ẑ from equation 6. The circles are the key points used
for spherical cubic interpolation. The dashed red line is the smoothed head motion
sequences used in the animation (X̂).

Notice that the noise is added before the spherical cubit interpolation
technique is applied. Therefore, the resulting head motion sequence, referred
by X̂, is a continuous and smooth 3D signal without the jerky behavior of
noise. An example of this sequence is illustrated in Fig. 5 as dashed red line.

The final step in this framework is to include the head motion sequence
X̂ in the facial animation. Here, a blend shape face model composed of 46
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blend shapes is used, which is modeled and rendered using Maya [35]. The
head motion sequence X̂ is directly applied to the angle control parameters
of the face model. For realistic human-like expressive animation, other facial
components such as expressive visual speech and eye motion are also modeled
and synthesized. The details of those approaches can be found in [15, 17–19].

Figure 6 shows frames of the synthesized sequences for each of the four
emotional categories considered here.

(a) Neutral state (b) Sadness (c) happiness (d) anger

Fig. 6. Frames from synthesized sequences. Each column corresponds to a specific
emotional category.

5.3 Parameter configuration of the models

An important parameter in this framework is the HMM topology, which is
defined by the number and interconnection of the states. The most common
topologies are the left-to-right topology (LR), in which only transitions in for-
ward direction between adjacent states are allowed, and the ergodic topology
(EG), in which the states are fully connected. In the LR topology, fewer pa-
rameters are required. Therefore, less data is needed to train its parameters.
The EG topology is less restricted, so it can learn the state transitions from the
database. However, more parameters are needed to learn the models, which
increase the requirement on the size of training data.

In this particular problem, it is not clear which HMM topology provides
the best description of the head motion dynamics. In our previous work, differ-
ent generic HMM configurations were evaluated. By generic models, we mean
emotion-independent HMMs that were learned without considering the emo-
tional category of the sentences (the entire database was used for training).
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The Left-to-Right HMM, with 3 states (S) and 2 mixtures (M) achieved the
best result. Notice that if the database were big enough, an ergodic topology
with more states and mixtures could perhaps give better results.

When emotional models are used instead of generic models, the train-
ing data is even smaller, since the emotion-dependent models are separately
trained. Therefore, the HMMs used in the experiments were implemented
using a LR topology with 2 states (S = 2) and 2 mixtures (M = 2).

Another important parameter of this model is the number of clusters (K)
used to create the discrete representation of head motion, which is directly
related with the number of HMMs that is to be built. If K increases, the quan-
tization error of the discrete representation of head poses decreases. However,
the discrimination between models will significantly decrease and more train-
ing data will be needed. Therefore, there is a tradeoff between the quantization
error and the inter-cluster discrimination. As shown in [6, 7], a 16 word code-
book was adequate to synthesize realistic facial animation. In the experiments
reported here, K was also set to 16.

The audio-visual database mentioned in Section 3 was randomly split in
training (80%) and testing data (20%).

6 Head motion evaluation

The head motion sequence framework presented here was objectively and
subjectively evaluated. This section presents the main results.

6.1 Objective evaluation

The first order canonical correlation between the original and synthesized
head motion sequences was computed to analyze whether this framework is
able to capture the temporal relationship between head motion and prosodic
features. The average results are presented, separately for each emotional
category, in Table 3. The results show that the sequences generated with
prosodic features are highly correlated with the original captured sequences.
This suggests that this framework appropriately models the temporal behavior
of head motion sequences. Notice that the first order correlation between head
motion and prosodic features was about r ≈ 0.72 (Table 1). Interestingly, the
first order canonical correlation between the original and synthesized head
motion sequences was over r > 0.85. Even though prosodic features do not
provide all the information needed to synthesize head motion sequences, this
result indicates that the performance of the proposed system is notably high.

6.2 Subjective evaluation

For subjective assessments of this framework, 17 human subjects were asked
to rate the naturalness of videos with facial animation rendered with the
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Table 3. Canonical Correlation Analysis between original and synthesized head
motion sequences [6].

Neutral Sadness Happiness Anger

Mean 0.86 0.88 0.89 0.91
Std 0.12 0.11 0.08 0.08

synthesized and original head motion sequences. Likewise, they were also asked
to rate the naturalness of the animation without head motion (rigid head), to
study how important head motion is for realistic facial animation. In total, one
video per each emotional category was presented to the evaluators, resulting
in 12 videos: 4 emotions × 3 modalities (synthesized, original and rigid).
Although the facial animations included other facial gestures such as lips and
eyes, the only gesture that was modified was head motion.

The animations were presented in random order. The naturalness of the
animation was rated using a five-point scale. The extremes were called robot-
like (value 1), and human-like (value 5). The evaluators received instructions
to rate their overall impression of the animation and not individual aspects
such as head movements, or voice quality. The subjects were not made aware
that head motion was the component of the facial animation that was under
assessment.

Table 4. Naturalness assessment of rigid head motion sequences [1-robot-like, 5-
human-like] [6].

Head Motion Data Neutral Sadness Happiness Anger

Mean Std Mean Std Mean Std Mean Std

Original 3.76 0.90 3.76 0.83 3.71 0.99 3.00 1.00
Synthesized 4.00 0.79 3.12 1.17 3.82 1.13 3.71 1.05
Fixed Head 3.00 1.06 2.76 1.25 3.35 0.93 3.29 1.45

Table 4 presents the results for the subjective assessment. With the ex-
ception of sadness, the synthesized sequences were judged to be more natural
than the animation with the original head motion sequences. This result in-
dicates that the head motion synthesis approach presented here was able to
generate realistic human-like head motion sequences. One aspect that sig-
nificantly improves the naturalness perception of the facial animation is the
synchronism between the prosodic structure of the speech and the head mo-
tion. Prominence in the speech was systematically accompanied with head
motion gestures, which indicates that this framework was able to model the
non-trivial relationship between head motion and speech.

Table 4 also shows how the listeners assessed the naturalness of the fa-
cial animation without head motion. These results show that the naturalness
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perception significantly decreases when head motion is not included in the
facial animation. This implies that head motion is an important component
for human-like facial animations that needs to be appropriately modeled for
engaging animated characters.

The inter-evaluator average variance in the scores rated by human subjects
was 0.97. This result indicates that the concept of naturalness of the animation
is perceived slightly differently between the evaluators. However, since we are
interested in the mean differences of each group, this variability does not bias
these results.

7 Discussion and Conclusions

Head motion is an important component in interpersonal human interactions.
Therefore, this gesture needs to be properly modeled and included in realistic
human-like facial animations. The subjective evaluations presented in this
chapter support this observation, since the naturalness perception significantly
decreases when the animations were rendered without head motion.

As analyzed in this chapter, the head motion patterns displayed under ex-
pressive utterances vary across emotional categories. For instance, the range
and velocity of the head present higher values for happiness, anger and sad-
ness, compared with the values for neutral utterances. In fact, the results
reveal that head motion can be used to discriminate between emotional cat-
egories. Since prosodic features are also affected by the affective state of
the subject, the relationship between head motion and prosodic features is
emotion-dependent. This observation is supported by the canonical correla-
tion analysis, which indicates that the correlation levels between head motion
and prosodic features are significantly different across emotional categories.
Furthermore, our previous work indicates that head motion influences the
emotional perception of facial animations [6]. As results, emotion-depend head
motion models need to be designed for human-like facial animation.

Based on previous observations, a novel data-driven framework to synthe-
size head motion sequences based on prosodic features was presented. In this
technique, discrete representations of head poses, estimated with vector quan-
tization, were modeled with HMMs, which took prosodic features as inputs.
A set of HMMs was separately trained for each emotional category, build-
ing emotion-dependent head motion models. The subjective and objective
evaluations indicate that this framework successfully modeled the temporal
relationship between head motion and speech. Furthermore, the facial anima-
tions with the synthesized head motion sequences were perceived having the
same level of naturalness as the animations with the motion captured head
motion sequence.

In this work, head motion is only modeled with 3 DOF corresponding to
head rotation. However, the human neck allows the head not only to rotate,
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but also translate, especially back and forward. An interesting question is how
to include in this framework this extra 3 DOF of head translation.

Another limitation of this work is that the database was recorded from only
one subject. We are collecting similar data from other subjects to validate and
expand these results. As suggested by [27], head motion is speaker-dependent.
By studying and learning interpersonal differences, head motion sequences can
be used to provide a desired personality to the animation [29].

One interesting extension of this work is to include key frame controls to
specify gestures such as head “nod” and “tilt” (similar to [16]). Therefore, the
designer can add believable head motion in response to facial conversation
signals, as proposed by Cassell et al. [10].

Another interesting question is how to include other facial gestures such as
eyebrow and lip motion in the animation. As mentioned before, gestures and
speech are related in a non-trivial manner. Furthermore, different gestures are
also related with each other, since most of the time the same set of muscles
jointly trigger them. Our research efforts are focused on modeling these rela-
tionships to generate facial animations that are perceived to be more natural
and engaging.
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