

Real-time Monitoring of Participants' Interaction in a Meeting using Audio-Visual sensors

Carlos Busso, Panayiotis G. Georgiou, and Shrikanth S. Narayanan

Speech Analysis and Interpretation Laboratory (SAIL) Viterbi School of Engineering, University of Southern California,

Presented by Carlos Busso

August 15, 2007

Introduction

Smart room

- ➢ Multimodal fusion
- > Participants' interaction
- > Conclusions

Introduction

USC

Motivation

- Meetings are important for any organization
- Automatic annotations of human interaction will provide better tools for analyzing teamwork and collaboration strategies
- Examples of application in which monitoring human interaction is very useful are summarization, retrieval and classification of meetings

Goals

- Infer meta-information from participants in a multiperson meeting
- To monitor and track the behaviors, strategies and engagements of the participants
- Infer interaction flow of the discussion

Approach

- Use an smart environment equipped with audio-visual sensors to get the annotations
- Extract high-level features from automatic annotations of speaker activity (e.g. number and average duration of each turn)

Related work

- Smart room [Checka,2004] [Gatica-Perez,2003] [Pingali,1999]
- Monitoring human interaction [McCowan,2005] [Banerjee,2004] [Zhang,2006] [Basu,2001]

- ✓ Introduction
- ✓ Smart room
- ➤ Multimodal fusion
- ➢ Participants' interaction
- Conclusions

Smart room

- Visual
 - 4 firewire CCD cameras
 - Participants' location
 - 360° Omnidirectional camera
 - Angles of detected faces
- Audio
 - 16-channel microphone array
 - Speech source location
 - Directional microphone (SID)
 - Speaker identity

University of Southern California USC Outline USC USC

✓ Introduction

- ✓ Smart room
- ✓ Multimodal fusion
- ➢ Participants' interaction
- Conclusions

Multimodal fusion

- Participants' location (visual modalities)
 - Participants are modeled with a Gaussian distribution
 - A background Gaussian model is adapted to the measurements to sequentially detect the participants
 - Position of the ceiling cameras are corrected using the location of the detected faces
 - Two participants cannot be too close
 - Participants are removed when measurements are not assigned to them

- O Detected participants
- Measurements from ceiling cameras

- Robustness of using multimodal sensors
 - Detected participants
 - Measurements from ceiling cameras

Ceiling cameras

Ceiling and omnidirectional cameras

Multimodal fusion

- Speaker' detection (MA + Speaker ID)
 - Who is speaking?
 - Mahalanobis distance between acoustic source and position of the participants $P(S_i | X_{MA})$
 - Speaker ID is also used to detect the active speaker $P(S_i | X_{SID})$
- Participants' identification (Speaker ID)
 - Participants' ID and seating arrangement
 - Correlation with physical constraints r_{ij}

$$P(S_j) = P(S_j \mid X_{SID}) \cdot \sum_{i=1}^{N} r_{ij} \cdot P(S_i \mid X_{MA})$$

August 15, 2007

Multimodal fusion

11

Localization and identification

- After fusing audio-visual stream of data, the system gives
 - Participants' location
 - Speaker identity
 - Seating arrangement
 - Active speaker segmentation
- Testing (~85%)
 - Three 20-minute meeting (4 participants)
 - Casual conversation with interruptions and overlap

••••	
	1
	-

		-		
		Session	Strong	Weak
			Decision	Decision
A	Speaker ID (GMM based)	1	66.13%	73.28%
		2	61.27%	68.51%
		3	60.10%	67.85%
В	Microphone Array + Video	1	81.26%	86.02%
		2	85.41%	92.86%
		3	83.03%	89.62%
	Microphone Array + Video +	1	81.55%	88.42%
C Spe	Speaker ID (assumes known seating	2	85.60%	93.56%
	arrangement L)	3	82.49%	90.32%
	Microphone Array + Video +	1	80.37%	87.34%
DS	Speaker ID (participant location (L)	2	78.77%	87.26%
	learned through data)	3	82.49%	90.24%
	Seating arrangement automatically	1	87.78%	
Е		2	74.60%	
	iearrieu tirrougri data (L)	3	97.14%	

Multimodal fusion

USC IMSC

USC

• The system is been built to process data in real-time

University of Southern California USC Outline USC USC IMSC

- \checkmark Introduction
- ✓ Smart room
- ✓ Multimodal fusion
- Participants' interaction
- Conclusions

Participants' interaction

- High level features per participant
 - Number of turns
 - Average duration of turns
 - Amount of time as active speaker
 - Transition matrix depicting turn-taking between participants
- Evaluation
 - Hand-based annotation of speaker activity

Participants' interaction

- Automatic annotations are good approximation
- The distribution of time used as active speaker correlate dominance [Rienks,2006]
 - Subject 1 spoke more than 65% of the time
- Discussion are characterized by many short turns to show agreement (e.g. "uh-huh") and longer turns taken by mediators [Burger,2002]
 - Subject 1 was leading discussion
 - Subject 3 was only an active listener

Ground-true

time distribution

Estimated duration

Estimated time distribution

USC IMSC

USC

Ground-true no. of turns

10 20 30 40 50 60

Participants' interaction

	Hand-based addressee Annotation					
	Sp1	Sp2	Sp3	Sp4		
Sp1	0.00	0.31	0.44	0.25		
Sp2	0.72	0.00	0.21	0.07		
Sp3	0.69	0.18	0.00	0.13		
Sp4	0.50	0.23	0.28	0.00		

	Turn taking Transiti			on Matrix
	Sp1	Sp2	Sp3	Sp4
Sp1	0.03	0.34	0.46	0.17
Sp2	0.74	0.04	0.22	0.00
Sp3	0.76	0.08	0.05	0.11
Sp4	0.73	0.00	0.20	0.07

- The transition matrix gives the interaction flow and turn taking patterns
- Claim: transition between speaker ~ who was being addressed
 - To evaluate this hypothesis, addressee was manually annotated and compared with transition matrix
 - Transition matrix provides a good first approximation to identifying the interlocutor dynamics.
- Discussion was mainly between subjects 1 and 3.

USC

USC

August 15, 2007

Participants' interaction

- These high-level features can be estimated in small windows over time to infer participants' engagement
 - Subject 4 not engaged
 - Subjects 1, 2 and 3 engaged

Time [sec]

- ✓ Introduction
- ✓ Smart room
- ✓ Multimodal fusion
- ✓ Participants' interaction
- ✓ Conclusion

University of Southern California USC Conclusion USC USC

- Multimodal approaches to infer meta-information from speaker gives better performance than unimodal system
 - Robustness (redundant information)
 - Accuracy (complementary information)
- Participants' interaction can be estimated from automatic speaker segmentation
- Intelligent environments provide suitable platform to infer users' non-verbal messages

Conclusion

USC

Future work

- Rough estimations of the participant gestures will be extracted
 - We propose to include this information as additional clue to measure speaker engagement
- Improve fusion algorithm
 - Particle filter based approach
- Smart room as training tool
 - Evaluate whether the report provided by the smart room can be used as training tool for improving participant skills during discussions

Smart room team

Faculties

Shrikanth S. Narayanan Panayiotis G. Georgiou Ramakant Nevatia Isaac Cohen Scott Millward

Students

Kyu Jeong Han Viktor Rozgic Samuel Kim Chi-Wei Chu Anustup Choudhury Tom Murray Soonil Kwon

USC

Sergi Hernanz Anish Nair Jinman Kang Wei-Kai Liao Sung Lee Carlos Busso

August 15, 2007

