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Abstract—The verbal and non-verbal channels of human
communication are internally and intricately connected. As a
result, gestures and speech present high levels of correlation
and coordination. This relationship is greatly affected by the
linguistic and emotional content of the message. The present
paper investigates the influence of articulation and emotions
on the interrelation between facial gestures and speech. The
analyses are based on an audio-visual database recorded from
an actress with markers attached to her face, who was asked
to read semantically neutral sentences, expressing four emotion
states (neutral, sadness, happiness and anger). A multilinear
regression framework is used to estimate facial features from
acoustic speech parameters. The levels of coupling between
the communication channels are quantified by using Pearson’s
correlation between the recorded and estimated facial features.
The results show that facial and acoustic features are strongly
interrelated, showing levels of correlation higher than r = 0.8
when the mapping is computed at sentence-level using spectral
envelope speech features. The results reveal that the lower face
region provides the highest activeness and correlation levels.
Furthermore, the correlation levels present significant inter-
emotional differences, which suggest that emotional content affect
the relationship between facial gestures and speech. Principal
component analysis (PCA) shows that the audiovisual mapping
parameters are grouped in a smaller subspace, which suggests
that there is an emotion-dependent structure that is preserved
from across sentences. The results suggest that this internal
structure seems to be easy to model when prosodic-features are
used to estimate the audiovisual mapping. The results also reveal
that the correlation levels within a sentence vary according to
broad phonetic properties presented in the sentence. Consonants,
especially unvoiced and fricative sounds present the lowest
correlation levels. Likewise, the results show that facial gestures
are linked at different resolutions. While the orofacial area is
locally connected with the speech, other facial gestures such as
eyebrow motion are linked only at the sentence-level. The results
presented here have important implications for applications such
as facial animation and multimodal emotion recognition.

Index Terms—Facial motion, articulatory movements, Affective
state, Speech acoustic.
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IN addition to speech, non-verbal communication plays an

important role in day-to-day interpersonal human interac-

tion. People simultaneously use their hand, change their facial

expression and control the tone and their energy of the speech

to consciously or unconsciously express or emphasize specific

messages. The fact that all these communicative channels

interact and cooperate to convey a desired message suggests

that gestures and speech are controlled by the same internal

control system [1], [2], [3], [4].

Human communication, manifested through a combination

of verbal and nonverbal channels used in normal interaction, is

a result of different communicative components that mutually

modulate gestures and speech in a non-trivial manner. Notable

among them are the linguistic, emotional and idiosyncratic

aspects of human communication. The linguistic aspect defines

the verbal content of what is expressed. In addition, the

underlying articulation also affects the appearance of the face.

Each phoneme is produced by the activation of a number

of muscles that simultaneously shape the vocal tract and the

face, in regions beyond the oral aperture [2]. Likewise, the

emotional state of the speaker is directly expressed through

both gestures and speech. Communicative channels such as

facial expressions [5], [6], head motion [7], pitch [8], [9] and

short time spectral envelope [10] all present specific patterns

under emotional states. Similarly, the idiosyncratic aspects

also influence the patterns of human speech and gestures, and

are dependent on culture and social environment. These also

include personal styles, such as the rate of the speech and

intensity and manner of expressing emotions [5], [11].

Speech and gestures are directly connected and manipulated

by one or more of these components of human communica-

tion. For example, the shape of the orofacial area is highly

connected with the linguistic content [2], [12], hand gestures

are related with idiosyncrasy [1] and facial expressions are

most of the time triggered by emotions [5], [6]. Although,

each communicative channel has been separately analyzed in

the literature [1], [2], [5], [7], [8], [9], [13], [14], relatively

few studies have addressed the interaction between gestures

and speech as a function of the multiple aspects of human

communication. Understanding the linguistic, emotional and

idiosyncratic effects on the gesture-speech relationships is a

crucial step toward improving a number of interesting appli-

cations such as emotion recognition [15], human-computer

interaction [16], [17], human-like conversational agents [3]

and realistic facial animation [18], [19], [20], [21]. It will

also provide useful insights into human speech production and

perception [22].

Toward understanding how to model expressive human
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communication, the present paper focuses on the linguistic

and emotional aspects of human communication and their

influences on the relationships between gestures and speech.

We investigate the interrelation between facial gestures, such

as lip, eyebrow and head motion and acoustic features that

represent the vocal tract shaping and prosody of speech. We

analyze which gestures are more related with speech and

how this relation changes in the presence of four different

expressive emotion states: neutral, sadness, happiness and

anger. The analysis presented here is based on a database

recorded from a single actress with markers attached to her

face, which provide detailed information about her facial

expressions. We analyze how active facial gestures are as

function of different emotions. The results indicate that the

rate of facial gesture displacements for emotional utterances

significantly differ from the ones observed in neutral speech.

For example, the activeness, as quantified by the Euclidean

distance between the facial features and their sentence-mean

vector, for happiness and anger is more than 30% higher

than for neutral speech. To quantify the relationship between

facial gestures and speech, we compute Pearson’s correlation

between the original facial features and the speech-based es-

timated sequences generated with multilinear regression. This

framework is implemented both at sentence-level, in which the

mapping parameters are computed for each sentence assuming

that the facial features are known, and at global-level, in

which the mapping parameters are estimated using the entire

database. At sentence-level, the audio-visual mapping presents

significant inter-emotional differences, showing the influence

of emotions in the interrelation between gesture and speech.

When the mapping is estimated at global-level the correlation

levels not surprisingly, decrease. However, the results indicate

that there is a clear emotion-dependent structure that can

be learned using more sophisticated techniques than linear

mapping. Furthermore, the results reveal that the correlation

levels also decrease for consonants, especially unvoiced and

fricative sounds, and silence regions, when compared to other

corresponding broad speech classes of voiced and sonorant

sounds.

The main contribution of this paper is the analysis of the

interplay between gestures and speech as a function of emotion

and articulation. As far as the authors are concerned, this is the

first attempt to quantize the linguistic and affective influence

on the relationship between facial gestures and speech. As

specific results based on the detailed framework presented

here to analyze gestures and speech at different levels (global,

sentence and phoneme level), important findings are presented:

• The existence of a strong relationship between facial ges-

tures and speech, which greatly depends on the linguistic

content of the sentence

• The existence of a low-dimension emotional-dependent

structure in the gesture/speech mapping that is preserved

across sentences

• An emotional-dependent structure in the mapping that

seems to be easier to model when prosodic features are

used to estimate the facial features

• Multiresolution nature of the relationship between facial

gestures and speech, both in (feature) space and time

These results can guide the design of better models to

capture the complex relationship between facial gestures and

speech. Specifically, human-machine interfaces for applica-

tions such as games and educational and entertainment systems

represent some of the wide range of applications that can be

greatly enhanced by properly modeling and including human-

like capabilities.

The rest of this paper is organized as follows. Section

II describes related work about co-analysis of gestures and

speech. Section III introduces the database, the features and

the mathematical framework utilized in this paper. Section

IV describes and discusses our results about the relationship

between the various modalities. We analyze how active the

facial features are during emotional speech and how much the

audio-visual mapping is affected by articulation and emotions.

Section V presents the audio-visual mapping at the phoneme

level. We explore whether different broad phonetic classes

have stronger or weaker relationships when the mapping is

estimated at sentence level. Section VI discusses the impli-

cations of the results presented in this paper in the areas of

facial animation and multimodal emotion recognition. Finally,

Section VII gives the conclusion and future directions of this

research.

II. RELATED WORK

Based on high levels of correlation found between acoustic

features and various human gestures, researchers have sug-

gested that an internal control simultaneously triggers the

production of both speech and gestures, sharing the same

semantic meaning in different communication channels [1],

[2], [3], [4]. Cassell et al mentioned that they are not only

strongly connected, but also systematically synchronized in

different scales (phonemes-words-phrases-sentences) [3]. This

theory, referred to as the excitatory hypothesis [4] implies

that a joint analysis of these modalities is needed to fully

understand human communication.

The relation between gestures and speech has been stud-

ied under different perspectives. One line of research has

focused on analyzing this relation in terms of conversational

functions, also known as regulators and conversational signals

[11]. Gestures and speech co-occur to fulfill functions during

conversation, such as acknowledging agreement, changing

turns and asking for clarification [16]. Valbonesi et al studied

co-occurrence of events during speech and hand gestures.

They showed that most of the acoustic events, defined as

maximum and minimum in the pitch and the RMS energy,

occur during hand gesture strokes [4]. Graf et al concluded

that head and eyebrow motions are consistently correlated

with the prosodic structure of the speech [19]. Granström et
al conducted perceptual experiments showing that head and

eyebrow motion help to stress prominence in speech [23].

They have also shown that smile is the strongest indicator of

positive feedback. Such findings have been used in designing

human-like virtual agents. Cassell et al proposed a rule-based

system to generate facial expressions, hand gestures, head nod,

eyebrow motion and spoken intonation, which were properly
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synchronized according to rules [3]. In [16], they extended

their work to create a human-like agent, called REA that was

able to respond to discourse function using gestures.

Another line of research has analyzed the relation between

speech and gestures, especially facial expressions, as results

of articulatory processes. Vatikiotis-Bateson and Yehia showed

that facial expressions are directly connected with the articula-

tory production [2]. They argued that the production of speech

shapes the vocal tract and deforms the face, affecting regions

quite further from the oral aperture. In [12], they continued

their analysis presenting results about the relation between

facial expressions, vocal-tract configuration and speech. They

concluded that most of the facial motions can be predicted

from acoustic features (Line Spectral Pair (LSP)) using linear

estimations. In [13], they extended those results to non-linear

mapping, showing higher accuracy. Jiang et al also studied

the relation between facial, articulatory and acoustic features,

using multilinear regression analysis [24]. The focus of their

work was to quantify the audio-visual relationship for the

consonant-vowel (CVs) syllables C/a/, C/i/ and C/u/. They

concluded that the mapping was syllable-dependent, since

they found better results for C/a/ than for C/i/ and C/u/.

They also found differences in the correlation levels between

the four speakers considered, suggesting that the mapping

was speaker-dependent. Following a similar approach, Barker

and Berthommier studied the mapping for isolated words

with a fixed vowel-consonant structure [25]. They concluded

that the correlation levels between facial (jaw and lips) and

acoustic (LSP) features are higher during vowels than during

consonants. One common aspect in all these works, however,

is that the data used provides only sparse information of the

facial area with relatively few markers on the subject’s face

(≤ 20).

With advances in data acquisition capabilities, probabilistic

frameworks such as Hidden Markov Models (HMMs) and

Dynamic Bayesian Networks (DBNs) have been successfully

used to model both speech and facial expressions. Recently, a

variety of these probabilistic frameworks have been proposed

to jointly model facial expressions and speech for applications

such as audio-visual emotion recognition [26], audio-visual

speech recognition [27], user modeling [28], [29], and facial

animation [7], [18], [30]. We believe that these statistic learn-

ing frameworks are attractive schemes to capture the temporal

relationship between gestures and speech in the presence of

emotions.

Another important aspect that influences the relation be-

tween speech and gestures is the emotion conveyed by the

speakers. Since each communication channel can be greatly

modulated under different emotions, it is expected that their

relation will also be emotion-dependent. Many previous stud-

ies have shown that speech is colored by emotional effects

[8], [9], [10]. Emotions influence not only supra-segmental

characteristics of the speech (prosody and energy), but also

short-time spectral envelope features such as Mel-Frequency
Cepstrum Coefficients (MFCCs) [10]. The face is also highly

affected by the affective state of the speaker. For instance,

the group led by Ekman has extensively analyzed the relation

between facial expressions and emotions. After studying apex

poses of expressive faces, they concluded that specific facial

patterns are displayed under certain family of emotions [5],

[6]. The effect of emotions in the orofacial area has been

especially analyzed for realistic facial animations. Nordstrand

et al studied the effect of emotions in the shape of the lips for

vowels. They concluded that there are significant differences

in the patterns presented in neutral and emotional speech [31].

Similar inferences were also reported in [32]. As a direct

consequence of these results, emotion-dependent models to

synchronize lips movement with speech have been developed

for human-like facial animations [20]. Other facial gestures

such as head motion [7] and eyebrown motion [11] also show

strong differences when the affective state of the speaker

changes. Although these communication channels have been

separately studied under different emotions, relatively few

efforts have focused on the influence of emotion in the relation

between these communication channels. This paper explores

the influence of emotions on the relation between facial

gestures and speech.

III. METHODOLOGY

The approach followed in this study to analyze the relation

between speech and facial expression is to estimate the Pear-

son’s correlation between the original facial expression signal,

FFacial and a predicted signal, F̂Facial, estimated from speech

acoustic features using a linear mapping. This approach is

similar to the method presented by Yehia et al in [12]. Notice

that it is also possible to estimate the acoustic features based on

facial expression as presented in [12], [24], [25], which could

be very useful for applications such as audio-visual speech

recognition. However, for analysis simplicity we implemented

only the unidirectional speech to gesture approach.

Voiced speech production is usually modeled as a quasi-

periodic source signal that excites the vocal-tract transfer

function; unvoiced sounds are modeled with noise source

excitation. The excitation models both the air exhaled from

the lungs through the trachea and pharynx, and the vocal cord,

which adjusts its tension to create the oscillatory signal. The

vocal-tract transfer function models the pharyngeal, oral and

nasal cavities, which carries much of the phonetic information

of the speech. Based on this broad description, two different

sets of acoustic features can be defined: prosodic features,

which provide the tonal and rhythmic aspect of the speech

contained in the source; and, the vocal-tract acoustic features

that model the time-varying vocal-tract transfer function [33].

In this paper, pitch and energy were used as prosodic features,

and MFCCs were used as vocal-tract features. We chose

MFCCs rather than other short-time spectral envelope, because

our preliminary results showed that MFCCs have higher cor-

relation with facial gestures. Furthermore, unlike LSP that are

based on a parametric model using the all-pole assumption,

MFCCs can handle zeros in the nasal sound spectrum, since

they directly model the signal spectrum. Therefore, the use of

MFCCs may improve the mapping during nasal phonemes, as

discussed in Section V.

To analyze facial gestures, the face is divided in Voronoi

cells centered on the facial markers. Each marker provides
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(a) (b)

Fig. 1. Audio-visual database collection. (a)The figure shows the facial
marker layout, and (b) the figure shows the motion capture system.

local information about her facial movements. Furthermore,

rigid head motion was included as a part of the facial features.

The shape of the lips and eyebrow, which are the most

important distinguishable part of the face, were also considered

in this study. These features were parameterized using specific

facial markers, as explained in Section III-B. The complete

set of the markers, head motion, eyebrow and lip features is

referred together here on as facial features.

A. Audio-Visual Database

The audiovisual database used in this work was recorded

from an actress, who was asked to read a custom-made,

phoneme-balanced corpus four times, expressing different

emotions (happiness, sadness, anger and neutral state). The

use of a set of emotion categories simplifies the recognition

and communication of emotional state for both people and

computers [34]. Therefore, for the sake of simplicity, and for

guiding interface design, the proposed analysis uses emotion

categories, which is more appealing than the attribute charac-

terization of emotion such as arousal and valence.

A detailed description of her facial expression and rigid

head motion was acquired by using 102 markers attached to

the face (Figure 1 (a)). A VICON motion capture system with

three cameras was used to capture the 3D position of each

marker (Figure 1 (b)). The sampling frequency was set to 120

Hz. The recording was made in a quiet room using a close

talking SHURE microphone at a sampling rate of 48 kHz. The

markers’ motions and the aligned audio were simultaneously

captured by the system. In total, 612 sentences were used in

this work. Note that the actress did not receive any special

instruction about how to express the target emotions, and was

asked to be natural.

Even though acted facial expressions have some differences

with genuine facial expression [5], databases based on actors

have been widely used in the analysis of emotions. The main

advantage of this setting is that a balanced corpus can be

designed in advance, to include a wide range of phonetic

and emotional variability. In addition, the proposed recording

setting allows us to use markers that provide detailed facial

information which could be very difficult to obtain in a more

unconstrained production scenario. Such data are particularly

useful for the types of analyses presented in this paper.

Middle

Upper

Lower

(a) (b) (c)

Fig. 2. Face parameterization. (a) the figure shows the facial markers
subdivision (upper, middle and lower face regions), (b) the figure shows head
motion features, and (3) the figure shows the lip features.

B. Feature extraction

The pitch (F0), the RMS energy and the 13 MFCC co-

efficients were extracted using the Praat speech processing

software [35]. The analysis window was set to 25 milliseconds

with an overlap of 8.3 milliseconds producing 60 frames per

second. The smoothing and interpolation options of the Praat

software were applied to remove any spurious spike in the

pitch estimates and to avoid zeros in unvoiced/silence regions,

respectively. In addition, the first and second derivatives of the

pitch and energy were added to the prosodic feature vector

to incorporate their temporal dynamics. As shown in [36],

[25], these dynamic features improve the correlation levels

of the audio-visual feature mapping. The first coefficient of

the MFCCs was removed, since it provides information about

the RMS energy rather than the vocal-tract configuration. The

velocity and acceleration coefficients were also included as

features. The dimension of this feature vector was reduced

from 36 to 12 using Principal Component Analysis (PCA).

This number was chosen to contain 95% of the variance of

the MFCC features. This post-processed feature vector is what

will be referred here on as MFCCs.

After the motion data were captured, all the markers were

translated to make a nose marker at the local coordinate

center of each frame, removing any translation effect. After

that, the frames were multiplied by a rotational matrix, which

compensates for rotational effects. This matrix was constructed

for each frame as follows: A neutral pose of the face was

chosen as a reference frame, which was used to create a 102×3
matrix, Mref , in which the row of Mref has the 3D position

of the markers. For the frame t, a similar matrix Mt was

created by following the same marker order as the reference.

After that, the Singular Value Decomposition (SVD), UDV T ,

of matrix MT
ref · Mt was calculated. Finally, the product of

V UT gave the rotational matrix, Rt, for the frame t [37].

MT
ref · Mt = UDV T (1)

Rt = V UT (2)

After compensating for the translation and rotation effects,

the remaining motion between frames corresponds to local

displacements of the markers, which define the subject’s

facial expressions. To synchronize the frames of the acoustic

features with the frames of facial features, the marker data

was downsampled from 120 to 60 frames per second.
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In the analyses, each of the facial markers, except the

reference nose marker, was used as a facial feature. The

markers were grouped into three main areas: upper, middle

and lower face regions (Figure 2 (a)). The upper face region

includes the markers above the eyes in the forehead and brow

area. As Ekman et al observed, this facial area is strongly

shaped by the emotion conveyed in the facial expression [6].

The lower face region groups the markers below the upper lip,

including the mouth and jaw. As discussed in Section IV-B,

this area is modulated not only by the emotional content, but

also by the articulatory processes. Finally, the middle face

region contains the markers in the facial area between the

upper and lower face region (cheeks). This subdivision will

be used to summarize the aggregated results in the tables

presented in Sections IV and V.

In addition to the aggregated facial region features, para-

metric features describing the head, eyebrow and lip motion

were also analyzed. Low dimensional features were selected

that capture articulatory information (especially for the lips),

and that are affected by emotional modulation. The matrix Rt

defines the three Euler angles of the rigid head motion, which

are added as visual features (Figure 2 (b)). Furthermore, the

eyebrows were parameterized with a two-dimensional feature

vector, computed by subtracting the position of two chosen

markers in the right eyebrow from a neutral pose. After that,

the vector was normalized in the range 0 to 1. Notice that right

and left eyebrow motions are assumed symmetrical. Although

Cavé et al suggested that there can be some differences

between the magnitude of the two eyebrows’ motions [14], this

symmetry assumption is in general reasonable (especially for

the subject analyzed). The lip features describe the width and

the height of the opening area of the mouth. The lip features

were computed by measuring the Euclidean distance between

the markers shown on Figure 2 (c). This two-dimensional

feature vector relates to three articulatory parameters that

describe the shape of the lips: upper lip height (ULH), lower
lip height (LLH) and lip width (LW).

C. Audio-visual mapping framework

In this study, our goal is to analyze the temporal relation

between facial gestures and speech. We desire to measure the

areas in the face that are shaped or modified by the articulatory

and prosodic aspects of the speech. For this purpose, the

Pearson’s correlation was chosen as the measure to discern

the relationship between the acoustic and facial features.

Correlation provides a solid mathematical tool to infer and

quantify how connected or disconnected different streams of

data are. Its results are easy to interpret and no probability

density functions need to be estimated, such as in mutual

information calculation between feature streams.

In general, the speech and the facial features span dif-

ferent spaces which have dissimilar dimensions and scales.

Therefore, preprocessing steps need to be implemented before

computing Pearson’s correlation. The complete framework

proposed in this paper is depicted in Figure 3.

The first step after extracting the features is to map the

acoustic features into the facial feature space. In this paper

Affine Minimum
Mean-Squared
Error (AMMSE)

Pearson's

correlation

FacialF

FacialF

SpeechF

r

Acoustic
Features

Extraction

Facial
Features

Extraction

MA Filter

Fig. 3. Linear estimation framework to quantify the level of coupling between
facial gestures and acoustic features. AMMSE is used to map the acoustic
features into the facial feature space. A filtered version of this estimated signal,
bFFacial, is used to measure the Pearson’s correlation.

we used the Affine Minimum Mean Square Error estimator
(AMMSE), which is defined by a transformation matrix, T ,

and a translation vector, M ,

F̂ = T · FSpeech + M (3)

T = KFS · K−1
S (4)

M = −KFS · K−1
S · US + UF (5)

where KFS is the cross covariance matrix between the facial

and the acoustic features, KS and US are the covariance and

mean vector of the speech features, and UF is the mean vector

of the facial features. This is an optimum linear estimator

under mean square sense. We chose AMMSE because it is

simple and has less overfitting problems than other non-linear

techniques. In addition, linear estimation has shown better

generalization than non-linear mappings in related studies [38].

Notice that in some applications such as facial animation, other

mapping techniques such as Artificial Neural Networks (ANN)

or HMMs could give better results than AMMSE [13], [25],

[30], [38].

After the acoustic features are mapped onto the facial

features space, a moving average window (MA) is applied to

smooth the estimated signal, producing F̂Facial. The final step

is to compute the Pearson’s correlation between the estimated

and real facial features, in each dimension of the facial feature

vector.

The code was implemented for off-line processing in Mat-

lab. Since the models are linear, the computational require-

ments are not as high as other sophisticated time series

modeling frameworks such as HMMs and DBNs.

Two implementations of this framework are presented. The

first implementation is when the target facial features are

known and the parameters of the mapping (Tu, Mu) are esti-

mated for each sentence (u). This implementation is referred

to as sentence-level mapping. The second implementation of

this framework is when the parameters of the mapping are

estimated using the entire database. In this case, the same

parameters (Temo, Memo) for each emotional category are

used to estimate each sentence. This implementation is referred

to as global-level mapping. Both implementations provide
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useful information in different applications, as we will discuss

in the next section.

IV. RESULTS OF THE AUDIO VISUAL MAPPING

In this section, the facial and acoustic features are jointly

analyzed in terms of the emotional categories considered

in this work. Before studying the relation between facial

expressions and speech, Section IV-A discusses the activeness

of the facial features during speech. Knowing the motion rate

of facial gestures during emotional speech is important to

correctly interpret the results presented in this paper. Following

the methodology described in Section III-C, Sections IV-B

and IV-C analyze the results of the correlation between the

original and estimated facial features at the sentence-level

and global-level mapping, respectively. Section IV-D discusses

the structure of the audio-visual mappings, by studying Eigen

spaces of the mapping parameters (Equation 4).

A. Facial activeness during speech

During speech, some facial areas are naturally more active

than others. This section explores the motion rate of facial

gestures in terms of the articulatory and emotional aspects of

human communication.

For each sentence, the displacement coefficient, Ψ, de-

scribed in Equation 6, was calculated to measure the activeness

of the facial features. This coefficient is computed as the

average Euclidean distance between the facial features and

their mean vector, at sentence-level:

Ψu =
1

Nu

Nu∑
i=1

Deq( �Xu
i , �μu) (6)

where Nu is the number of frames in sentence u, �μu is the

mean vector, and Deq is the Euclidean distance, defined as:

Deq( �X, �Y ) =

√√√√ D∑
d=1

(xd − yd)2 (7)

where D is the dimension of the facial features. The average
displacement coefficient,Ψ̄, is obtained by computing the mean

of the displacement coefficients across the N utterances, for

each emotional class:

Ψ̄ =
1
N

N∑
u=1

Ψu (8)

Notice that in this analysis the acoustic features are not

used, since Ψ is completely defined by the facial features. This

coefficient provides global-level description of the activeness

of facial areas and gestures.

The results for the displacement coefficient are presented in

Tables I and II, and in Figure 4. Table I presents the average
displacement coefficient, Ψ̄, for the facial features related to

head, eyebrow and lip motion, in terms of emotional cate-

gories. In addition, Table I summarizes the average activeness

of the markers in the three facial areas described in Section

III-B: upper, middle and lower face regions. To infer whether

TABLE I
AVERAGE ACTIVENESS OF FACIAL FEATURES DURING EMOTIONAL

SPEECH (Neu=NEUTRAL, Sad=SADNESS, Hap= HAPPINESS, Ang= ANGER)

Facial Area Neu Sad Hap Ang

Head Motion [deg] 2.30 4.52 5.05 5.00

Eyebrow 0.05 0.07 0.12 0.12

Lips 4.69 3.68 6.24 6.94

Upper region 0.72 0.85 1.51 1.37

Middle region 0.92 0.90 1.43 1.52

Lower region 3.24 2.49 4.20 4.47

TABLE II
STATISTICAL SIGNIFICANT OF INTER-EMOTION ACTIVATION DIFFERENCES

(Neu=NEUTRAL, Sad=SADNESS, Hap= HAPPINESS, Ang= ANGER)

Facial Area Neu-Sad Neu-Hap Neu-Ang Sad-Hap Sad-Ang Hap-Ang

Head Motion 0.000 0.000 0.000 0.176 0.202 1.000

Eyebrow 0.000 0.000 0.000 0.000 0.000 1.000

Lips 0.000 0.000 0.000 0.001 0.000 0.000

Upper region 34.48% 100.00% 100.00% 100.00% 100.00% 58.62%

Middle region 25.64% 100.00% 100.00% 100.00% 100.00% 48.72%

Lower region 100.00% 100.00% 100.00% 100.00% 100.00% 41.38%

the emotional differences in the results presented in Table I

are significant or not, one-way Analysis of Variance (ANOVA)

tests were performed. For head (F [3,622], p=0.000), eyebrow

(F [3,622], p=0.000) and lip motion (F [3,619], p=0.000),

Table II provides the p-values for the multiple comparison

tests. The same statistical test was individually applied to

each marker. Instead of reporting the p-value results of the

facial markers, Table II gives the percentage of the markers

in the facial regions in which the differences were found

significant, using a 95% confidence interval (p ≤ 0.05). Figure

4 shows a visual representation of facial area activeness, per

emotional category. This figure was created by computing the

average displacement coefficient for each facial marker. Then,

the coefficients were normalized across emotions in the range

between 0 and 1. After that, gray-scale colors were assigned

to each marker according to the palette shown in Figure 5.

Finally, the Voronoi cells centered in the markers were colored

according to the gray-scale assigned to the markers.

Figure 4 and Table I show that during speech, the lower

face region, specifically the jaw, is the most active area in the

face. This result confirms the important role of articulation

in the dynamic motion of the facial expressions. However,

when the values of the displacement coefficients associated

with neutral speech are compared with those with emotional

speech in each of the facial features, significant differences are

found (Table II). Note that the lexical content and syntactic

structure of the utterances used in each emotional category

were identical, since the same sentences were used for each

emotion. Therefore, the inter-emotional differences shown in

Figure 4 and Table I can be attributed primarily to different

emotional modulation of facial gestures.

In agreement with previous works [6], [31], [32], the

results presented here show that the lower face region conveys

important emotional clues. Table I and Figure 4 indicate that

the inter-emotional differences in the average displacement
coefficient of the markers are significant, with the exception of

the pair happiness-anger, in which only 41.38% of the markers

were found with significant differences (see Table II). Notice
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(a) Neutral (b) Sad

(c) Happy (d) Angry

Fig. 4. Facial activeness during speech. The figures show that during speech,
the lower face region is the most active area in the face. It also shows inter-
emotional differences. During happiness and anger, the activeness of the face
is higher than during neutral state. Conversely, during sadness the activeness
of the face decreases.

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Palette used in the plots. Darker shadings imply higher activeness
(Figure 4) or higher correlation (Figure 6 and 7).

that Ψ̄ for happy and angry sentences in the lower face region

are more than 30% active than Ψ̄ in neutral speech.

In the upper and lower face regions, the results in Ta-

bles I and II show that two emotional clusters are clearly

grouped: happiness-anger and sadness-neutral. This result is

also observed for the displacement coefficient in the head

and eyebrow motion. As an aside, it is interesting to note

that similar grouping trends were observed in the analysis

of acoustic speech features presented by Yildirim et al [10],

suggesting that these emotional categories share similarities

across modalities.

The average activeness in sad and neutral sentences are

very similar in the upper and middle face regions (see Figure

4), suggesting that those areas of the face are not modified

during sad sentences. Notice that this result does not disagree

with previous works, which have indicated that facial poses

for sadness presents significant differences in those areas

compared to neutral poses (inner corners of the eyebrows and

cheeks are raised [5], [6]), since the displacement coefficient
measures the average variance of facial gestures rather than the

TABLE III
SUMMARY CORRELATION FOR SENTENCE-LEVEL MAPPING

(N=NEUTRAL, S=SADNESS, H= HAPPINESS, A= ANGER)

Facial Area Prosodic Mfcc

N S H A N S H A

Head Motion 0.60 0.62 0.57 0.57 0.86 0.89 0.88 0.87

Eyebrow 0.52 0.54 0.53 0.53 0.76 0.80 0.85 0.85

Lips 0.57 0.60 0.57 0.57 0.88 0.89 0.90 0.89

Upper region 0.53 0.56 0.55 0.53 0.80 0.83 0.85 0.84

Middle region 0.51 0.56 0.54 0.53 0.82 0.84 0.86 0.85

Lower region 0.53 0.57 0.55 0.54 0.87 0.87 0.88 0.87

pose of the face itself (mean vector is removed in Equation

6). Conversely, in happy and angry sentences, the activeness

of the upper and middle face region is over 60% more active

than in neutral sentences, showing the differences in emotional

modulation in those areas.

In general, similar trends were observed in the displacement
coefficient for head, eyebrow, and lip motion. However, some

important results are worth highlighting. The activeness of

head motion for sad and neutral sentences are significantly

different. Furthermore, the difference between the average
displacement coefficient for angry and happy utterances for

lips features is also significant. These results suggest that this

coefficient could be used to discriminate between these pairs

of emotional categories.

B. Sentence-Level mapping

In the previous section, the facial gestures were analyzed

without considering acoustic features. Since gestures and

speech are strongly interconnected, a deeper analysis of facial

expressions needs to consider acoustic features. In this section,

the audio-visual mapping framework presented in section III-C

is used to shed light into the underlying relations between

acoustic and facial features. The parameters of the linear

transformation are calculated at the sentence-level, assuming

that the acoustic and facial features are known. Although this

is clearly not useful for an application such as animation, in

which the facial features are unknown, the results presented

here are important to understand better the coupling between

speech and facial gestures. Also, areas such as multimodal

emotion recognition can benefit from understanding the rela-

tion between the modalities.

In this section we are specifically interested in studying

whether the correlation between the original and estimated

facial features are affected by the emotional and linguistic

content (lexical, syntactic) of the sentences.

Table III and Figure 6 show the results of the correlation

at sentence-level. Table III presents the average correlation

between the facial features and the signal separately estimated

with prosodic and MFCC features, in terms of emotional

categories. Figure 6 shows a graphical representation of these

results. This figure was created following the same steps

described in Section IV-A for Figure 4. Here, the correlation

of each marker without normalization was used to assign the

gray-scale color from Figure 5 to the Voronoi cells.

Table III and Figure 6 show high levels of correlation

between the original and estimated facial features, which agree
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(a) Neutral (b) Sad (c) Happy (d) Angry

(e) Neutral (f) Sad (g) Happy (h) Angry

Fig. 6. Correlation results for Sentence-Level mapping. (a-d) Prosodic features, (e-h) Vocal tract features. The figure shows high levels of correlation between
the original and estimated facial features, especially when MFCCs are used to estimate the mapping. The figures also suggest that the link between acoustic
and facial features is influenced by the emotional content in the utterance.

TABLE IV
STATISTICAL SIGNIFICANT OF INTER-EMOTION DIFFERENCES IN

CORRELATION OF SENTENCE-LEVEL MAPPING (Neu=NEUTRAL,
Sad=SADNESS, Hap= HAPPINESS, Ang= ANGER)

Facial Area Neu-Sad Neu-Hap Neu-Ang Sad-Hap Sad-Ang Hap-Ang

Prosodic features

Head Motion 0.444 0.332 0.061 0.005 0.000 1.000

Eyebrow 0.916 1.000 1.000 1.000 1.000 1.000

Lips 0.894 1.000 1.000 0.890 0.880 1.000

Upper region 51.72% 27.59% 10.34% 0.00% 55.17% 0.00%

Middle region 100.00% 35.90% 30.77% 17.95% 53.85% 2.56%

Lower region 89.66% 34.48% 3.45% 6.90% 37.93% 13.79%

MFCC features

Head Motion 0.012 0.098 1.000 1.000 0.221 0.743

Eyebrow 0.000 0.000 0.000 0.000 0.000 1.000

Lips 1.000 0.180 1.000 0.603 1.000 1.000

Upper region 96.55% 100.00% 100.00% 51.72% 6.90% 6.90%

Middle region 38.46% 53.85% 56.41% 30.77% 23.08% 5.13%

Lower region 0.00% 13.79% 10.34% 6.90% 6.90% 0.00%

with the hypothesis that the production of facial gestures

and speech are internally connected [2], [3], [4]. The results

also show that the correlation levels are higher when MFCC

features are used to compute the mapping parameters. This

result is observed not only near the orofacial area, in which the

appearance of the face is directly modified by the configuration

of the vocal tract, but also in areas far from the mouth such

as cheeks and forehead, which agrees with the observations

made in [2]. For example, head motion features, which are

thought to be less dependent on the phonetic content of the

speech, have higher correlation when the mapping is based

on MFCCs rather than prosodic features. Notice that MFCCs

carry the spectral envelope information and are closely related

with the articulatory processes, while prosodic features are

predominately related with the source of the speech. Therefore,

these results indicate that articulatory events co-occur with the

production of facial gestures.

When prosodic features are used to estimate the facial

features, the observed correlation levels are similar along the

facial regions, as shown in Figure 6 and Table III. However,

when MFCCs are used to estimate the mapping parameters,

the correlation of the lower face region is significantly higher

than in any other facial region (see Table III). This result is

also observed in lip features, which presents a correlation

level higher than for eyebrow features. One explanation is

that facial features with relatively low motion activity tend

to have smaller correlation levels, as suggested in [12]. As

mentioned in Section IV-A, the lower face region has higher

motion activity than the upper and middle face region, and

consequently, it presents higher correlation.

Up to this point, all the results presented in this subsection

are observed across emotional categories. Another interesting

question is whether those correlation levels between acoustic

and facial features are emotion-type dependent. To answer this

question, Table IV provides statistical significance measures

of inter-emotion differences between the results presented in

Table III. Similar to Table II, Table IV shows the statistical

results for multiple comparison tests across emotional cate-

gories, using a 95% confidence interval. For head, eyebrow

and lip motion, the p-values are given. For the aggregated

facial regions, the percentage of the markers with significant

differences at α = 0.05 within each facial region is given.

Table IV shows that there are significant inter-emotional

differences in the correlation levels between the original and

estimated facial features presented in Table III. This result

suggests that the link between acoustic and facial features

is influenced by the emotional content in the utterance. As

discussed in Section IV-A, the facial activeness changes under

emotional speech. Likewise, acoustic features such as pitch,

energy and spectral envelope vary as function of emotions [8],
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[9]. These observations suggest that the audio-visual coupling

presented here is also affected by this jointly emotional

modulation.

When MFCC features are used to estimate the mapping

parameters, Tables III and IV show that the upper face

region presents significant inter-emotional difference in the

correlation levels between the original and the estimated facial

features. In this region, the results for neutral speech are

statistically different from the results of any other emotional

category (see Figure 6). However, in the middle and lower face

region there are fewer markers with statistically significant

inter-emotional differences. It is interesting to notice that facial

areas that are less connected with the articulatory process, such

as eyebrow and forehead (see Figure 4), present higher levels

of inter-emotional differences. In those cases, the correlation

levels for emotional utterances are higher than those with

neutral speech.

When prosodic features are used to estimate the mapping

parameters, the results show that the lower and especially the

middle face region present stronger inter-emotional differences

in the correlation levels, compared with the upper face region.

The results also show that the correlation levels for emotional

utterances are slightly higher than the ones for neutral speech.

In the case of lip features, the results indicate that there is no

evidence to reject the null hypothesis that the correlation levels

are similar across emotional categories. This result is observed

when either MFCCs or prosodic features are used to estimate

the mapping parameters. The fact that the emotional aspects

do not significantly affect the coupling between speech and

lip motion suggests that this link is mainly controlled by the

articulation. This observation agrees with the results presented

in Section IV-A, which show that the relative difference in

the displacement coefficient for the lips between neutral and

emotional speech is lower than in other facial areas. However,

in other facial gestures the results indicate that emotional

content do affect the relationship between facial gestures and

speech.

C. Global-level Mapping

In the previous section, the mapping parameters between

acoustic and facial features were computed at the sentence-

level. This section extends those results when a single set

of generic parameters (Temo, Memo) is computed across

sentences (Equation 3). Since the level of correlation depends

on the affective state of the speaker, as shown in Section

IV-B, separate mapping parameters were calculated for each

emotional category. Notice that speech is considerably easier

and cheaper to collect, compared with any of the facial

gestures considered here. Therefore, it is very convenient

for applications such as facial animation to have reliable

procedures to estimate facial features from speech.

Table V and Figure 7 show the average levels of correlation

observed with global-level mapping. These results show that

the correlation significantly decreases compared to the results

with sentence-level mapping presented in the previous section

(see Table III and Figure 6). This result is observed when

either MFCCs or prosodic features are used to estimate the

TABLE V
SUMMARY CORRELATION FOR GLOBAL-LEVEL MAPPING (N=NEUTRAL,

S=SADNESS, H= HAPPINESS, A= ANGER)

Facial Area Prosodic Mfcc

N S H A N S H A

Head Motion 0.14 0.13 0.06 0.14 0.16 0.14 0.15 0.12

Eyebrow 0.18 0.05 0.01 -0.02 0.34 0.21 0.25 0.06

Lips 0.25 0.16 0.22 0.21 0.54 0.46 0.55 0.46

Upper region 0.15 0.07 0.10 0.02 0.28 0.15 0.32 0.13

Middle region 0.16 0.11 0.12 0.10 0.46 0.33 0.34 0.34

Lower region 0.21 0.18 0.20 0.17 0.58 0.49 0.51 0.51

TABLE VI
STATISTICAL SIGNIFICANT OF INTER-EMOTION DIFFERENCES IN

CORRELATION OF GLOBAL-LEVEL MAPPING (Neu=NEUTRAL,
Sad=SADNESS, Hap= HAPPINESS, Ang= ANGER)

Facial Area Neu-Sad Neu-Hap Neu-Ang Sad-Hap Sad-Ang Hap-Ang

Prosodic features

Head Motion 1.000 0.030 1.000 0.078 1.000 0.071

Eyebrow 0.000 0.000 0.000 1.000 0.071 1.000

Lips 0.005 0.905 0.751 0.500 0.751 1.000

Upper region 58.62% 48.28% 86.21% 44.83% 20.69% 55.17%

Middle region 58.97% 43.59% 66.67% 33.33% 12.82% 41.03%

Lower region 37.93% 48.28% 44.83% 37.93% 0.00% 27.59%

MFCC features

Head Motion 1.000 1.000 0.543 1.000 1.000 1.000

Eyebrow 0.000 0.002 0.000 0.987 0.000 0.000

Lips 0.001 1.000 0.003 0.001 1.000 0.003

Upper region 96.55% 34.48% 96.55% 100.00% 13.79% 100.00%

Middle region 94.87% 84.62% 89.74% 56.41% 35.90% 56.41%

Lowe region 96.55% 75.86% 75.86% 34.48% 17.24% 48.28%

generic parameters Temo and Memo. Vatikiotis-Bateson and

Yehia have also reported similar results [38].

Similar to the sentence-level mapping section, Table V

shows that the MFCC-based estimated facial features present

higher levels of correlation than the prosody-based estimated

facial features. In fact, in some cases of the latter, the corre-

lation levels are close to zero (e.g. eyebrow with emotional

utterances). This is probably because the link between some

facial gestures and prosodic features, especially for emotional

utterances, varies from sentence to sentence and it is not

preserved after estimating the mapping parameters over the

entire dataset.

The lower face region presents the highest correlation when

either of the acoustic features is used to estimate the facial

features. As shown in Table V and Figure 7, the levels of

correlation decrease in the upper and middle face regions.

These differences are also observed between lip and eyebrow

features, in which the correlation levels in lip features are

higher than in eyebrow features, across emotional category.

Similar to Table IV, Table VI presents details of statistical

significance of inter-emotion differences in the correlation

levels presented in Table V. The results indicate that there

are strong emotional dependencies in those results.

In general, it is interesting to notice that the correlation

levels for neutral speech are higher than any other emotional

category. This result is in opposition with the results observed

with sentence-level mapping, in which the correlation levels

for neutral speech are equal or lower than other emotional

categories. This result suggests that the coupling between

facial gestures and emotional speech has a more complex
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(a) Neutral (b) Sad (c) Happy (d) Angry

(e) Neutral (f) Sad (g) Happy (h) Angry

Fig. 7. Correlation results for Global-level mapping. (a-d) Prosodic features, (e-h) Vocal tract features. The figures show that the correlation levels significantly
decreases compared with the results at sentence-level. MFCC-based estimated facial features also present higher correlation levels than when prosodic features
are used. The lower face region presents the highest correlation levels in the face.

structure than for neutral speech, which is not preserved when

a single set of parameters is used to estimate the linear

mapping.

The fact that the levels of correlation decrease when global-

level mapping is used indicates that the coupling between

facial gestures and speech may change from sentence to

sentence, depending on the underlying linguistic structure,

as noted by Vatikiotis-Bateson and Yehia [38]. Since the

parameters are averaged across sentences, the articulatory

effects on the facial gestures are no longer reflected on the

mapping. The high levels of correlation that were observed

when MFCC features were used to estimate the parameter at

sentence-level support this hypothesis. MFCC features model

the configuration of the vocal tract, which shapes the appear-

ance of the face [12]. Therefore, when the linguistic structure

is blurred, the correlation levels significantly decrease. This

hypothesis is addressed further in Section IV-D.

D. Analysis of Mapping Parameters

In Equation 3, the linear coupling between facial and

acoustic features is mainly expressed through the parameter

T , which is computed based on the cross-correlation between

facial and acoustic features, KFS (Equation 4). The structure

of this parameter provides further insights about the relation

between facial gestures and speech. This section presents a

detailed analysis of the parameter T , when sentence-level

mapping is used to estimate Equation 3.

The approach used to study the structure of T is based

on PCA. In this technique, a reduced orthonormal subspace

is selected such that it spans most of the variance of the

multidimensional data. This subspace is formed from a subset

of eigenvectors and eigenvalues of the covariance matrix of

the data, associated with the highest eigenvalues. If the data is

relatively clustered, only few eigenvectors will be needed to

approximate the data. Therefore, by studying the eigenvectors

of the covariance matrix of the parameter T , useful inferences

can be drawn about the complexity of the assumed linear

mapping between facial and acoustic features.

The parameter T is a n × m matrix whose dimensions

depend on the acoustic and facial features used to compute

the mapping (Equation 4). This matrix T is reshaped into a

nm× 1 vector, �t. The covariance matrix of this vector, K�t, is

approximated in Equation 9, in which �tu is the mean-removed

vector associated with sentence u.

K�t = [�t1 . . .�tN ] · [�t1 . . .�tN ]T (9)

After computing the eigenvalues (λj) and eigenvectors (ej)

of K�t, each parameter �tu can be expressed without errors as

a linear combination of the eigenvectors (Equation 10, P =
n ·m). Assuming that the eigenvalues are sorted in descending

order, �tu can be approximated with only P eigenvectors (P <
n · m),

�̂tu(P ) = t̄ +
P∑

j=1

< �tu, �ej > �ej (10)

where t̄ is the vector mean of �t.
Table VII gives the fraction of eigenvectors (P ) needed

to span 90% or more of the variance of the parameters �t,
for head, eyebrow and lip features. The same procedure was

also applied for each marker. The average results within each

facial area is presented in Table VII. The results are presented

for each emotional category, in which only the parameters
�tu of the corresponding emotional sentences were used to

estimate K�t (Equation 9). In addition, the parameters �tu were

concatenated together across emotional categories to estimate

an emotion-independent covariance matrix. This procedure

provides information for inferring whether the structure of
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TABLE VII
FRACTION OF EIGENVECTORS USED TO SPAN 90% OR MORE OF THE

VARIANCE OF THE PARAMETER T (N=NEUTRAL, S=SADNESS, H=
HAPPINESS, A= ANGER, G= GLOBAL)

Facial Prosodic Mfcc

Area N S H A G N S H A G

Head 0.22 0.33 0.28 0.28 0.28 0.36 0.47 0.44 0.53 0.56

Eyebrow 0.33 0.33 0.25 0.25 0.33 0.50 0.46 0.38 0.38 0.46

Lips 0.33 0.42 0.33 0.33 0.42 0.46 0.54 0.50 0.50 0.54

Upper 0.26 0.33 0.27 0.30 0.31 0.44 0.45 0.45 0.46 0.51

Middle 0.30 0.29 0.29 0.30 0.32 0.43 0.40 0.42 0.39 0.48

Lower 0.28 0.29 0.26 0.27 0.30 0.41 0.43 0.36 0.39 0.44

T depends on the emotional content of the utterance. These

results are presented in Table VII under the letter G (global).

Notice that the dimension of �t varies when different facial and

acoustic features are used to estimate the mapping. Therefore,

the fraction of eigenvectors to cover 90% of the variance is

easier to compare across facial features than just the dimension

of this reduced subspace P .

Table VII indicates that when prosodic features are used to

estimate the mapping parameters, between 22% and 42% of

the eigenvectors of K�t are needed to cover 90% or more of the

variance of T . When the mapping is based on MFCC features,

between 36% and 54% of the eigenvectors are required to

span this reduced subspace. These results suggest that the

parameters �t are clustered in a reduced subspace, showing

a defined structure. Since the reduced subspaces for MFCC-

based parameters have bigger dimensions than the ones for

prosodic features, it can be infered that their structures are

more difficult to model. Therefore, the mapping between

prosodic features and facial gestures may be easier to gen-

eralize across sentences than the mapping between MFCCs

and facial features.

As can be observed in Table VII, the percentage of eigenvec-

tors of the emotion-independent covariance matrix needed to

span 90% or more of the variance of �t is generally higher than

the percentage of eigenvectors of the emotion-dependent co-

variance matrices needed to cover the same reduced subspace.

These results provide further evidence that the structures of

the mapping parameters depend on the emotional content of

the sentences.

The results presented in Table VII do not directly provide

information about the correlation levels that will be observed

when a reduced set of eigenvectors of K�t is used to approxi-

mate T . To analyze this question, the sentence-level mapping

framework presented in section III-C was implemented to

measure the correlation levels between facial and acoustic

features when different numbers of eigenvectors (P ) are used

to approximate T (Equation 10). Figure 8 presents the results

for the facial gestures considered in this paper. For the upper,

middle and lower face regions the average results of the

markers within each area is presented. The slopes of these

curves indicate that the correlation levels slowly decreased

as the number of eigenvectors used in the approximation of

T decrease. Figure 8 also shows that when MFCC features

are used to estimate the facial features, the slopes of the

curves tend to be higher than the ones for prosodic features.

These results support the hypothesis that there is a well-defined
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Fig. 8. Correlation levels as a function of the number of Eigenvectors (P )
used to approximate �t (Equation 10). The slopes of these curves indicate
that the correlation levels slowly decreased as P decrease, supporting the
hypothesis of an emotion-dependent structure in the audio-visual mappings.

structure in the parameter T , and that this structure seems to

be simpler when prosodic features are used to estimate the

facial gestures.

When MFCCs are used to estimate the mapping, the cor-
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relation level for head motion is more affected than other

facial gestures when low values of P are used in Equation 10

(see Figure 8). This result indicates that the coupling between

head motion and speech varies from sentence to sentence, as

suggested in [13]. The same result is observed for eyebrow

motion. Conversely, the correlation level for lip motion is

higher than 0.4, even when only one eigenvector is used to

approximate T . This result indicates that not only there is

a strong link between what is said and the appearance of

the orofacial area, but also this map does not significantly

change across sentences. This is not surprising given the tight

coupling between lips and the segmental speech properties,

so the articulatory effects dominate for all conditions. These

observations suggest that the relation between speech and

some facial gestures are easier to generalize than others.
Notice that the projections of �tu into the eigenvectors in

Equation 10 is unknown when the facial features are not

available. Therefore, if this approach is implemented for

predicting facial gestures from speech, the terms < �tu, �ej >
will have to be estimated, which may be a non-trivial problem.

In sum, the results presented in this section suggest that even

though the coupling between facial gestures and speech varies

from sentence to sentence, there is an emotion-dependent

structure in the mapping parameters across sentences that

may be learned using more sophisticated non-linear estimation

techniques such as HMMs or DBNs (e.g. see [7], [18], [30]).

V. RESULTS OF PHONEME LEVEL ANALYSIS

In the previous sections, the correlation levels were es-

timated for each utterance using either sentence-level, or

global-level mapping parameters. This information provides

general measures of the coupling between facial gestures and

speech. This section analyzes whether this interrelations vary

as function of broad phonetic categories. Instead of computing

the Pearson’s correlation over entire sentences, the speech

is segmented into the constituent phones, over which the

correlation levels are estimated. Notice that this approach

differs from the framework followed in references [24], [25].

In those works, the authors estimated the mapping parameters

for short time intervals corresponding to the target phonemes

or syllables, which were spoken as nonsense words (e.g. /ma/,

/cu/). Instead, we are interested in analyzing the phonetic

dependency on the correlation levels when the mappings

are estimated for the entire sentences. This procedure will

indicate whether certain phonemes require specific attention

for accurate facial feature estimation.
The broad phonetic categories considered in this paper are

voiced/unvoiced, nasal, fricative and plosive phonemes. We

also distinguish between vowels and consonant sounds. These

phonetic categories share source characteristics and vocal-tract

configurations that may influence the relation between gestures

and speech. In addition, we also consider the correlation

levels during periods of acoustic silence, which are separately

analyzed. Note that silence periods can be linguistically mean-

ingful (such as in phrase or sentence boundaries) and can be

accompanied by specific gestures.
For each sentence, a single set of parameters (T ,M ) was

estimated using the sentence-level mapping framework pre-

sented in Section III-C. Forced alignment, implemented with

the HTK toolkit [39], was used to align the transcript with the

speech. First, a small window centered on the target phoneme

was selected in the original and estimated facial feature stream.

The window was expanded in both directions as a function

of the phoneme duration, to compensate for possible error

in the automatic forced alignment procedure and the phase

differences between gestures and speech [4], [40]. Finally,

Pearson’s correlation between the selected segments was com-

puted. This procedure was repeated for each phoneme. The

results were used to estimate average values for each broad

phonetic category.

Table VIII gives the average correlation levels for the broad

phonetic classes, for each emotional category, when prosodic

and MFCC features were used to estimate the mapping be-

tween gestures and speech. To analyze whether the results

presented in Table VIII are statistically significant, two-way

ANOVA tests were implemented. The dependent factors are

the emotional and phonetic categories. The results show that

the p-values for the tests for each facial feature considered in

this paper were less than 0.001, which indicate that there are

significant differences in the emotional and phonetic levels.

The p-values for the interaction terms were higher than 0.05,

which suggest that the phonetic and emotional effects are

additive.

To identify the phonetic classes that present statistical differ-

ences, a multiple comparison test with Bonferroni adjustment

was applied to the data. A summary of the results is presented

in Table IX. Similar to Tables II, IV and VI, Table IX gives

the p-values for the head, eyebrow and lip motion test. It also

gives the percentage of markers belonging to the upper, middle

and lower face regions that present significant difference

(p < 0.05).

In general, Table IX indicates that the average correlation

levels for vowels is significantly higher than the levels for

consonants. This result agrees with previous findings [25].

Similarly, voiced regions present higher correlation than un-

voiced regions. Fricative phonemes present lower correlation

levels than the average phoneme. Also, in contrast to the

results presented by Yehia et al, our results suggest that

the correlation levels for nasal phonemes do not have sta-

tistical differences compared to the average phonemes [13].

The different acoustic features used to estimate the mapping

may explain this result. They used LSP coefficients, which,

unlike MFCCs, do not adequately model the zeros in the

nasal spectra. Like nasal phonemes, plosive phonemes presents

similar correlation levels as the average phoneme.

Table VIII reveals that the lower face region and the lip

features present the highest correlation levels. When compared

to the case when the correlation was computed over the entire

sentence (Table III), these facial features show the lowest

reduction in the correlation levels. These results indicate that

lips features are locally related to the segmental acoustic

events, and that they have a different time resolution than

eyebrow and head motion features. This is not surprising given

the key role of the lips in the articulatory process.

An interesting result in Table VIII is that the correlation

levels during acoustic silence is less than 50% lower than any
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TABLE IX
STATISTICAL SIGNIFICANT IN DIFFERENCES BETWEEN BROAD PHONETIC CLASSES (Al=ALL, Vw=VOWELS,Co=CONSONANT, Vo=VOICED,

Uv=UNVOICED, Na=NASAL, Pl=PLOSIVE, Fr=FRICATIVE)

Facial Area Prosodic features MFCC features
A

l-
V

w

A
l-

C
o

A
l-

V
o

A
l-

U
v

A
l-

N
a

A
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P
l
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F
r
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w
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o

V
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U
v
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l-
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l-

U
v

A
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N
a

A
l-

P
l

A
l-
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r

V
w

-C
o

V
o-

U
v

Head Motion 0.16 0.01 1.00 0.00 1.00 0.00 0.01 0.00 0.00 1.00 1.00 1.00 0.22 1.00 1.00 0.73 0.72 0.02

Eyebrow 1.00 1.00 1.00 0.06 1.00 1.00 0.40 1.00 0.00 1.00 1.00 1.00 0.05 1.00 1.00 0.00 0.29 0.00

Lips 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.06 1.00 0.06 1.00 0.00

Upper 51.7% 24.1% 0.0% 93.1% 0.0% 51.7% 100% 93.1% 100% 0.0% 0.0% 0.0% 100% 0.0% 0.0% 100% 24.1% 100%

Middle 53.9% 0.0% 0.0% 56.4% 2.6% 20.5% 53.9% 84.6% 79.5% 0.0% 0.0% 0.0% 84.6% 2.6% 0.0% 61.5% 15.4% 94.9%

Lower 31.0% 3.5% 0.0% 24.1% 20.7% 51.7% 27.6% 72.4% 72.4% 0.0% 0.0% 0.0% 79.3% 24.1% 0.0% 44.8% 27.6% 96.6%

other broad phonetic category. The main reason of this result

is the behavior of acoustic features during silence. The RMS

energy decreases in the entire frequency spectrum, affecting

the MFCC coefficients. Also, in this paper the pitch (F0) is

interpolated during unvoiced and silence regions (see Section

III-B), which clearly affects the accuracy of the mapping.

Notice that acoustic silence does not mean that there is no

communication activity. In fact, while the verbal channel is

passive, the face may continue to gesture which explains why

the correlation levels are not zero. This result suggests that

silence regions should be treated in a special way.

In sum, the results presented in this section suggest that spe-

cial consideration need to be taken for consonants, especially

unvoiced and fricative sounds as well as silence segments. In

applications such as facial animation, the use of interpolation

or pre-learned visemes during those segments may give better

perceptive quality than just the use of the estimated facial

features. Furthermore, these results support the observations

presented in [3] regarding the use of different resolutions to

integrate facial features for realistic avatars.

VI. DISCUSSION

While description of multimodal synthesis or recognition al-

gorithms were not the goals of this paper, the results presented

here aim to provide insights on how to jointly model facial

gestures and speech for expressive interfaces. The results of

the present paper indicate that linguistic and emotional aspects

need to be jointly considered in the models. This applies not

only to the orofacial area (e.g. with the use of visemes), but

also in facial region such as forehead and even head motion.

This section discusses and suggests new directions in the areas

of facial animation and emotion recognition. It also presents

observations with theoretical value.

Although the correlation levels decrease when the map-

ping parameters are estimated at global level from the entire

database, the results presented here indicate that the relation-

ship between facial gestures and speech has a structure that

may be automatically learned with a more sophisticated map-

ping. This structure varies from emotion to emotion, indicating

that specific emotional models are needed for expressive facial

animations. As discussed in Section IV-A, when prosodic

features are used to estimate the mapping parameters, the

correlation levels are lower than when vocal-tract features are

used. However, the internal structure of the mapping seems

to be easier to generalize. Therefore, prosodic features may

be better to use than vocal tract features to estimate facial

features given the interplay between speech articulation and

facial actions. As an example of these observations, in our

related work, we have shown that an HMM-based framework

can successfully capture the temporal relationship between

head motion gesture and acoustic prosody features [18]. In

[7], the approach was extended to include emotion-dependent

models. The results showed that the generated sequences

were perceived as natural as the original sequences, indicating

that the relationship between head motion and prosody was

successfully modeled. These works suggest that similar time

series frameworks may be used to learn the structure of the

audio-visual mapping for other facial gestures such as eyebrow

motion.

As discussed in Section IV-D, some facial gestures showed

more complex structure than others. Also, errors in some facial

gestures are more perceptively detrimental for facial animation

than others (e.g. lip motion). Therefore, the correlation levels

between acoustic features may not be sufficient to generate

some facial gestures, as suggested by Barker et al [25]. In

those cases, extra constraints, specifications or pre-learned

rules should be generated.

The results in Section V reveal that facial gestures and

speech are connected at different resolutions. While the orofa-

cial area is locally tightly connected with the spoken message,

the forehead, eyebrow and head motion are coupled only at

the sentence level. Therefore, a coarse-to-fine decomposition

of acoustic and facial features may be beneficial to model

the coupling between different facial areas and speech. This

is an important observation, because believable models need

to properly include the right timing and coupling resolution

between different communication channels. Currently, this is

one area that we are actively working to expand the results

presented in this paper. Likewise, the results indicate that

the correlation levels in the audio-visual mapping during

consonant, unvoiced and especially silence regions tend to

decrease. Therefore, special consideration is required during

those regions.

The results presented in this paper indicate that linguistic

and emotional aspects of communication jointly modulate hu-

man speech and gestures to communicate and express desired

messages. Importantly, many of the same physical channels are

involved actively or passively during the production of both

speech (verbal) and the various face gestures (non-verbal).

Since articulatory and affective goals appear to co-occur
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TABLE VIII
PEARSON’S CORRELATION FOR THE AUDIO-VISUAL MAPPING AT

PHONEME LEVELS (N=NEUTRAL, S=SADNESS, H=HAPPINESS, A=ANGER)

Prosodic MFCC

N S H A N S H A

Average all phonemes

Head Motion 0.41 0.35 0.34 0.36 0.51 0.44 0.46 0.47

Eyebrow 0.39 0.37 0.34 0.35 0.47 0.45 0.50 0.50

Lips 0.54 0.52 0.49 0.51 0.74 0.70 0.71 0.75

Upper region 0.39 0.36 0.35 0.35 0.51 0.47 0.51 0.49

Middle region 0.44 0.40 0.39 0.40 0.62 0.56 0.57 0.59

Lower region 0.51 0.48 0.45 0.48 0.72 0.68 0.66 0.70

Vowels

Head Motion 0.42 0.37 0.37 0.39 0.52 0.47 0.46 0.49

Eyebrow 0.38 0.39 0.35 0.37 0.47 0.46 0.51 0.53

Lips 0.53 0.51 0.49 0.55 0.74 0.72 0.73 0.75

Upper region 0.40 0.38 0.37 0.38 0.52 0.48 0.52 0.51

Middle region 0.46 0.43 0.41 0.42 0.63 0.57 0.59 0.61

Lower region 0.53 0.50 0.48 0.49 0.72 0.69 0.69 0.71

Consonant

Head Motion 0.39 0.33 0.31 0.33 0.50 0.43 0.45 0.46

Eyebrow 0.40 0.37 0.32 0.34 0.47 0.45 0.48 0.48

Lips 0.54 0.54 0.48 0.50 0.75 0.69 0.70 0.75

Upper region 0.38 0.34 0.34 0.32 0.50 0.47 0.50 0.48

Middle region 0.43 0.39 0.38 0.38 0.62 0.55 0.56 0.59

Lower region 0.50 0.46 0.44 0.47 0.71 0.67 0.65 0.69

Voiced phonemes

Head Motion 0.42 0.36 0.36 0.37 0.51 0.45 0.47 0.48

Eyebrow 0.39 0.38 0.36 0.36 0.47 0.46 0.51 0.50

Lips 0.54 0.52 0.49 0.53 0.75 0.72 0.72 0.76

Upper region 0.39 0.37 0.36 0.36 0.52 0.48 0.53 0.50

Middle region 0.44 0.41 0.40 0.41 0.63 0.57 0.58 0.60

Lower region 0.51 0.49 0.46 0.49 0.72 0.69 0.68 0.71

Unvoiced phonemes

Head Motion 0.38 0.31 0.30 0.32 0.50 0.41 0.44 0.44

Eyebrow 0.39 0.36 0.27 0.33 0.46 0.44 0.44 0.48

Lips 0.55 0.53 0.45 0.46 0.72 0.64 0.65 0.73

Upper region 0.37 0.33 0.32 0.31 0.49 0.45 0.45 0.46

Middle region 0.43 0.37 0.36 0.37 0.61 0.53 0.51 0.56

Lower region 0.50 0.44 0.42 0.45 0.71 0.65 0.60 0.67

Nasal phonemes

Head Motion 0.41 0.36 0.34 0.34 0.49 0.43 0.47 0.45

Eyebrow 0.38 0.38 0.34 0.31 0.46 0.46 0.51 0.49

Lips 0.52 0.58 0.46 0.53 0.77 0.79 0.73 0.79

Upper region 0.36 0.36 0.31 0.34 0.52 0.50 0.53 0.50

Middle region 0.40 0.42 0.35 0.37 0.64 0.57 0.58 0.60

Lower region 0.47 0.50 0.40 0.46 0.73 0.69 0.68 0.71

Plosive phonemes

Head Motion 0.35 0.27 0.31 0.30 0.46 0.45 0.45 0.45

Eyebrow 0.41 0.34 0.28 0.32 0.48 0.46 0.51 0.47

Lips 0.59 0.53 0.50 0.56 0.75 0.71 0.75 0.78

Upper region 0.38 0.32 0.31 0.29 0.51 0.46 0.50 0.47

Middle region 0.46 0.39 0.41 0.42 0.64 0.56 0.57 0.56

Lower region 0.54 0.49 0.47 0.55 0.74 0.67 0.67 0.69

Fricative phonemes

Head Motion 0.36 0.32 0.27 0.34 0.51 0.40 0.42 0.44

Eyebrow 0.38 0.35 0.25 0.32 0.44 0.43 0.41 0.45

Lips 0.55 0.52 0.44 0.47 0.73 0.63 0.65 0.74

Upper region 0.34 0.33 0.30 0.30 0.48 0.45 0.44 0.45

Middle region 0.43 0.37 0.32 0.36 0.61 0.53 0.49 0.58

Lower region 0.50 0.45 0.40 0.45 0.70 0.66 0.58 0.68

Silence

Head Motion 0.22 0.19 0.18 0.21 0.29 0.21 0.19 0.25

Eyebrow 0.19 0.15 0.10 0.15 0.28 0.19 0.19 0.20

Lips 0.17 0.22 0.08 0.16 0.35 0.33 0.24 0.42

Upper region 0.17 0.15 0.12 0.15 0.28 0.19 0.18 0.18

Middle region 0.13 0.14 0.09 0.14 0.28 0.22 0.19 0.25

Lower region 0.16 0.16 0.12 0.16 0.35 0.31 0.26 0.35

during normal human interaction and share the same channels,

some form of internal central control needs to buffer, prior-

itize and execute them in coherent manner. We hypothesize

that linguistic and affective goals interplay interchangeably

as primary and secondary controls [41]. During speech, for

instance, articulatory processes targeting linguistic goals might

have priority over expressive goals, which as a consequence

are restricted to modulating the communicative channels un-

der the given articulatory constraints to convey the desired

emotions. During the silence period, in contrast, articulatory

processes are passive and affective goals are dominant in the

non-verbal communication channels. In our previous work,

emotional modulation in acoustic and articulatory parameters

were analyzed [10], [22]. The results showed evidence for

this interplay between affective and linguistic goals in speech,

where low vowels with less restrictive tongue position ob-

served greater emotional coloring than high vowels such as

/i/. This hypothesis is also supported by the results presented

in Section IV-B. The results indicate that when MFCCs are

used to estimate the mappings, the eyebrows and the upper

face region, which are less constrained by the linguistic goals,

present higher inter-emotional differences. In fact, the eyebrow

pose may be enough to perceive the emotional message [11].

Another interesting research area is multimodal emotion

recognition. In addition to the poses of facial expressions, the

results presented in Section IV-A suggest that the activeness of

facial gestures also provides discriminative information about

emotions. For example, the average displacement coefficients
for lips and head motion features may be used to discriminate

between pairs of emotion that are usually confused in other

modalities, such as happy-anger and sadness-neutral. It is

interesting to note that in previous works, head motion has

been usually compensated and removed to analyze facial ex-

pressions. In those works, the subjects were instructed to avoid

moving their head. Since one of the channels is intentionally

blocked, the resulting data may contain non-natural patterns

in other facial gestures. The results presented here suggest

that head motion sequences not only should be encouraged

for natural interaction, but also can be used to discriminate

between emotions, as proposed in [42], [43].

Although the use of facial markers is suitable for the kind of

analysis presented here, facial expressions need to be automat-

ically extracted for realistic applications. This challenging task

can be done with automatic platforms such as the CMU/Pitt
Automated Facial Image Analysis (AFA) system [43], which

has been tested with head motion sequences that include pitch

and yaw as large as 40◦and 70◦, respectively. While the

orofacial area is clearly the target area for audio-visual speech

recognition, it is not clear which area need to be considered

for multimodal emotion recognition. The analysis presented

here, especially in Section IV-A, shed light into the important

facial areas used to display emotions. Figure 4 and Table I

show that the displacement coefficient in the middle and upper

regions in the face for happiness and anger is approximately

70% higher than during neutral speech. Conversely, the facial

activeness in the lower face region increases only 30% for the

same emotions. These results suggest that the forehead area

seems to have more degree of freedom to display non-verbal
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information such as emotion [41]. Therefore, this area needs

to be especially considered for emotion recognition systems.

These results agree with perceptual experiments, which have

shown that the upper face region is perceptively the most

important region to detect visual prominence [44], [45].

VII. CONCLUSIONS

This paper analyzed the influence of emotional content

and articulatory processes in the relationship between facial

gestures and speech. The results show that articulation and

emotions jointly modulate the interaction between these com-

municative modalities. The articulatory process is strongly

correlated with the appearance of the face. This result is

observed not only in the lower face region but also in the upper

and middle face regions. Likewise, we observe significant

inter-emotion differences in correlation levels of the audio-

visual mapping, which suggest that the emotional content also

affect the relationship. Under emotional speech the activeness

of facial gestures for anger and happiness increases by more

than 30% than during neutral speech. This pattern directly

affects the interrelation between facial gestures and speech.
The results presented here suggest that even though the

relationship between facial gestures and speech can change

from sentence to sentence, there is an emotion-dependent

structure that may be learned using more sophisticated tech-

niques than the commonly used multilinear regression. We

are currently studying how to jointly model facial gestures

and speech. Results from our recent work [7], [18] using time

series models such as HMMs, are promising and hence seem

to be suitable for learning the kinds of audio-visual mapping

analyzed here.
We are currently analyzing the timing and resolution in the

interrelation between facial and acoustic features. As shown in

this paper, facial gestures and speech are coupled at different

resolutions. Also, the timing between gestures and speech is

intrinsically asynchronous. Even in the orofacial area there

may be a phase difference of hundreds of milliseconds, be-

cause of the co-articulation process and articulator inertia [40].

An open question is how to learn and model this asynchronous

behavior not only near the lips, but also in the entire face. Our

goal is to appropriately integrate the facial gestures to generate

believable human-like facial animations.
The main limitation of this work is that we analyzed the

gestures and speech of a single actress. We are collecting

similar data from more subjects, which will be useful to

validate and expand the experiments presented here. This data

will also be appropriate to study inter-subject variabilities in

facial gestures. Our next step will be to control the emotional

content and the personal styles of the facial animations.

This will be possible if we understand how the emotional,

idiosyncratic and linguistic aspects of human communication

modulate each communicative modality.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for

their thoughtful and insightful comments. Thank also go to

the colleagues in the emotion research group for their valuable

comments.

REFERENCES

[1] D. McNeill, Hand and Mind: What gestures reveal about thought.
Chicago, IL, USA: The University of Chicago Press, 1992.

[2] E. Vatikiotis-Bateson, K. Munhall, Y. Kasahara, F. Garcia, and H. Yehia,
“Characterizing audiovisual information during speech,” in Fourth Inter-
national Conference on Spoken Language Processing (ICSLP 96), vol. 3,
Philadelphia, PA, USA, October 1996, pp. 1485–1488.

[3] J. Cassell, C. Pelachaud, N. Badler, M. Steedman, B. Achorn, T. Bechet,
B. Douville, S. Prevost, and M. Stone, “Animated conversation: Rule-
based generation of facial expression gesture and spoken intonation for
multiple conversational agents,” in Computer Graphics (Proc. of ACM
SIGGRAPH’94), Orlando, FL,USA, 1994, pp. 413–420.

[4] L. Valbonesi, R. Ansari, D. McNeill, F. Quek, S. Duncan, K. McCul-
lough, and R. Bryll, “Multimodal signal analysis of prosody and hand
motion: Temporal correlation of speech and gestures,” in European Sig-
nal Processing Conference (EUSIPCO 02), Tolouse, France, September
2002, pp. 75–78.

[5] P. Ekman, “Facial expression and emotion,” American Psychologist,
vol. 48, no. 4, pp. 384–392, April 1993.

[6] P. Ekman and E. Rosenberg, What the Face Reveals: Basic and Applied
Studies of Spontaneous Expression using the Facial Action Coding
System (FACS). New York, NY, USA: Oxford University Press, 1997.

[7] C. Busso, Z. Deng, M. Grimm, U. Neumann, and S. Narayanan, “Rigid
head motion in expressive speech animation: Analysis and synthesis,”
IEEE Transactions on Audio, Speech and Language Processing, vol. 15,
no. 3, pp. 1075–1086, March 2007.

[8] R. Cowie and R. Cornelius, “Describing the emotional states that are
expressed in speech,” Speech Communication, vol. 40, no. 1-2, pp. 5–32,
April 2003.

[9] K. Scherer, “Vocal communication of emotion: A review of research
paradigms,” Speech Communication, vol. 40, no. 1-2, pp. 227–256, April
2003.

[10] S. Yildirim, M. Bulut, C. Lee, A. Kazemzadeh, C. Busso, Z. Deng,
S. Lee, and S. Narayanan, “An acoustic study of emotions expressed in
speech,” in 8th International Conference on Spoken Language Process-
ing (ICSLP 04), Jeju Island, Korea, 2004.

[11] P. Ekman, “About brows: emotional and conversational signals,” in
Human ethology: claims and limits of a new discipline, M. von Cranach,
K. Foppa, W. Lepenies, and D. Ploog, Eds. New York, NY, USA:
Cambridge University Press, 1979, pp. 169–202.

[12] H. Yehia, P. Rubin, and E. Vatikiotis-Bateson, “Quantitative association
of vocal-tract and facial behavior,” Speech Communication, vol. 26, no.
1-2, pp. 23–43, 1998.

[13] H. Yehia, T. Kuratate, and E. Vatikiotis-Bateson, “Linking facial anima-
tion, head motion and speech acoustics,” Journal of Phonetics, vol. 30,
no. 3, pp. 555–568, Jul 2002.
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